REFERENCES

1. Konopka G, Roberts T. Insights into the neural and genetic basis of vocal communication. Cell 2016;164:1269-76.

2. Cortical language areas. University of Minnesota Duluth. Available from: http://www.d.umn.edu/~jfitzake/Lectures/DMED/SpeechLanguage/CorticalS_LAreas/CorticalLanguageAreas.html. [Last accessed on 11 Jun 2019].

3. Friederici AD. The brain basis of language processing: from structure to function. Physiol Rev 2011;91:1357-92.

4. Starowicz-Filip A, Chrobak A, Moskała M, Krzyżewski RM, Kwinta B, et al. The role of the cerebellum in the regulation of language functions. Psychiatr Pol 2017;51:661-71.

5. Kang C, Drayna D. Genetics of speech and language disorders. Annu Rev Genomics Hum Genet 2011;12:145-64.

6. Newbury DF, Monaco AP. Genetic advances in the study of speech and language disorders. Neuron 2010;68:309-20.

7. Szalontai A, Csiszar K. Genetic insights into the functional elements of language. Hum Genet 2013;132:959-86.

8. Rice M, Smolík F. Genetics of language disorders: clinical conditions, phenotypes, and genes. In: Gaskell G, editor. The Oxford Handbook of Psycholinguistics. Oxford Handbooks Online 2007.

9. Mori C, Wada K. Songbird: a unique animal model for studying the molecular basis of disorders of vocal development and communication. Exp Anim 2015;64:221-30.

10. Wada K, Kobayashi M, Wan-Chun L. Epigenetic gene expression dynamics induced by singing in a critical period of vocal learning. Front Behav Neurosci 2012;6.

11. Ropper A, Samuels M, Klein J. Disorders of speech and language. In: Victor M, Ropper AH, editors. Adams and Victor’s principles of Neurology. New York: McGraw-Hill Education Medical; 2014. pp. 486-506.

12. Dysarthria in adults: overview - ASHA. Available from: https://www.asha.org/Practice-Portal/Clinical-Topics/Dysarthria-in-Adults/. [Last accessed on 11 Jun 2019].

13. McDonald C. Clinical approach to the diagnostic evaluation of hereditary and acquired neuromuscular diseases. Phys Med Rehabil Clin N Am 2012;23:495-563.

14. Alseth EH. Genetic associations in myasthenia gravis Implications for pathogenesis. PhD. University of Bergen; 2010.

15. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. OMIM Number: {254200}: {10/04/2013}. Available from: http://www.ncbi.nlm.nih.gov/omim/. [Last accessed on 11 Jun 2019].

16. Zagoriti Z, Kambouris M, Patrinos G, Tzartos SJ, Poulas K. Recent advances in genetic predisposition of myasthenia gravis. Biomed Res Int 2013;2013:1-12.

17. Sanders D. CS1.1 Seronegative and MuSK antibody-positive myasthenia gravis. Clin Neurophysiol 2006;117:1.

18. Beukelman D, Fager S, Nordness A. Communication support for people with ALS. Neurol Res Int 2011;2011:714693.

19. Lewis BA. 2006 Speech and language disorders associated with Prader-Willi syndrome. In: Butler MG, Lee PDK, Whitman BY, editors. Management of Prader-Willi syndrome. 3rd ed. New York: Springer; 2006. pp. 272-83.

20. Bird TD. Hereditary Ataxia Overview. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1138/. [Last accessed on 10 Jun 2019].

21. Orr H, Zoghbi H. Trinucleotide repeat disorders. Annu Rev Neurosci 2007;30:575-621.

22. Brendel B, Synofzik M, Ackermann H, Lindig T, Schölderle T, et al. Comparing speech characteristics in spinocerebellar ataxias type 3 and type 6 with Friedreich ataxia. J Neurol 2014;262:21-6.

23. Sidtis J, Ahn J, Gomez C, Sidtis D. Speech characteristics associated with three genotypes of ataxia. J Commun Disord 2011;44:478-92.

24. Gómez-Coello A, Valadez-Jiménez V, Cisneros B, Carrillo-Mora P, Parra-Cárdenas M, et al. Voice alterations in patients with spinocerebellar ataxia type 7 (SCA7): Clinical-Genetic Correlations. J Voice 2017;31:123e1-5.

25. Brendel B, Ackermann H, Berg D, Lindig T, Schölderle T, et al. Friedreich ataxia: dysarthria profile and clinical data. Cerebellum 2013;12:475-84.

26. Hereditary spastic paraplegia overview - NCBI - NIH . Available from: https://www.ncbi.nlm.nih.gov/books/NBK1509/. [Last accessed on 11 Jun 2019].

27. Clinical Bulletin in Dysarthria. Available from: https://www.nationalmssociety.org/NationalMSSociety/media/MSNationalFiles/Brochures/Clinical-Bulletin-Dysarthria.pdf. [Last accessed on 11 Jun 2019].

