REFERENCES
1. Pankanti S, Prabhakar S, Jain A. On the individuality of fingerprints. IEEE Trans Pattern Anal Machine Intell 2002;24:1010-25.
2. Prasad PS, Sunitha Devi B, Janga Reddy M, Gunjan VK. . A Survey of Fingerprint Recognition Systems and Their Applications. In: Kumar A, Mozar S, editors. ICCCE 2018. Singapore: Springer; 2019. p. 513-20.
3. Yadav JKPS, Jaffery ZA, Singh L. A short review on machine learning techniques used for fingerprint recognition. Journal of Critical Reviews 2020;7:2768-73.
4. ISO - ISO/IEC 30107-1:2016 - Information technology - Biometric presentation attack detection - Part 1: framework. Available from: https://www.iso.org/standard/53227.html. [Last accessed on 12 Oct 2021].
5. Hosseini S. . Fingerprint vulnerability: a survey. 2018 4th International Conference on Web Research (ICWR); 2018 Apr 25-26; Tehran, Iran. IEEE; 2018. p. 70-7.
6. Coli P, Marcialis GL, Roli F. . Vitality detection from fingerprint images: a critical survey. In: Lee S, Li SZ, editors. Advances in biometrics. Berlin: Springer Berlin Heidelberg; 2007. p. 722-31.
7. Kundargi J, Karandikar RG. . Integrating liveness detection technique into fingerprint recognition system: a review of various methodologies based on texture features. In: Sa PK, Sahoo MN, Murugappan M, Wu Y, Majhi B, editors. Progress in intelligent computing techniques: theory, practice, and applications. Singapore: Springer; 2018. p. 295-305.
8. Marasco E, Ross A. A survey on antispoofing schemes for fingerprint recognition systems. ACM Comput Surv 2015;47:1-36.
9. Sousedik C, Busch C. Presentation attack detection methods for fingerprint recognition systems: a survey. IET biom 2014;3:219-33.
10. Ghiani L, Yambay DA, Mura V, Marcialis GL, Roli F, Schuckers SA. Review of the Fingerprint Liveness Detection (LivDet) competition series: 2009 to 2015. Image Vis Comput 2017;58:110-28.
11. Orrù G, Casula R, Tuveri P et al. . LivDet in action - fingerprint liveness detection competition 2019. 2019 International Conference on Biometrics (ICB). 2019 Jun 4-7; Crete, Greece. IEEE; 2019. p. 1-6.
12. Yambay D, Ghiani L, Marcialis GL, Roli F, Schuckers S. . Review of fingerprint presentation attack detection competitions. In: Marcel S, Nixon MS, Fierrez J, Evans N, editors. Handbook of biometric anti-spoofing. Cham: Springer International Publishing; 2019. p. 109-31.
13. LivDet - liveness detection competitions. Available from: http://livdet.org/competitions.php. [Last accessed on 12 Oct 2021].
14. Galbally J, Fierrez J, Cappelli R. . An introduction to fingerprint presentation attack detection. In: Marcel S, Nixon MS, Fierrez J, Evans N, editors. Handbook of biometric anti-spoofing. Cham: Springer International Publishing; 2019. p. 3-31.
15. Marcel S, Nixon MS, Fierrez J, Evans N. . Handbook of biometric anti-spoofing. 2nd ed. Cham: Springer International Publishing; 2019.
16. ISO/IEC 30107-3:2017, Information technology - Biometric presentation attack detection - Part 3: Testing and reporting. Available from: https://www.iso.org/standard/67381.html. [Last accessed on 12 Oct 2021].
17. Galbally J, Fierrez J, Alonso-fernandez F, Martinez-diaz M. Evaluation of direct attacks to fingerprint verification systems. Telecommun Syst 2011;47:243-54.
18. Chugh T, Cao K, Jain AK. Fingerprint Spoof Buster: use of minutiae-centered patches. IEEE Trans Inform Forensic Secur 2018;13:2190-202.
19. Marcialis GL, Lewicke A, Tan B, et al. . First International Fingerprint Liveness Detection Competition-LivDet 2009. In: Foggia P, Sansone C, Vento M, editors. Image Analysis and Processing - ICIAP 2009. Berlin: Springer Berlin Heidelberg; 2009. p. 12-23.
