REFERENCES
1. Scarselli F, Gori M, Ah Chung Tsoi, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural Netw 2009;20:61-80.
2. Yan J, Yan G, Jin D. Classifying malware represented as control flow graphs using deep graph convolutional neural network. In: 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN); 2019. p. 52-63.
3. Wu XW, Wang Y, Fang Y, Jia P. Embedding vector generation based on function call graph for effective malware detection and classification. Neural Comput Applic 2022;34:8643-56.
4. Massarelli L, Di Luna GA, Petroni F, Querzoni L, Baldoni R. Function Representations for Binary Similarity. IEEE Trans Dependable and Secure Comput 2022;19:2259-73.
5. Ding SHH, Fung BCM, Charland P. Asm2Vec: Boosting static representation robustness for binary clone search against code obfuscation and compiler optimization. In: 2019 IEEE Symposium on Security and Privacy (SP); 2019. p. 472-89.
6. Ma Y, Liu S, Jiang J, Chen G, Li K. A comprehensive study on learning-based PE malware family classification methods. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering; 2021. p. 1314-25.
7. Raff E, Barker J, Sylvester J, et al. Malware Detection by Eating a Whole EXE. In: The Workshops of the The Thirty-Second AAAI Conference on Artificial Intelligence, 2018. vol. WS-18 of AAAI Technical Report. AAAI Press; 2018. p. 268-76. Available from: https://aaai.org/ocs/index.php/WS/AAAIW18/paper/view/16422. [Last accessed on 5 Jul 2023].
8. Qiao Y, Zhang B, Zhang W. Malware classification method based on word vector of bytes and multilayer perception. In: ICC 2020-2020 IEEE International Conference on Communications (ICC); 2020. p. 1-6.
9. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS'13. Red Hook, NY, USA: Curran Associates Inc; 2013. p. 3111-9. Available from: https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html. [Last accessed on 5 Jul 2023].
10. Nataraj L, Karthikeyan S, Jacob G, Manjunath BS. Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber Security - VizSec '11. Pittsburgh, Pennsylvania: ACM Press; 2011. p. 1-7.
11. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. p. 2818-26.
12. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. P. 770-78.
13. Vasan D, Alazab M, Wassan S, et al. IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture. Comput netw 2020;171:107138.
14. Simonyan K, Zisserman A. Very deep convolutional networks for Large-scale Image Recognition. In: 3rd International Conference on Learning Representations, ICLR 2015; 2015. Available from: http://arxiv.org/abs/1409.1556. [Last accessed on 5 Jul 2023].
15. Zhang M, Cui Z, Neumann M, Chen Y. An end-to-end deep learning architecture for graph classification. In: AAAI Conference on Artificial Intelligence; 2018.
16. Awad Y, Nassar M, Safa H. Modeling malware as a language. In: 2018 IEEE International Conference on Communications (ICC); 2018. p. 1-6.
17. Ni S, Qian Q, Zhang R. Malware identification using visualization images and deep learning. Computers & Security 2018;77:871-85.
18. Massarelli L, Di Luna GA, Petroni F, Querzoni L, Baldoni R. Investigating graph embedding neural networks with unsupervised features extraction for binary analysis. Proceedings 2019 Workshop on Binary Analysis Research; 2019.
19. Ronen R, Radu M, Feuerstein C, Yom-Tov E, Ahmadi M. Microsoft malware classification challenge. ArXiv 2018 Feb. Available from: http://arxiv.org/abs/1802.10135. [Last accessed on 5 Jul 2023].
20. Massarelli L. Unsupervised-features-learning-for-binary-similarity: code for the paper "Investigating graph embedding neural networks with unsupervised features extraction for binary analysis";. Accessed: 2022-12-24. https://github.com/lucamassarelli/Unsupervised-Features-Learning-For-Binary-Similarity. [Last accessed on 5 Jul 2023].
21. Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 2021;32:4-24.
22. Hamilton WL, Ying Z, Leskovec J. Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017; 2017. p. 1024-34. Available from: https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html. [Last accessed on 5 Jul 2023].
23. Ghidra. Accessed: 2022-12-24. https://ghidra-sre.org/. [Last accessed on 5 Jul 2023].
24. SAFEtorch: pytorch version of the SAFE neural network. Accessed: 2022-12-24. https://github.com/facebookresearch/SAFEtorch. [Last accessed on 5 Jul 2023].
25. SAFEtorch-model. Accessed: 2022-12-24. http://dl.fbaipublicfiles.com/SAFEtorch/model.tar.gz. [Last accessed on 5 Jul 2023].
26. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 2014;15:1929-58.
27. MalwareBazaar. Accessed: 2022-12-24. https://bazaar.abuse.ch/. [Last accessed on 5 Jul 2023].
28. Joe Security LLC. Deep malware analysis-Joe Sandbox. Accessed: 2022-12-24. https://www.joesecurity.org/. [Last accessed on 5 Jul 2023].
29. Sebastián M, Rivera R, Kotzias P, Caballero J. AVclass: a tool for massive malware labeling. In: vol. 9854. Cham; 2016. p. 230-53.
30. Benchmarking-Malware-Family-Classification. Accessed: 2022-12-24. https://github.com/MHunt-er/Benchmarking-Malware-FamilyClassification/. [Last accessed on 5 Jul 2023].
31. Loshchilov I, Hutter F. Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019; 2019. Available from: https://openreview.net/forum?id=Bkg6RiCqY7. [Last accessed on 5 Jul 2023].
32. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015; 2015. Available from: http://arxiv.org/abs/1412.6980. [Last accessed on 5 Jul 2023].
33. Bose S, Barao T, Liu X. Explaining AI for malware detection: analysis of mechanisms of MalConv. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE; 2020.
34. PEiD - aldeid. Accessed: 2022-12-24. https://www.aldeid.com/wiki/PEiD. [Last accessed on 5 Jul 2023].