28. Feenaughty L, Tjaden K, Benedict R, Weinstock-Guttman B. Speech and pause characteristics in multiple sclerosis: a preliminary study of speakers with high and low neuropsychological test performance. Clin Linguist Phon 2013;27:134-51.

29. Hartelius L, Runmarker B, Andersen O. Prevalence and characteristics of dysarthria in a multiple-sclerosis incidence cohort: relation to neurological data. Folia Phoniatr Logop 2000;52:160-77.

30. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. OMIM Number: {126200}: {07/18/2018}. Available from: http://www.ncbi.nlm.nih.gov/omim/. [Last accessed on 11 Jun 2019].

31. Hrastelj J, Robertson N. Genetics of disease severity in multiple sclerosis, Alzheimer’s disease, and Huntington’s disease: rejuvenating genome-wide association studies. J Neurol 2017;264:2040-2.

32. González S, Rojas J, Redal M, Patrucco L, Correale J, et al. CD24 as a genetic modifier of disease progression in multiple sclerosis in Argentinean patients. J Neurol Sci 2011;307:18-21.

33. Zhou Q, Rammohan K, Lin S, Robinson N, Li O, et al. CD24 is a genetic modifier for risk and progression of multiple sclerosis. Proc Nat Acad Sci 2003;100:15041-6.

34. Sadovnick A, Traboulsee A, Zhao Y, Bernales CQ, Encarnacion M, et al. Genetic modifiers of multiple sclerosis progression, severity and onset. Clin Immunol 2017;180:100-5.

35. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV. A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 2005;58:50-7.

36. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. OMIM Number: {163890}: {06/27/2018}. Available from: http://www.ncbi.nlm.nih.gov/omim/. [Last accessed on 11 Jun 2019].

37. Diao J, Burré J, Vivona S, Cipriano DJ, Sharma M, et al. Native α-synuclein induces clustering of synaptic-vesicle mimics via binding to phospholipids and synaptobrevin-2/VAMP2. Elife 2013;2.

38. Kelm-Nelson C, Yang K, Ciucci M. Exercise effects on early vocal ultrasonic communication dysfunction in a PINK1 knockout model of Parkinson’s disease. J Parkinsons Dis 2015;5:749-63.

39. Grant L, Richter F, Miller J, White SA, Fox CM, et al. Vocalization deficits in mice over-expressing alpha-synuclein, a model of pre-manifest Parkinson’s disease. Behav Neurosci 2014;128:110-21.

40. Creed R, Goldberg M. New developments in genetic rat models of Parkinson’s disease. Mov Disord 2018;33:717-29.

41. Pultorak J, Kelm-Nelson C, Holt L, Blue KV, Ciucci MR, et al. Decreased approach behavior and nucleus accumbens immediate early gene expression in response to Parkinsonian ultrasonic vocalizations in rats. Soc Neurosci 2015;11:365-79.

42. Zheng Y, Pei Z, Liu Y, Zhou H, Xian W, et al. Cognitive impairments in LRRK2-related Parkinson’s disease: a study in Chinese Individuals. Behav Neurol 2015;2015:1-5.

43. García A, Sedeño L, Trujillo N, Bocanegra Y, Gómez D, et al. Language deficits as a preclinical window into Parkinson’s disease: evidence from asymptomatic parkin and dardarin mutation carriers. J Int Neuropsychol Soc 2017;23:150-8.

44. Tanner K, Roy N, Merrill R, Kimber K, Sauder C, et al. Risk and protective factors for spasmodic dysphonia: a case-control investigation. J Voice 2011;25:e35-46.

45. Breakefield XO, Blood AJ, Li Y, Hallett M, Hanson PI, et al. The pathophysiological basis of dystonias. Nat Rev Neurosci 2008;9:222-34.

46. Bianchi S, Battistella G, Huddleston H, Shcharf R, Fleysher L, et al. Phenotype- and genotype-specific structural alterations in spasmodic dysphonia. Mov Disord 2017;32:560-8.

47. Simonyan K, Tovar-Moll F, Ostuni J, Hallett M, Kalasinsky VF, et al. Focal white matter changes in spasmodic dysphonia: a combined diffusion tensor imaging and neuropathological study. Brain 2008;131:447-59.

48. Blitzer A, Brin M, Simonyan K, Ozelious LJ, Frucht SJ, et al. Phenomenology, genetics, and CNS network abnormalities in laryngeal dystonia: a 30-year experience. Laryngoscope 2017;128:S1-9.

49. Simonyan K, Ludlow C. Abnormal activation of the primary somatosensory cortex in spasmodic dysphonia: an fMRI study. Cereb Cortex 2010;20:2749-59.

50. Putzel G, Fuchs T, Battistella G, Rubien-Thomas E, Frucht SJ, et al. GNAL mutation in isolated laryngeal dystonia. Mov Disord 2016;31:750-5.