20. Abhyankar AS, Schuckers SC. . A wavelet-based approach to detecting liveness in fingerprint scanners. Biometric Technology for Human Identification 2004; 2004 Aug 25; Orlando, USA. 2004. p. 278-86.
21. Tan B, Schuckers S. Spoofing protection for fingerprint scanner by fusing ridge signal and valley noise. Pattern Recognition 2010;43:2845-57.
23. Putte T, Keuning J. . Biometrical fingerprint recognition: don’t get your fingers burned. In: Domingo-ferrer J, Chan D, Watson A, editors. Smart card research and advanced applications. Boston: Springer US; 2000. p. 289-303.
24. Osten DW, Carim HM, Arneson MR, Blan BL. Biometric, personal authentication system; 0. Available from: https://patents.google.com/patent/US5719950A/en. [Last accessed on 12 Oct 2021].
25. Drahanský M, Nötzel R, Wolfgang F. . Liveness detection based on fine movements of the fingertip surface. 2006 IEEE Information Assurance Workshop; 2006 Jun 21-23; West Point, NY, USA. IEEE; 2006. p. 42-7.
26. Baldisserra D, Franco A, Maio D, Maltoni D. . Fake fingerprint detection by odor analysis. In: Zhang D, Jain AK, editors. Advances in biometrics. Berlin: Springer Berlin Heidelberg; 2005. p. 265-72.
27. Noncommunicable diseases: hypertension. Available from: https://www.who.int/news-room/q-a-detail/noncommunicable-diseases-hypertension. [Last accessed on 12 Oct 2021].
28. Hogan JN. Multiple reference OCT system; 0. Available from: https://patents.google.com/patent/US9113782B2/en. [Last accessed on 12 Oct 2021].
29. Cheng Y, Larin KV. Artificial fingerprint recognition by using optical coherence tomography with autocorrelation analysis. Appl Opt 2006;45:9238-45.
30. Cheng Y, Larin KV. In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography. IEEE Photon Technol Lett 2007;19:1634-6.
31. Bossen A, Lehmann R, Meier C. Internal fingerprint identification with optical coherence tomography. IEEE Photon Technol Lett 2010;22:507-9.
32. Liu M, Buma T. Biometric mapping of fingertip eccrine glands with optical coherence tomography. IEEE Photon Technol Lett 2010; doi: 10.1109/lpt.2010.2079926.
33. Nasiri-avanaki M, Meadway A, Bradu A, Khoshki RM, Hojjatoleslami A, Podoleanu AG. Anti-spoof reliable biometry of fingerprints using en-face/optical coherence tomography. OPJ 2011;01:91-6.
34. Liu G, Chen Z. Capturing the vital vascular fingerprint with optical coherence tomography. Appl Opt 2013;52:5473-7.
35. Hussein ME, Spinoulas L, Xiong F, Abd-Almageed W. . Fingerprint presentation attack detection using a novel multi-spectral capture device and patch-based convolutional neural networks. 2018 IEEE International Workshop on Information Forensics and Security (WIFS); 2018 Dec 11-13; Hong Kong, China. IEEE; 2018. p. 1-8.
36. Tolosana R, Gomez-Barrero M, Kolberg J, Morales A, Busch C, Ortega-Garcia J. . Towards fingerprint presentation attack detection based on convolutional neural networks and short wave infrared imaging. 2018 International Conference of the Biometrics Special Interest Group (BIOSIG); 2018 Sep 26-28; Darmstadt, Germany. IEEE; 2018. p. 1-5.
37. Gomez-Barrero M, Kolberg J, Busch C. . Multi-modal fingerprint presentation attack detection: analysing the surface and the inside. 2019 International Conference on Biometrics (ICB); 2019 Jun 4-7; Crete, Greece. IEEE; 2019. p. 1-8.
38. Tolosana R, Gomez-barrero M, Busch C, Ortega-garcia J. Biometric presentation attack detection: beyond the visible spectrum. IEEE Trans Inform Forensic Secur 2020;15:1261-75.
