REFERENCES
2. Nikolaou V, Stratigos A. Emerging trends in the epidemiology of melanoma. Br J Dermatol 2014;170:11-9.
4. ECIS- European Cancer Information System. Available from: https://ecis.jrc.ec.europa.eu [Last accessed on 26 Feb 2019].
5. Forsea AM, Del Marmol V, De Vries E, Bailey E, Geller A. Melanoma incidence and mortality in Europe: new estimates, persistent disparities. Br J Dermatol 2012;167:1124-30.
6. Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, et al. Germline p16 mutations in familial melanoma. Nature genetics 1994;8:15-21.
7. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nature genetics 1994;8:23-6.
8. de Snoo FA, Hayward NK. Cutaneous melanoma susceptibility and progression genes. Cancer Lett 2005;230:153-86.
9. Aoude LG, Wadt KA, Pritchard AL, Hayward NK. Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 2015;28:148-60.
10. Athanasiadis EI, Antonopoulou K, Chatzinasiou F, Lill CM, Bourdakou MM, et al. A Web-based database of genetic association studies in cutaneous melanoma enhanced with network-driven data exploration tools. Database (Oxford) 2014;2014:bau101.
11. Antonopoulou K, Stefanaki I, Lill CM, Chatzinasiou F, Kypreou KP, et al. Updated field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma: the MelGene database. J Invest Dermatol 2015;135:1074-9.
12. Chatzinasiou F, Lill CM, Kypreou K, Stefanaki I, Nicolaou V, et al. Comprehensive field synopsis and systematic meta-analyses of genetic association studies in cutaneous melanoma. J Natl Cancer Inst 2011;103:1227-35.
13. Law MH, Bishop DT, Lee JE, Brossard M, Martin NG, et al. Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nature genetics 2015;47:987-95.
14. Padua RA, Barrass N, Currie GA. A novel transforming gene in a human malignant melanoma cell line. Nature 1984;311:671-3.
15. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417:949-54.
16. Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010;463:191-6.
17. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, et al. A landscape of driver mutations in melanoma. Cell 2012;150:251-63.
18. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nature genetics 2012;44:1006-14.
19. The Cancer Genome Atlas [Internet]. Available from: https://cancergenome.nih.gov/. [Last accessed on 24 Feb 2019].
20. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, et al. Patterns of somatic mutation in human cancer genomes. Nature 2007;446:153-8.
21. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SAJR, Behjati S, et al. Signatures of mutational processes in human cancer. Nature 2013;500:415-21.
22. Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, et al. Whole-genome landscapes of major melanoma subtypes. Nature 2017;545:175-80.
23. Gonzalez-Perez A, Lopez-Bigas N. Functional impact bias reveals cancer drivers. Nucleic Acids Res 2012;40:e169.
24. Gonzalez-Perez A, Perez-Llamas C, Deu-Pons J, Tamborero D, Schroeder MP, et al. IntOGen-mutations identifies cancer drivers across tumor types. Nature methods 2013;10:1081-2.
25. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499:214-8.
26. Raphael BJ, Dobson JR, Oesper L, Vandin F. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine. Genome medicine 2014;6:5.
27. Xu C. A review of somatic single nucleotide variant calling algorithms for next-generation sequencing data. Comput Struct Biotechnol J 2018;16:15-24.
28. Zhang J, Liu J, Sun J, Chen C, Foltz G, et al. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing. Brief Bioinformatics 2014;15:244-55.
29. Cosmic. COSMIC - Catalogue of Somatic Mutations in Cancer [Internet]. Available from: https://cancer.sanger.ac.uk/cosmic. [Last accessed on 24 Feb 2019].
30. Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 2017;45:D777-83.
31. Kassahn KS, Holmes O, Nones K, Patch AM, Miller DK, et al. Somatic point mutation calling in low cellularity tumors. PLoS One 2013;8:e74380.
32. Radenbaugh AJ, Ma S, Ewing A, Stuart JM, Collisson EA, et al. RADIA: RNA and DNA integrated analysis for somatic mutation detection. PLoS One 2014;9:e111516.
33. Hansen NF, Gartner JJ, Mei L, Samuels Y, Mullikin JC. Shimmer: detection of genetic alterations in tumors using next-generation sequence data. Bioinformatics 2013;29:1498-503.
34. SOAP : Short Oligonucleotide Analysis Package [Internet]. Available from: http://soap.genomics.org.cn/. [Last accessed on 24 Feb 2019].
35. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res 2016;44:e108.
36. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568-76.