51. Sharma N, Franco R. Consideration of genetic contributions to the risk for spasmodic dysphonia. Otolaryngol Head Neck Surg 2011;145:369-70.

52. Putzel G, Battistella G, Rumbach A, Ozelius LJ, Sabuncu MR, et al. Polygenic risk of spasmodic dysphonia is associated with vulnerable sensorimotor connectivity. Cereb Cortex 2016;28:158-66.

53. Ludlow C. Spasmodic dysphonia: a laryngeal control disorder specific to speech. J Neurosci 2011;31:793-7.

54. Clarimon J, Asgeirsson H, Singleton A, Jakobsson F, Hjaltason H, et al. Torsin A haplotype predisposes to idiopathic dystonia. Ann Neurol 2005;57:765-7.

55. Hague S, Klaffke S, Clarimon J, Hemmer B, Singleton A, et al. Lack of association with TorsinA haplotype in German patients with sporadic dystonia. Neurology 2006;66:951-2.

56. Sharma N, Franco RA, Kuster J, Mitchel AA, Fuchs T, et al. Genetic evidence for an association of the TOR1A locus with segmental/focal dystonia. Mov Disord 2010;25:2183-7.

57. Lohmann K, Wilcox R, Winkler S, Ramirez A, Rakovic A, et al. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol 2013;73:537-45.

58. Peng Y, Crumley R, Ringman J. Spasmodic dysphonia in a patient with the A to G transition at nucleotide 8344 in mitochondrial DNA. Mov Disord 2003;18:716-8.

59. Qi Y, Zheng Y, Li Z, Xiong L. Progress in genetic studies of Tourette’s syndrome. Brain Sci 2017;7:134.

60. Belloso J, Bache I, Guitart M, Caballin MR, Halgren C, et al. Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome. Eur J Hum Genet 2007;15:711-3.

61. Sun N, Nasello C, Deng L, Wang N, Zhang Y, et al. The PNKD gene is associated with Tourette Disorder or Tic disorder in a multiplex family. Mol Psychiatry 2017;23:1487-1495.

62. Hamilton A, Ferm U, Heemskerk A, Twiston-Davies R, Matheson KY, et al. Management of speech, language and communication difficulties in Huntington’s disease. Neurodegener Dis Manag 2012;2:67-77.

63. Smith S. Approach to epigenetic analysis in language disorders. J Neurodev Disord 2011;3:356-64.

64. Valor L. Transcription, Epigenetics and Ameliorative Strategies in Huntington’s Disease: a Genome-Wide Perspective. Mol Neurobiol 2014;51:406-23.

65. Patel A, Frucht S. Isolated vocal tremor as a focal phenotype of essential tremor: a retrospective case review. J Clin Mov Disord 2015;2:2-4.

66. Sulica L, Louis E. Clinical characteristics of essential voice tremor: a study of 34 cases. Laryngoscope 2010;120:516-28.

67. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. OMIM Number: {190300}: {02/16/2016}. Available from: http://www.ncbi.nlm.nih.gov/omim/. [Last accessed on 11 Jun 2019].

68. Frigerio-Domingues C, Drayna D. Genetic contributions to stuttering: the current evidence. Mol Genet Genomic Med 2017;5:95-102.

69. Kazemi N, Estiar M, Fazilaty H, Sakhinia E. Variants in GNPTAB, GNPTG and NAGPA genes are associated with stutterers. Gene 2018;647:93-100.

70. Online Mendelian Inheritance in Man, OMIM (TM). Johns Hopkins University, Baltimore, MD. OMIM Number: {607840}: {03/07/2018}. Available from: http://www.ncbi.nlm.nih.gov/omim/. [Last accessed on 11 Jun 2019].

71. Raza MH, Gertz EM, Mundorff J, Lukong J, Kuster J, et al. Linkage analysis of a large African family segregating stuttering suggests polygenic inheritance. Hum Genet 2013;132:385-96.

72. Suresh R, Ambrose N, Roe C, Pluzhnikov A, Wittke-Thompson JK, et al. New complexities in the genetics of stuttering: significant sex□specific linkage signals. Am J Hum Genet 2006;78:554-63.

73. Domingues CE, Olivera CM, Oliveira BV, Juste FS, Andrade CR, et al. A genetic linkage study in Brazil identifies a new locus for persistent developmental stuttering on chromosome 10. Genet Mol Res 2014;13:2094-101.

74. Lan J, Song M, Pan C, Zhuang G, Wang Y, et al. Association between dopaminergic genes (SLC6A3 and DRD2) and stuttering among Han Chinese. J Hum Genet 2009;54:457-60.

75. Reuter M, Riess A, Moog U, Briggs TA, Chandler KE, et al. FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. J Med Genet 2016;54:64-72.

76. Petrin A, Giacheti C, Maximino L, Abramides D, Zanchetta S, et al. Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case. Am J Med Gen A 2010;152A:3164-72.