39. Simonyan K, Zisserman A. . Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
40. Howard AG, Zhu M, Chen B, et al. . MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
41. Goicoechea-telleria I, Kiyokawa K, Liu-jimenez J, Sanchez-reillo R. Low-cost and efficient hardware solution for presentation attack detection in fingerprint biometrics using special lighting microscopes. IEEE Access 2019;7:7184-93.
42. Engelsma JJ, Cao K, Jain AK. RaspiReader: open source fingerprint reader. IEEE Trans Pattern Anal Mach Intell 2019;41:2511-24.
43. Pałka N, Kowalski M. Towards fingerprint spoofing detection in the terahertz range. Sensors (Basel) 2020;20:3379.
44. Spinoulas L, Mirzaalian H, Hussein ME, Abdalmageed W. Multi-modal fingerprint presentation attack detection: evaluation on a new dataset. IEEE Trans Biom Behav Identity Sci 2021;3:347-64.
45. Lapsley PD, Lee JA, Pare Jr DF, Hoffman N. Anti-fraud biometric scanner that accurately detects blood flow; 0. Available from: https://patents.google.com/patent/US5737439A/en. [Last accessed on 12 Oct 2021].
46. Ribeiro Pinto J, Cardoso JS, Lourenco A. Evolution, current challenges, and future possibilities in ECG biometrics. IEEE Access 2018;6:34746-76.
47. Paranjape RB, Mahovsky J, Benedicenti L, Koles Z. . The electroencephalogram as a biometric. Canadian Conference on Electrical and Computer Engineering 2001. Conference Proceedings (Cat. No.01TH8555); 2001 May 13-16; Toronto, ON, Canada. IEEE; 2001. p. 1363-6.
48. Moolla Y, Darlow L, Sharma A, Singh A, van der Merwe J. . Optical coherence tomography for fingerprint presentation attack detection. In: Marcel S, Nixon MS, Fierrez J, Evans N, editors. Handbook of biometric anti-spoofing. Cham: Springer International Publishing; 2019. p. 49-70.
49. Antonelli A, Cappelli R, Maio D, Maltoni D. Fake finger detection by skin distortion analysis. IEEE Trans Inform Forensic Secur 2006;1:360-73.
50. Jia J, Cai L, Zhang K, Chen D. . A new approach to fake finger detection based on skin elasticity analysis. In: Lee S, Li SZ, editors. Advances in biometrics. Berlin: Springer Berlin Heidelberg; 2007. p. 309-18.
51. Zhang Y, Tian J, Chen X, Yang X, Shi P. . Fake finger detection based on thin-plate spline distortion model. In: Lee S, Li SZ, editors. Advances in biometrics. Berlin: Springer Berlin Heidelberg; 2007. p. 742-9.
52. Decann B, Tan B, Schuckers S. . A novel region based liveness detection approach for fingerprint scanners. In: Tistarelli M, Nixon MS, editors. Advances in biometrics. Berlin: Springer Berlin Heidelberg; 2009. p. 627-36.
53. Nikam SB, Agarwal S. Wavelet-based multiresolution analysis of ridges for fingerprint liveness detection. IJICS 2009;3:1.
54. Abhyankar A, Schuckers S. Integrating a wavelet based perspiration liveness check with fingerprint recognition. Pattern Recognition 2009;42:452-64.
55. Abhyankar A, Schuckers S. Modular decomposition of fingerprint time series captures for the liveness check. IJCEE 2010;2:1793-8163.
56. Marcialis GL, Roli F, Tidu A. . Analysis of fingerprint pores for vitality detection. 2010 20th International Conference on Pattern Recognition. 2010 Aug 23-26; Istanbul, Turkey. IEEE; 2010. p. 1289-92.
57. Memon S, Manivannan N, Balachandran W. . Active pore detection for liveness in fingerprint identification system. 2011 19th Telecommunications Forum (TELFOR) Proceedings of Papers; 2011 Nov 22-24; Belgrade, Serbia. IEEE; 2011. p. 619-22.
58. NIST Special Database 4. Available from: https://www.nist.gov/srd/nist-special-database-4. [Last accessed on 12 Oct 2021].
59. Husseis A, Liu-jimenez J, Goicoechea-telleria I, Sanchez-reillo R. Dynamic fingerprint statistics: application in presentation attack detection. IEEE Access 2020;8:95594-604.