37. Jones D, Raine KM, Davies H, Tarpey PS, Butler AP, et al. cgpCaVEManWrapper: Simple Execution of CaVEMan in Order to Detect Somatic Single Nucleotide Variants in NGS Data. Curr Protoc Bioinformatics 2016;56:15.10.1-15.10.18.
38. Wang W, Wang P, Xu F, Luo R, Wong MP, et al. FaSD-somatic: a fast and accurate somatic SNV detection algorithm for cancer genome sequencing data. Bioinformatics 2014;30:2498-500.
39. Roth A, Ding J, Morin R, Crisan A, Ha G, et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. Bioinformatics 2012;28:907-13.
40. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011;27:2987-93.
41. Christoforides A, Carpten JD, Weiss GJ, Demeure MJ, Von Hoff DD, et al. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs. BMC Genomics 2013;14:302.
42. Liu Y, Loewer M, Aluru S, Schmidt B. SNVSniffer: an integrated caller for germline and somatic single-nucleotide and indel mutations. BMC Syst Biol 2016;10:47.
43. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, et al. SomaticSniper: identification of somatic point mutations in whole genome sequencing data. Bioinformatics 2012;28:311-7.
44. Kim S, Jeong K, Bhutani K, Lee J, Patel A, et al. Virmid: accurate detection of somatic mutations with sample impurity inference. Genome Biol 2013;14:R90.
45. Gerstung M, Beisel C, Rechsteiner M, Wild P, Schraml P, et al. Reliable detection of subclonal single-nucleotide variants in tumour cell populations. Nat Commun 2012;3:811.
46. Shiraishi Y, Sato Y, Chiba K, Okuno Y, Nagata Y, et al. An empirical Bayesian framework for somatic mutation detection from cancer genome sequencing data. Nucleic Acids Res 2013;41:e89.
47. Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, et al. LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 2012;40:11189-201.
48. Carrot-Zhang J, Majewski J. LoLoPicker: detecting low allelic-fraction variants from low-quality cancer samples. Oncotarget 2017;8:37032-40.
49. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013;31:213-9.
50. Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 2012;28:1811-7.
51. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. Quantitative Biology 2012.
52. Usuyama N, Shiraishi Y, Sato Y, Kume H, Homma Y, et al. HapMuC: somatic mutation calling using heterozygous germ line variants near candidate mutations. Bioinformatics 2014;30:3302-9.
53. Sengupta S, Gulukota K, Zhu Y, Ober C, Naughton K, et al. Ultra-fast local-haplotype variant calling using paired-end DNA-sequencing data reveals somatic mosaicism in tumor and normal blood samples. Nucleic Acids Res 2016;44:e25.
54. Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SRF, et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat Genet 2014;46:912-8.
55. Cantarel BL, Weaver D, McNeill N, Zhang J, Mackey AJ, et al. BAYSIC: a Bayesian method for combining sets of genome variants with improved specificity and sensitivity. BMC Bioinformatics 2014;15:104.
56. Ding J, Bashashati A, Roth A, Oloumi A, Tse K, et al. Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data. Bioinformatics 2012;28:167-75.
57. Spinella JF, Mehanna P, Vidal R, Saillour V, Cassart P, et al. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing. BMC Genomics 2016;17:912.
58. Fang LT, Afshar PT, Chhibber A, Mohiyuddin M, Fan Y, et al. An ensemble approach to accurately detect somatic mutations using SomaticSeq. Genome Biol 2015;16:197.
59. Hsu YC, Hsiao YT, Kao TY, Chang JG, Shieh GS. Detection of somatic mutations in exome sequencing of tumor-only samples. Sci Rep 2017;7:15959.
60. Kalatskaya I, Trinh QM, Spears M, McPherson JD, Bartlett JMS, et al. ISOWN: accurate somatic mutation identification in the absence of normal tissue controls. Genome Med 2017;9:59.
61. Muller E, Goardon N, Brault B, Rousselin A, Paimparay G, et al. OutLyzer: software for extracting low-allele-frequency tumor mutations from sequencing background noise in clinical practice. Oncotarget 2016;7:79485-93.
62. Dunn T, Berry G, Emig-Agius D, Jiang Y, Lei S, et al. Pisces: an accurate and versatile variant caller for somatic and germline next-generation sequencing data. Bioinformatics 2018; doi: 10.1093/bioinformatics/bty849.
63. Kockan C, Hach F, Sarrafi I, Bell RH, McConeghy B, et al. SiNVICT: ultra-sensitive detection of single nucleotide variants and indels in circulating tumour DNA. Bioinformatics 2017;33:26-34.
64. Smith KS, Yadav VK, Pei S, Pollyea DA, Jordan CT, et al. SomVarIUS: somatic variant identification from unpaired tissue samples. Bioinformatics 2016;32:808-13.
65. Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 2013;153:919-29.
66. Xi R, Luquette J, Hadjipanayis A, Kim TM, Park PJ. BIC-seq: a fast algorithm for detection of copy number alterations based on high-throughput sequencing data. Genome Biol 2010;11:O10.
67. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, et al. BreakDancer: an algorithm for high resolution mapping of genomic structural variation. Nat Methods 2009;6:677-81.
68. Drier Y, Lawrence MS, Carter SL, Stewart C, Gabriel SB, et al. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res 2013;23:228-35.
69. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: genome-wide copy number detection and visualization from targeted DNA sequencing. PLoS computational biology 2016;12:e1004873.
70. Krumm N, Sudmant PH, Ko A, O’Roak BJ, Malig M, et al. Copy number variation detection and genotyping from exome sequence data. Genome Res 2012;22:1525-32.
71. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 2012;28:i333-9.
72. Malhotra A, Lindberg M, Faust GG, Leibowitz ML, Clark RA, et al. Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms. Genome Res 2013;23:762-76.
73. Sindi S, Helman E, Bashir A, Raphael BJ. A geometric approach for classification and comparison of structural variants. Bioinformatics 2009;25:i222-30.
74. Sindi SS, Önal S, Peng LC, Wu HT, Raphael BJ. An integrative probabilistic model for identification of structural variation in sequencing data. Genome Biol 2012;13:R22.
75. Escaramís G, Tornador C, Bassaganyas L, Rabionet R, Tubio JMC, et al. PeSV-Fisher: identification of somatic and non-somatic structural variants using next generation sequencing data. PLoS One 2013;8:e63377.
76. Hormozdiari F, Hajirasouliha I, McPherson A, Eichler EE, Sahinalp SC. Simultaneous structural variation discovery among multiple paired-end sequenced genomes. Genome Res 2011;21:2203-12.
77. Tang X, Baheti S, Shameer K, Thompson KJ, Wills Q, et al. The eSNV-detect: a computational system to identify expressed single nucleotide variants from transcriptome sequencing data. Nucleic Acids Res 2014;42:e172.
78. Piskol R, Ramaswami G, Li JB. Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet 2013;93:641-51.
80. Kontogianni G, Piroti G, Maglogiannis I, Chatziioannou A, Papadodima O. Dissecting the mutational landscape of cutaneous melanoma: an omic analysis based on patients from Greece. Cancers 2018;10:96.
81. Kaminker JS, Zhang Y, Watanabe C, Zhang Z. CanPredict: a computational tool for predicting cancer-associated missense mutations. Nucleic Acids Res 2007;35:W595-8.
82. González-Pérez A, López-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet 2011;88:440-9.
83. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Human mutation 2013;34:57-65.
84. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, et al. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol 2010;6:e1001025.
85. Kaminker JS, Zhang Y, Waugh A, Haverty PM, Peters B, et al. Distinguishing cancer-associated missense mutations from common polymorphisms. Cancer Res 2007;67:465-73.
86. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to cancer genomics. Nucleic Acids Res 2011;39:e118.
87. Reva B, Antipin Y, Sander C. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol 2007;8:R232.
88. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 2014;11:361-2.
89. Gonzalez-Perez A, Lopez-Bigas N. Functional impact bias reveals cancer drivers. Nucleic Acids Res 2012;40:e169.
90. Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, de la Cruz X, et al. PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics 2005;21:3176-8.
91. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. A method and server for predicting damaging missense mutations. United States: Nat Methods; 2010. pp. 248-9.
92. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP. Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012;7:e46688.
94. Yue P, Melamud E, Moult J. SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinformatics 2006;7:166.
95. Gonzalez-Perez A, Deu-Pons J, Lopez-Bigas N. Improving the prediction of the functional impact of cancer mutations by baseline tolerance transformation. Genome Med 2012;4:89.
96. Hua X, Xu H, Yang Y, Zhu J, Liu P, et al. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies. Am J Hum Genet 2013;93:439-51.
97. Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res 2012;22:1589-98.
98. Youn A, Simon R. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 2011;27:175-81.
99. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 2009;69:6660-7.
100. Wong WC, Kim D, Carter H, Diekhans M, Ryan MC, et al. CHASM and SNVBox: toolkit for detecting biologically important single nucleotide mutations in cancer. Bioinformatics 2011;27:2147-8.
101. Tan H, Bao J, Zhou X. A novel missense-mutation-related feature extraction scheme for “driver” mutation identification. Bioinformatics 2012;28:2948-55.