77. Dauer K, Irwin S, Schippits S. Becoming verbal and intelligible: a functional motor programming approach for children with developmental verbal apraxia. Harcourt Publishers Ltd; 1996.

78. Rosenbek JC, Wertz RT, LaPointe LL. Apraxia of speech in adults: the disorder and its management. Grune & Stratton, New York; 1984.

79. Graham S, Fisher S. Understanding language from a genomic perspective. Annu Rev Genet 2015;49:131-60.

80. Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001;413:519-23.

81. Bacon C, Rappold G. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum Genet 2012;131:1687-98.

82. Oswald F, Klöble P, Ruland A, Rosenkranz D, Hinz B, et al. The FOXP2-driven network in developmental disorders and neurodegeneration. Front Cell Neurosci 2017;11:212.

83. Becker M, Devanna P, Fisher S, Vernes SC. Mapping of human FOXP2 enhancers reveals complex regulation. Front Mol Neurosci 2018;11:47.

84. Liégeois F, Hildebrand M, Bonthrone A, Turner SJ, Scheffer IE, et al. Early neuroimaging markers of FOXP2 intragenic deletion. Sci Rep 2016;6:35192.

85. Morgan A, Fisher SE, Scheffer I, Hildebrand M. FOXP2-related speech and language disorders. 2016 Jun 23 [Updated 2017 Feb 2]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2018. Available from: https://www.ncbi.nlm.nih.gov/books/NBK368474/. [Last accessed on 11 Jun 2019].

86. Hamdan F, Daoud H, Rochefort D, Piton A, Gauthier J, et al. De novo mutations in FOXP1 in cases with intellectual disability, autism, and language impairment. Am J Hum Genet 2010;87:671-8.

87. Le Fevre A, Taylor S, Malek N, Horn D, Carr CW, et al. FOXP1 mutations cause intellectual disability and a recognizable phenotype. Am J Med Genet Part A 2013;161:3166-75.

88. Peter B, Wijsman EM, Nato AQ, Matsushita MM, Chapman KL, et al. Genetic Candidate variants in two multigenerational families with childhood apraxia of speech. PLoS One 2016;11:e0153864.

89. Eising E, Carrion-Castillo A, Vino A, Strand EA, Jakielski KJ, et al. A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Mol Psychiatry 2018; doi: 10.1038/s41380-018-0020-x.

90. Worthey E, Raca G, Laffin J, Wilk BM, Harris JM, et al. Whole-exome sequencing supports genetic heterogeneity in childhood apraxia of speech. J Neurodev Disord 2013;5:29.

91. Thevenon J, Callier P, Andrieux J, Delobel B, David A, et al. 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. Eur J Hum Genet 2012;21:82-8.

92. Laffin J, Raca G, Jackson C, Strand EA, Jakielski KJ, et al. Novel candidate genes and regions for childhood apraxia of speech identified by array comparative genomic hybridization. Genet Med 2012;14:928-36.

93. Newbury D, Mari F, Sadighi-Akha E, Macdermot KD, Canitano R, et al. Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. Eur J Hum Genet 2012;21:361-5.

94. Bauman-Wängler J. Articulatory and phonological impairments: a clinical focus. 2nd ed. Boston: Allyn and Bacon; 2004.

95. Hayiou-Thomas M, Carroll J, Leavett R, Hulme C, Snowling MJ. When does speech sound disorder matter for literacy? The role of disordered speech errors, co-occurring language impairment and family risk of dyslexia. J Child Psychol Psychiatry 2016;58:197-205.

96. Eicher J, Stein C, Deng F, Ciesla AA, Powers NR, et al. The DYX2 locus and neurochemical signaling genes contribute to speech sound disorder and related neurocognitive domains. Genes Brain Behav 2015;14:377-85.

97. Nopola-Hemmi J, Myllyluoma B, Haltia T, Taipale M, Ollikainen V, et al. A dominant gene for developmental dyslexia on chromosome 3. J Med. Genet 2001;38:658-64.

98. Kraft S, De Thorne L. The brave new world of epigenetics: embracing complexity in the study of speech and language disorders. Curr Dev Disord Rep 2014;1:207-14.

99. Anthoni H, Sucheston LE, Lewis BA, Tapia-Páez I, Fan X, et al. The aromatase Gene CYP19A1: several genetic and functional lines of evidence supporting a role in reading, speech and language. Behav Gen 2012;42:509-27.

100. Panjwani N, Wilson MD, Addis L, Crosbie J, Wirrell E, et al. A microRNA-328 binding site in PAX6 is associated with centrotemporal spikes of rolandic epilepsy. Ann Clin Transl Neurol 2016;3:512-22.

101. Tang-Wai D, Graham N. Assessment of language function in dementia. Available from: https://www.medscape.com/viewarticle/573859_4. [Last accessed on 11 Jun 2019].

102. Tai L, Thomas R, Marottoli F, Koster KP, Kanekiyo T, et al. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol 2016;131:709-23.