60. Husseis A, Liu-Jimenez J, Sanchez-Reillo R. Fingerprint presentation attack detection utilizing spatio-temporal features. Sensors (Basel) 2021;21:2059.
61. Espinoza M, Champod C. . Using the number of pores on fingerprint images to detect spoofing attacks. 2011 International Conference on Hand-Based Biometrics; 2011 Nov 17-18; Hong Kong, China. IEEE; 2011. p. 1-5.
62. Marasco E, Sansone C. Combining perspiration- and morphology-based static features for fingerprint liveness detection. Pattern Recognition Letters 2012;33:1148-56.
63. Pereira LFA, Pinheiro HNB, Silva JIS, et al. . A fingerprint spoof detection based on MLP and SVM. The 2012 International Joint Conference on Neural Networks (IJCNN); 2012 Jun 10-15; Brisbane, QLD, Australia. IEEE; 2012. p. 1-7.
64. Marasco E, Sansone C. . An anti-spoofing technique using multiple textural features in fingerprint scanners. 2010 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications; 2010 Sep 9; Taranto, Italy. IEEE; 2010. p. 8-14.
65. Galbally-Herrero J, Fierrez-Aguilar J, Rodriguez-Gonzalez JD, Alonso-Fernandez F, Ortega-Garcia J, Tapiador M. . On the vulnerability of fingerprint verification systems to fake fingerprints attacks. Proceedings 40th Annual 2006 International Carnahan Conference on Security Technology; 2006 Oct 16-19; Lexington, KY, USA. IEEE; 2006. p. 130-6.
66. Gütlein M, Frank E, Hall M, Karwath A. . Large-scale attribute selection using wrappers. 2009 IEEE Symposium on Computational Intelligence and Data Mining; 2009 Mar 30-2009 Apr 2; Nashville, TN, USA. IEEE; 2009 p. 332-9.
67. Marcialis GL, Coli P, Roli F. Fingerprint liveness detection based on fake finger characteristics. International Journal of Digital Crime and Forensics 2012;4:1-19.
68. Johnson P, Schuckers S. . Fingerprint pore characteristics for liveness detection. 2014 International Conference of the Biometrics Special Interest Group (BIOSIG); 2014 Sep 10-12; Darmstadt, Germany. IEEE; 2014. p. 1-8.
69. Lu M, Chen Z, Sheng W. . Fingerprint liveness detection based on pore analysis. In: Yang J, Yang J, Sun Z, Shan S, Zheng W, Feng J, editors. Biometric recognition. Cham: Springer International Publishing; 2015. p. 233-40.
70. Tan B. New approach for liveness detection in fingerprint scanners based on valley noise analysis. J Electron Imaging 2008;17:011009.
71. Galbally J, Alonso-Fernandez F, Fierrez J, Ortega-Garcia J. . Fingerprint liveness detection based on quality measures. 2009 First IEEE International Conference on Biometrics, Identity and Security (BIdS); 2009 Sep 22-23; Tampa, FL, USA. IEEE; 2009. p. 1-8.
72. Lee H, Maeng H, Bae Y. . Fake finger detection using the fractional fourier transform. In: Fierrez J, Ortega-garcia J, Esposito A, Drygajlo A, Faundez-zanuy M, editors. Biometric ID management and multimodal communication. Berlin: Springer Berlin Heidelberg; 2009. p. 318-24.
73. Jin C, Li S, Kim H, Park E. . Fingerprint liveness detection based on multiple image quality features. In: Chung Y, Yung M, editors. Information security applications. Berlin: Springer Berlin Heidelberg; 2011. p. 281-91.
75. Galbally J, Alonso-fernandez F, Fierrez J, Ortega-garcia J. A high performance fingerprint liveness detection method based on quality related features. Future Generation Computer Systems 2012;28:311-21.
76. Galbally J, Marcel S, Fierrez J. Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition. IEEE Trans Image Process 2014;23:710-24.
77. Sharma RP, Dey S. Fingerprint liveness detection using local quality features. Vis Comput 2019;35:1393-410.
78. Ghiani L, Denti P, Marcialis GL. . Experimental results on fingerprint liveness detection. In: Perales FJ, Fisher RB, Moeslund TB, editors. Articulated motion and deformable objects. Berlin: Springer Berlin Heidelberg; 2012. p. 210-8.