102. van Dyk E, Reinders MJT, Wessels LFA. A scale-space method for detecting recurrent DNA copy number changes with analytical false discovery rate control. Nucleic Acids Res 2013;41:e100.
103. Zhang Q, Ding L, Larson DE, Koboldt DC, McLellan MD, et al. CMDS: a population-based method for identifying recurrent DNA copy number aberrations in cancer from high-resolution data. Bioinformatics 2010;26:464-9.
104. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol 2011;12:R41.
105. Sanchez-Garcia F, Akavia UD, Mozes E, Pe’er D. JISTIC: Identification of significant targets in cancer. BMC Bioinformatics 2010;11:189.
106. Ryslik GA, Cheng Y, Cheung KH, Modis Y, Zhao H. Utilizing protein structure to identify non-random somatic mutations. BMC Bioinformatics 2013;14:190.
107. Ye J, Pavlicek A, Lunney EA, Rejto PA, Teng CH. Statistical method on nonrandom clustering with application to somatic mutations in cancer. BMC Bioinformatics 2010;11:11.
108. Koutsandreas T, Binenbaum I, Pilalis E, Valavanis I, Papadodima O, et al. Analyzing and visualizing genomic complexity for the derivation of the emergent molecular networks. IJMSTR 2016;4:30-49.
109. Vandin F, Upfal E, Raphael BJ. Algorithms for detecting significantly mutated pathways in cancer. J Comput Biol 2011;18:507-22.
110. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-50.
111. Ciriello G, Cerami E, Sander C, Schultz N. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res 2012;22:398-406.
112. Leiserson MDM, Blokh D, Sharan R, Raphael BJ. Simultaneous identification of multiple driver pathways in cancer. PLoS Comput Biol 2013;9:e1003054.
113. Cerami E, Demir E, Schultz N, Taylor BS, Sander C. Automated network analysis identifies core pathways in glioblastoma. PLoS One 2010;5:e8918.
114. Wendl MC, Wallis JW, Lin L, Kandoth C, Mardis ER, et al. PathScan: a tool for discerning mutational significance in groups of putative cancer genes. Bioinformatics 2011;27:1595-602.
115. Boca SM, Kinzler KW, Velculescu VE, Vogelstein B, Parmigiani G. Patient-oriented gene set analysis for cancer mutation data. Genome Biol 2010;11:R112.
116. Miller CA, Settle SH, Sulman EP, Aldape KD, Milosavljevic A. Discovering functional modules by identifying recurrent and mutually exclusive mutational patterns in tumors. BMC Med Genomics 2011;4:34.
117. Maldonado JL, Fridlyand J, Patel H, Jain AN, Busam K, et al. Determinants of BRAF mutations in primary melanomas. J Natl Cancer Inst 2003;95:1878-90.
118. Bastian BC. The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 2014;9:239-71.
119. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell 2017;170:17-33.
121. Fedorenko IV, Gibney GT, Smalley KSM. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene 2013;32:3009-18.
122. Vigil D, Cherfils J, Rossman KL, Der CJ. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat Rev Cancer 2010;10:842-57.
124. Cirenajwis H, Lauss M, Ekedahl H, Törngren T, Kvist A, et al. NF1-mutated melanoma tumors harbor distinct clinical and biological characteristics. Mol Oncol 2017;11:438-51.
125. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, et al. Highly recurrent TERT promoter mutations in human melanoma. Science 2013;339:957-9.
126. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, et al. TERT promoter mutations in familial and sporadic melanoma. Science 2013;339:959-61.
127. Shain AH, Joseph NM, Yu R, Benhamida J, Liu S, et al. Genomic and transcriptomic analysis reveals incremental disruption of key signaling pathways during melanoma evolution. Cancer Cell 2018;34:45-55.e4.
128. Zhao R, Choi BY, Lee MH, Bode AM, Dong Z. Implications of genetic and epigenetic alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine 2016;8:30-9.
129. Palmieri G, Colombino M, Casula M, Manca A, Mandalà M, et al. Molecular pathways in melanomagenesis: what we learned from next-generation sequencing approaches. Curr Oncol Rep 2018;20:86.
130. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, et al. Comprehensive characterization of cancer driver genes and mutations. Cell 2018;173:371-85.e18.
131. Ortega-Molina A, Serrano M. PTEN in cancer, metabolism, and aging. Trends Endocrinol Metab 2013;24:184-9.
132. Helgadottir H, Rocha Trocoli Drakensjö I, Girnita A. Personalized medicine in malignant melanoma: towards patient tailored treatment. Front Oncol 2018;8:202.
133. Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development 2015;142:620-32.