103. Kim J, Basak J, Holtzman D. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009;63:287-303.

104. Cacace R, Sleegers K, Van-Broeckhoven C. Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 2016;12:733-48.

105. Mez J, Cosentino S, Brickman A, Huey ED, Mayeux R. Different demographic, genetic, and longitudinal traits in language versus memory Alzheimer’s subgroups. J Alzheimers Dis 2013;37:137-46.

106. Premi E, Pilotto A, Alberici A, Papetti A, Archetti S, et al. FOXP2, APOE, and PRNP: new modulators in primary progressive aphasia. J Alzheimers Dis 2012;28:941-50.

107. Daniele A, Matera M, Seripa D, Acciarri A, Bizzarro A, et al. APOE ε2/ε4 genotype a risk factor for primary progressive aphasia in women. Arch Neurol 2009;66:910-2.

108. Seripa D, Bizzarro A, Pilotto A, Palmieri O, Panza F, et al. TOMM40, APOE, and APOC1 in primary progressive aphasia and frontotemporal dementia. J Alzheimers Dis 2012;31:731-40.

109. Deters K, Nho K, Risacher S, Kim S, Ramanan VK, et al. Genome-wide association study of language performance in Alzheimer’s disease. Brain Lang 2017;172:22-9.

110. Padovani A, Cosseddu M, Premi E, Archetti S, Papetti A, et al. The speech and language FOXP2 gene modulates the phenotype of frontotemporal lobar degeneration. J Alzheimers Dis 2010;22:923-31.

111. Rogalski E, Weintraub S, Mesulam M. Are there susceptibility factors for primary progressive aphasia? Brain Lang 2013;127:135-8.

112. Flanagan EP, Baker MC, Perkerson RB, Duffy JR, Strand EA, et al. Dominant frontotemporal dementia mutations in 140 cases of primary progressive aphasia and speech apraxia. Dement Geriatr Cogn Disord 2015;39:281-6.

113. Bishop D. Uncommon understanding: development and disorders of language comprehension in children. East Sussex: Psychology Press; 1997.

114. Poliak S, Gollan L, Martinez R, Custer A, Einheber S, et al. Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ Channels. Neuron 1999;24:1037-47.

115. Toma C, Pierce KD, Shaw AD, Heath A, Mitchell PB, et al. Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLoS Genet 2018;14:e1007535.

116. Trajkovski V. Medical genetics and its implementation in speech, language and hearing disorders. In: Milošević N, editor. II Congress of Logopedists of Serbia. Belgrade, Serbia: Association of logopedists of Serbia; 2015.

117. Centanni TM, Sanmann JN, Green JR, Iuzzini-Seigel J, Bartlett C, et al. The role of candidate-gene CNTNAP2 in childhood apraxia of speech and specific language impairment. Am J Med Genet B Neuropsychiatr Genet 2015;168:536-43.

118. Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Eng J Med 2006;354:1370-7.

119. Condro MC, White SA. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning. J Comp Neurol 2014;522:169-85.

120. Newbury DF, Winchester L, Addis L, Paracchini S, Buckingham LL, et al. CMIP and ATP2C2 modulate phonological short-term memory in language impairment. Am J Human Genet 2009;85:264-72.

121. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 2008;115:1573-85.

122. Newbury D, Monaco A. Genetic advances in the study of speech and language disorders. Neuron 2010;68:309-20.

123. Filges I, Shimojima K, Okamoto N, Röthlisberger B, Weber P, et al. Reduced expression by SETBP1 haploinsufficiency causes developmental and expressive language delay indicating a phenotype distinct from Schinzel-Giedion syndrome. J Med Genet 2010;48:117-22.

124. Marseglia G, Scordo M, Pescucci C, Nannetti G, Biagini E, et al. 372 kb microdeletion in 18q12.3 causing SETBP1 haploinsufficiency associated with mild mental retardation and expressive speech impairment. Eur J Med Genet 2012;55:216-21.

125. Luciano M, Evans DM, Hansell NK, Medland SE, Montgomery GW, et al. A genome-wide association study for reading and language abilities in two population cohorts. Genes Brain Behav 2013;12:645-52.

126. Gialluisi A, Newbury DF, Wilcutt EG, Olson RK, DeFries JC, et al. Genome-wide screening for DNA variants associated with reading and language traits. Genes Brain Behav 2014;13:686-701.

127. St Pourcain B, Cents RA, Whitehouse AJ, Haworth CM, Davis OS, et al. Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nat Commun 2014;5:4831.

128. Eicher JD, Powers NR, Miller LL, Akshoomoff N, Amaral DG, et al. Genome-wide association study of shared components of reading disability and language impairment. Genes Brain Behav 2013;12:792-801.

129. Nudel R, Simpson NH, Baird G, O’Hare A, Conti-Ramsden G, et al. Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. Genes Brain Behav 2014;13:418-29.

130. Villanueva P, Nudel R, Hoischen A, Fernández MA, Simpson NH, et al. Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for specific language impairment. PLoS Genet 2015;11:e1004925.