79. González-soler LJ, Gomez-barrero M, Kolberg J, Chang L, Pérez-suárez A, Busch C. Local feature encoding for unknown presentation attack detection: an analysis of different local feature descriptors. IET biom 2021;10:374-91.
80. FVC2004 - Third International Fingerprint Verification Competition. Available from: http://bias.csr.unibo.it/fvc2004/databases.asp. [Last accessed on 12 Oct 2020].
81. Ghiani L, Marcialis GL, Roli F. . Fingerprint liveness detection by local phase quantization. Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012); 2012 Nov 11-15; Tsukuba, Japan. IEEE; 2012. p. 537-40.
82. Gragnaniello D, Poggi G, Sansone C, Verdoliva L. . Fingerprint liveness detection based on Weber Local image Descriptor. 2013 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications; 2013 Sep 9; Napoli, Italy. IEEE; 2013. p. 46-50.
83. Jia X, Yang X. Zang Y. . Multi-scale block local ternary patterns for fingerprints vitality detection. 2013 International Conference on Biometrics (ICB); 2013 Jun 4-7; Madrid, Spain. IEEE; 2013. p. 1-6.
84. Pereira L, Pinheiro H, Cavalcanti G, Ren TI. Spatial surface coarseness analysis: technique for fingerprint spoof detection. Electron lett 2013;49:260-1.
85. Ghiani L, Hadid A, Marcialis GL, Roli F. . Fingerprint liveness detection using binarized statistical image features. 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS); 2013 Sep 29-Oct 2; Arlington, VA, USA. IEEE; 2013. p. 1-6
86. Jia X, Yang X, Cao K, et al. Multi-scale local binary pattern with filters for spoof fingerprint detection. Information Sciences 2014;268:91-102.
87. Gragnaniello D, Poggi G, Sansone C, Verdoliva L. Wavelet-Markov local descriptor for detecting fake fingerprints. Electron lett 2014;50:439-41.
88. Zhang Y, Fang S, Xie Y, Xu T. . Fake fingerprint detection based on wavelet analysis and local binary pattern. In: Sun Z, Shan S, Sang H, Zhou J, Wang Y, Yuan W, editors. Biometric recognition. Cham: Springer International Publishing; 2014. p. 191-8.
89. Gottschlich C, Marasco E, Yang AY, Cukic B. . Fingerprint liveness detection based on histograms of invariant gradients. IEEE International Joint Conference on Biometrics; 2014 Sep 29-Oct 2; Clearwater, FL, USA. IEEE; 2014. p. 1-7.
91. Gragnaniello D, Poggi G, Sansone C, Verdoliva L. Local contrast phase descriptor for fingerprint liveness detection. Pattern Recognition 2015;48:1050-8.
92. Gottschlich C. Convolution comparison pattern: an efficient local image descriptor for fingerprint liveness detection. PLoS One 2016;11:e0148552.
93. Dubey RK, Goh J, Thing VLL. Fingerprint liveness detection from single image using low-level features and shape analysis. IEEE Trans Inform Forensic Secur 2016;11:1461-75.
94. Yuan C, Xia Z, Sun X, Sun D, Lv R. Fingerprint liveness detection using multiscale difference co-occurrence matrix. Opt Eng 2016;55:063111.
95. Kim W, Jung C. Local accumulated smoothing patterns for fingerprint liveness detection. Electron lett 2016;52:1912.
96. Ghiani L, Hadid A, Marcialis GL, Roli F. Fingerprint liveness detection using local texture features. IET biom 2017;6:224.
97. Kim W. Fingerprint liveness detection using local coherence patterns. IEEE Signal Process Lett 2017;24:51.
98. Kumpituck S, Li D, Kunieda H, Isshiki T. . Fingerprint spoof detection using wavelet based local binary pattern. Eighth International Conference on Graphic and Image Processing; 2017 Feb 8; Tokyo, Japan. 2017.
99. Xia Z, Lv R, Zhu Y, Ji P, Sun H, Shi Y. Fingerprint liveness detection using gradient-based texture features. SIViP 2017;11:381.