131. Kalnak N, Stamouli S, Peyrard-Janvid M, Rabkina I, Becker M, et al. Enrichment of rare copy number variation in children with developmental language disorder. Clin Genet 2018;94:313-20.

132. Ercan-Sencicek A, Davis-Wright N, Sanders S, Oakman N, Valdes L, et al. A balanced t(10;15) translocation in a male patient with developmental language disorder. Eur J Med Genet 2012;55:128-31.

133. Kuppen S, Goswami U. Developmental trajectories for children with dyslexia and low IQ poor readers. Dev Psychol 2016;52:717-34.

134. What are reading disorders? NICHD - Eunice Kennedy Shriver- NIH. Available from: https://www.nichd.nih.gov/health/topics/reading/conditioninfo/disorders. [Last accessed on 11 Jun 2019].

135. Catts H. Defining dyslexia as a developmental language disorder. Ann Dyslexia 1989;39:50-64.

136. Paloyelis Y, Rijsdijk F, Wood A, Asherson P, Kuntsi J. The genetic association between ADHD symptoms and reading difficulties: the role of inattentiveness and IQ. J Abnor Child Psychol 2010;38:1083-95.

137. Germanò E, Gagliano A, Curatolo P. Comorbidity of ADHD and dyslexia. Devl Neuropsychol 2010;35:475-93.

138. Kere J. The molecular genetics and neurobiology of developmental dyslexia as model of a complex phenotype. Biochem Biophys Res Commun 2014;452:236-43.

139. Fagerheim T, Raeymaekers P, Tønnessen FE, Pedersen M, Tranebjaerg L, et al. A new gene (DYX3) for dyslexia is located on chromosome 2. J Med Genet 1999;36:664-9.

140. Massinen S, Wang J, Laivuori K, Bieder A, Tapia Paez I, et al. Genomic sequencing of a dyslexia susceptibility haplotype encompassing ROBO1. J Neurodev Disord ;8:4.

141. Fisher SE, Francks C, Marlow AJ, MacPhie IL, Newbury DF, et al. Independent genome-wide scans identify a chromosome 18 quantitative-trait locus influencing dyslexia. Nat Genet 2002;30:86-91.

142. Tzenova J, Kaplan BJ, Petryshen TL, Field LL. Confirmation of a dyslexia susceptibility locus on chromosome 1p34-p36 in a set of 100 Canadian families. Am J Med Genet B Neuropsychiatr Genet 2004;127B:117-24.

143. De Kovel CG, Hol FA, Heister JG, Willemen JJ, Sandkuijl LA, et al. Genomewide scan identifies susceptibility locus for dyslexia on Xq27 in an extended Dutch family. J Med Genet 2004;41:652-7.

144. Taipale M, Kaminen N, Nopola-Hemmi J, Haltia T, Myllyluoma B, et al. A candidate gene for developmental dyslexia encodes a nuclear tetratricopeptide repeat domain protein dynamically regulated in brain. Proc Natl Acad Sci USA 2003;100:11553-8.

145. Lim CK, Ho CS, Chou CH, Wayne MM. Association of the rs3743205 variant of DYX1C1 with dyslexia in Chinese children. Behav Brain Funct 2011;7:16.

146. Massinen S, Tammimies K, Tapia-Paez I, Matsson H, Hokkanen ME, et al. Functional interaction of DYX1C1 with estrogen receptors suggests involvement of hormonal pathways in dyslexia. Hum Mol Genet 2009;18:2802-12.

147. Moffat JJ, Ka M, Jung EM, Kim WY. Genes and brain malformations associated with abnormal neuron positioning. Mol Brain 2015;8:72.

148. Raskind W, Peter B, Richards T, Eckert MM, Berninger VW. The genetics of reading disabilities: from phenotypes to candidate genes. Front Psychol 2013;3:601.

149. Meng H, Smith SD, Hager K, Held M, Liu J, et al. DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proc Natl Acad Sci USA 2005;102:17053-8.

150. Scerri TS, Macpherson E, Martinelli A, Wa WC, Monaco AP, et al. The DCDC2 deletion is not a risk factor for dyslexia. Transl Psychiatry 2017;25:7:e1182.

151. Chen Y, Zhao H, Zhang YX, Zuo PX. DCDC2 gene polymorphisms are associated with developmental dyslexia in Chinese Uyghur children. Neural Regen Res 2017;12:259-266.

152. Francks C, Paracchini S, Smith SD, Richardson AJ, Scerri TS, et al. A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States. Am J Hum Genet 2004;75:1046-58.

153. Harold D, Paracchini S, Scerri T, Dennis M, Cope N, et al. Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia. Mol Psychiatry 2006;11:1085-91. 1061

154. Scerri TS, Morris AP, Buckingham LL, Newbury DF, Miller LL, et al. DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biol Psychiatry 2011;70:237-45.

155. Pinel P, Fauchereau F, Moreno A, Barbot A, Lathrop M, et al. Genetic variants of FOXP2 and KIAA0319/TTRAP/THEM2 locus are associated with altered brain activation in distinct language-related regions. J Neurosci 2012;32:817-25.

156. Sundaresan V, Mambetisaeva E, Andrews W, Annan A, Knöll B, et al. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system. J Comp Neurol 2003;468:467-81.

157. Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R, Nopola-Hemmi J, et al. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genet 2005;1:e50.

158. Anthoni H, Zucchelli M, Matsson H, Muller-Myhsok B, Fransson I, et al. A locus on 2p12 containing the co-regulated MRPL19 and C2ORF3 genes is associated to dyslexia. Hum Mol Genet 2007;16:667-77.

159. Kim M, Roesener A, Mendonca P, Mastik GS. Robo1 and Robo2 have distinct roles in pioneer longitudinal axon guidance. Dev Biol 2011;358:181-8.

160. Landi N, Frost S, Mencl W, Preston JL, Jacobsen LK, et al. The COMT Val/Met polymorphism is associated with reading-related skills and consistent patterns of functional neural activation. Dev Sci 2012;16:13-23.

161. Scerri TS, Paracchini S, Morris A, MacPhie IL, Talcott J, et al. Identification of candidate genes for dyslexia susceptibility on chromosome 18. PLoS One 2010;5:e13712.

162. Eicher J, Powers N, Cho K, Miller LL, Mueller KL, et al. Associations of prenatal nicotine exposure and the dopamine related genes ANKK1 and DRD2 to verbal language. PLoS One 2013;8:e63762.

163. Stein C, Truitt B, Deng F, Ciesla AA, Qiu F, et al. Association between AVPR1A, DRD2, and ASPM and endophenotypes of communication disorders. Psychiatr Genet 2014;24:191-200.

164. Chen H, Wang G, Xia J, Zhou Y, Gao Y, et al. Stuttering candidate genes DRD2 but not SLC6A3 is associated with developmental dyslexia in Chinese population. Behav Brain Funct 2014;10:29.

165. Veerappa A, Padakannaya P, Ramachandra N. Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome. Funct Integr Genomics 2013;13:285-93.

166. Veerappa A, Saldanha M, Padakannaya P, Ramachandra NB. Family based genome-wide copy number scan identifies complex rearrangements at 17q21.31 in dyslexics. Am J Med Genet B Neuropsychiatr Genet 2014;165:572-80.

167. Gialluisi A, Visconti A, Willcutt E, Smith SD, Pennington BF, et al. Investigating the effects of copy number variants on reading and language performance. J Neurodevelop Disord 2016;8:17.

168. Craig F, Lamanna AL, Margari F, Matera E, Simone M, et al. Overlap between autism spectrum disorders and attention deficit hyperactivity disorder: searching for distinctive/common clinical features. Autism Res 2015;8:328-37.

169. Tarazi FI, Sahli ZT, Pleskow J, Mousa SA. Asperger’s syndrome: diagnosis, comorbidity and therapy. Expert Rev Neurother 2015;15:281-93.

170. Mody M, Belliveau J. Speech and language impairments in autism: insights from behavior and neuroimaging. N Am J Med Sci 2012;5:157.

171. Gernsbacher M, Morson E, Grace E. Language and speech in autism. Annu Rev Linguist 2014;2:413-25.

172. Roll P, Vernes SC, Bruneau N, Cillario J, Ponsole-Lenfant M, et al. Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Hum Mol Genet 2010;19:4848-60.

173. Sia GM, Clem RL, Huganir RL. The human language-associated gene SRPX2 regulates synapse formation and vocalization in mice. Science 2013;342:987-91.

174. Soteros B, Cong Q, Palmer C, Sia GM. Sociability and synapse subtype-specific defects in mice lacking SRPX2, a language-associated gene. PLoS One 2018;13:e0199399.

175. Mariën P, Ackermann H, Adamaszek M, Barwood CH, Beaton A. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 2014;13:386-410.

176. Benítez-Burraco A, Murphy E. The oscillopathic nature of language deficits in autism: from genes to language evolution. Front Hum Neurosci 2016;10:120.

177. Jiménez-Romero S, Carrasco-Salas P, Benítez-Burraco A. Language and cognitive impairment associated with a novel p.Cys63Arg change in the MED13L Transcriptional Regulator. Mol Syndromol 2018;9:83-91.

178. Bartlett C, Hou L, Flax J, Hare A, Cheong SY, et al. A Genome scan for loci shared by autism spectrum disorder and language impairment. Am J Psychiatry 2014;171:72-81.

179. Chien W, Gau S, Chen C, Tsai WC, Wu YY, et al. Increased gene expression of FOXP1 in patients with autism spectrum disorders. Mol Autism 2013;4:23.