100. González-Soler LJ, Chang L, Hernández-Palancar J, Pérez-Suárez A, Gomez-Barrero M. . Fingerprint presentation attack detection method based on a bag-of-words approach. In: Mendoza M, Velastín S, editors. Progress in pattern recognition, image analysis, computer vision, and applications. Cham: Springer International Publishing; 2018. p. 263-71.
101. Kundargi J, Karandikar RG. . Fingerprint liveness detection using wavelet-based completed LBP descriptor. In: Chaudhuri BB, Kankanhalli MS, Raman B, editors. Proceedings of 2nd International Conference on Computer Vision & Image Processing. Singapore: Springer; 2018. p. 187-202.
102. Jiang Y, Liu X. Uniform local binary pattern for fingerprint liveness detection in the gaussian pyramid. Journal of Electrical and Computer Engineering 2018;2018:1.
103. Mehboob R, Dawood H, Dawood H, Ilyas MU, Guo P, Banjar A. Live fingerprint detection using magnitude of perceived spatial stimuli and local phase information. J Electron Imag 2018;27:1.
104. Xia Z, Yuan C, Lv R, Sun X, Xiong NN, Shi Y. A novel weber local binary descriptor for fingerprint liveness detection. IEEE Trans Syst Man Cybern, Syst 2020;50:1526-36.
105. Tan G, Zhang Q, Hu H, Zhu X, Wu X. Fingerprint liveness detection based on guided filtering and hybrid image analysis. IET Image Processing 2020;14:1710-5.
106. Nosaka R, Ohkawa Y, Fukui K. . Feature extraction based on co-occurrence of adjacent local binary patterns. In: Ho Y, editor. Advances in image and video technology. Berlin: Springer Berlin Heidelberg; 2012. p. 82-91.
107. Kumar M, Singh P. . Liveness detection and recognition system for fingerprint images. In: Saini HS, Singh RK, Tariq Beg M, Sahambi JS, editors. Innovations in electronics and communication engineering. Singapore: Springer; 2020. p. 467-77.
108. FVC-onGoing: On-line evaluation of fingerprint recognition algorithms. Available from: https://biolab.csr.unibo.it/fvcongoing/UI/Form/Home.aspx. [Last accessed on 12 Oct 2021].
109. Karampidis K, Kavallieratou E, Papadourakis G. A review of image steganalysis techniques for digital forensics. Journal of Information Security and Applications 2018;40:217-35.
110. Karampidis K, Kavallieratou E, Papadourakis G. A dilated convolutional neural network as feature selector for spatial image steganalysis - a hybrid classification scheme. Pattern Recognit Image Anal 2020;30:342-58.
111. Menotti D, Chiachia G, Pinto A, et al. Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans Inform Forensic Secur 2015;10:864-79.
112. Nogueira RF, de Alencar Lotufo R, Campos Machado R. Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inform Forensic Secur 2016;11:1206-13.
113. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Advances in neural information processing systems 2012;25:1097-105.
114. Kim S, Park B, Song BS, Yang S. Deep belief network based statistical feature learning for fingerprint liveness detection. Pattern Recognition Letters 2016;77:58-65.
115. Marasco E, Wild P, Cukic B. . Robust and interoperable fingerprint spoof detection via convolutional neural networks. 2016 IEEE Symposium on Technologies for Homeland Security (HST); 2016 May 10-11; Waltham, MA, USA. IEEE; 2016. p. 1-6.
116. Deng J, Dong W, Socher R, Li LJ, Li K, Li FF. . ImageNet: a large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition; 2009 Jun 20-25; Miami, FL, USA. IEEE; 2009. p. 248-55.
117. Pala F, Bhanu B. . Deep triplet embedding representations for liveness detection. In: Bhanu B, Kumar A, editors. Deep learning for biometrics. Cham: Springer International Publishing; 2017. p. 287-307.
118. Jung H, Heo Y. Fingerprint liveness map construction using convolutional neural network. Electron lett 2018;54:564-6.
119. Pinto A, Pedrini H, Krumdick M, et al. . Counteracting presentation attacks in face, fingerprint, and iris recognition. In: Vatsa M, Singh R, Majumdar A, editors. Deep learning in biometrics. CRC Press; 2018. p. 245-93.