180. Li X, Hu Z, He Y, Xiong X, Long X, et al. Association analysis of CNTNAP2 polymorphisms with autism in the Chinese Han population. Psychiatr Genet 2010;20:113-7.

181. Newbury D, Bonora E, Lamb J, Fisher SE, Lai CS, et al. FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am J Hum Genet 2002;70:1318-27.

182. Toma C, Hervás A, Torrico B, Balmaña N, Salgado M, et al. Analysis of two language-related genes in autism. Psychiatr Genet 2013;23:82-5.

183. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 2015;488:647-51.

184. Judson MC, Amaral DG, Levitt P. Conserved subcortical and divergent cortical expression of proteins encoded by orthologs of the autism risk gene MET. Cereb Cortex 2011;21:1613-26.

185. Sousa I, Clark T, Toma C, Kobayashi K, Choma M, et al. MET and autism susceptibility: family and case-control studies. Eur J Hum Genet 2008;17:749-58.

186. Cheung J, Petek E, Nakabayashi K, Tsui LC, Vincent JB, et al. Identification of the human cortactin-binding protein-2 gene from the autism candidate region at 7q31. Genomics 2001;78:7-11.

187. Benayed R, Gharani N, Rossman I, Mancuso V, Lazar G, et al. Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am J Hum Genet 2005;77:851-68.

188. Castermans D, Wilquet V, Parthoens E, Huysmans C, Steyaert J, et al. The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J Med Genet 2003;40:352-6.

189. Comings DE, Wu S, Chiu C, Muhleman DY, Sverd J. Studies of the c-Harvey-Ras gene in psychiatric disorders. Psychiatry Res 1996;63:25-32.

190. Naqvi S, Cole TY, Graham JM. Cole-Hughes macrocephaly syndrome and associated autistic manifestations. Am J Med Genet 2000;94:149-52.

191. Eicher JD, Gruen JR. Language impairment and dyslexia genes influence language skills in children with autism spectrum disorders. Autism Res 2015;8:229-34.

192. Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation and neurological disease. Science 2013;341:1237758.

193. Sahin M, Sur M. Genes, circuits and precision therapies for autism and related neurodevelopmental disorders. Science 2015;350:aab3897.

194. Martin G, Klusek J, Estigarribia B, Roberts JE. Language characteristics of individuals with Down syndrome. Top Lang Disord 2009;29:112-32.

195. Eggers K, Van Eerdenbrugh S. Speech disfluencies in children with Down Syndrome. J Commun Disord 2018;71:72-84.

196. Verheij C, Bakker C, de Graaff E, Keulemans J, Willemsen R, et al. Characterization and localization of the FMR-1 gene product associated with fragile X syndrome. Nature 1993;363:722-4.

197. Finestack L, Richmond E, Abbeduto L. Language development in individuals with Fragile X syndrome. Top Lang Disord 2009;29:133-48.

198. Condro MC, White SA. Recent advances in the genetics of vocal learning. Comp Cogn Behav Rev 2014;9:75-98.

199. Gunaratne PH, Lin YC, Benham AL, Drnevich J, Coarfa C, et al. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain. BMC Genomics 2011;12:277.

200. Cheng LC, Pastrana E, Tavazoie M, Doetsch F. miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 2009;12:399-408.

201. Sanuki R, Onishi A, Koike C, Muramatsu R, Watanabe S, et al. miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression. Nat Neurosci 2011;14:1125-34.

202. Rice ML, Smith SD, Gayán J. Convergent genetic linkage and associations to language, speech and reading measures in families of probands with Specific Language Impairment. J Neurodev Disord 2009;1:264-82.

203. Clovis Y, Enard W, Marinaro F, De Pietri Tonelli D. Convergent repression of Foxp2 3’UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 2012;139:3332-42.

204. Teramitsu I, Poopatanapong A, Torrisi S, White SA. Striatal FoxP2 is actively regulated during songbird sensorimotor learning. PLoS One 2010;5:e8548.

205. Fu L, Shi Z, Luo G, Tu W, Wang X, et al. Multiple microRNAs regulate human FOXP2 gene expression by targeting sequences in its 3’ untranslated region. Mol Brain 2014;7:71.

206. Shulha H, Crisci J, Reshetov D, Tushir JS, Cheung I, et al. Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biology 2012;10:e1001427.

207. Rudov A, Rocchi M, Accorsi A, Spada G, Procopio AD, et al. Putative miRNAs for the diagnosis of dyslexia, dyspraxia, and specific language impairment. Epigenetics 2013;8:1023-9.

208. Shi Z, Luo G, Fu L, Fang Z, Fang Z, et al. miR-9 and miR-140-5p target FoxP2 and are regulated as a function of the social context of singing behavior in zebra finches. J Neurosci 2013;33:16510-21.

209. Gregory SG, Connelly JJ, Towers AJ, Johnson J, Biscocho D, et al. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Med 2009;7:1-13.

Journal of Translational Genetics and Genomics
ISSN 2578-5281 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/