120. Park E, Cui X, Kim W, Liu J, Kim H. . Patch-based fake fingerprint detection using a fully convolutional neural network with a small number of parameters and an optimal threshold. arXiv preprint arXiv:1803.07817, 2018.
121. Park E, Cui X, Nguyen THB, Kim H. Presentation attack detection using a tiny fully convolutional network. IEEE Trans Inform Forensic Secur 2019;14:3016-25.
122. Zhang Y, Shi D, Zhan X, Cao D, Zhu K, Li Z. Slim-ResCNN: a deep residual convolutional neural network for fingerprint liveness detection. IEEE Access 2019;7:91476-87.
123. Yuan C, Chen X, Yu P, et al. Semi-supervised stacked autoencoder-based deep hierarchical semantic feature for real-time fingerprint liveness detection. J Real-Time Image Proc 2020;17:55-71.
124. Pereira JA, Sequeira AF, Pernes D, Cardoso JS. . A robust fingerprint presentation attack detection method against unseen attacks through adversarial learning. 2020 International Conference of the Biometrics Special Interest Group (BIOSIG); 2020 Sep 16-18; Darmstadt, Germany. IEEE; 2020. p. 1-5.
125. Uliyan DM, Sadeghi S, Jalab HA. Anti-spoofing method for fingerprint recognition using patch based deep learning machine. Engineering Science and Technology, an International Journal 2020;23:264-73.
126. Zhang Y, Pan S, Zhan X, Li Z, Gao M, Gao C. FLDNet: light dense CNN for fingerprint liveness detection. IEEE Access 2020;8:84141-52.
127. Jian W, Zhou Y, Liu H. Densely connected convolutional network optimized by genetic algorithm for fingerprint liveness detection. IEEE Access 2021;9:2229-43.
128. Derakhshani R, Schuckers SA, Hornak LA, O'gorman L. Determination of vitality from a non-invasive biomedical measurement for use in fingerprint scanners. Pattern Recognition 2003;36:383-96.
129. Parthasaradhi STV, Derakhshani R, Hornak LA, Schuckers SC. . Improvement of an algorithm for recognition of liveness using perspiration in fingerprint devices. Biometric Technology for Human Identification; 2004 Aug 25; Orlando, Florida, USA. 2004. p. 270-7.
130. Parthasaradhi S, Derakhshani R, Hornak L, Schuckers S. Time-series detection of perspiration as a liveness test in fingerprint devices. IEEE Trans Syst, Man, Cybern C 2005;35:335-43.
131. Tan B, Schuckers S. . Liveness detection using an intensity based approach in fingerprint scanner. Proceedings of Biometrics Symposium (BSYM2005); Arlington, VA. 2005. p. 19-21.
132. Tan B, Schuckers S. . Comparison of ridge- and intensity-based perspiration liveness detection methods in fingerprint scanners. Biometric Technology for Human Identification III; 2006 Apr 17; Orlando (Kissimmee), Florida, USA. 2006.
133. Jia J, Cai L. . Fake finger detection based on time-series fingerprint image analysis. In: Huang D, Heutte L, Loog M, editors. Advanced intelligent computing theories and applications. With aspects of theoretical and methodological issues. Berlin: Springer Berlin Heidelberg; 2007. p. 1140-50.
134. Plesh R, Bahmani K, Jang G, et al. . Fingerprint presentation attack detection utilizing time-series, color fingerprint captures. 2019 International Conference on Biometrics (ICB); 2019 Jun 4-7; Crete, Greece. IEEE; 2019. p. 1-8.
135. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. . Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2016. p. 2818-26.
136. Nogueira RF, de Alencar Lotufo R, Campos Machado R. . Evaluating software-based fingerprint liveness detection using Convolutional Networks and Local Binary Patterns. 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings; 2014 Oct 17; Rome, Italy. IEEE; 2014. p. 22-9.
137. Yuan C, Sun X, Wu QMJ. Difference co-occurrence matrix using BP neural network for fingerprint liveness detection. Soft Comput 2019;23:5157-69.
138. Yuan C, Sun X, Rui L. Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun 2016;13:60-5.
139. Agarwal S, Chowdary CR. A-stacking and a-bagging: adaptive versions of ensemble learning algorithms for spoof fingerprint detection. Expert Systems with Applications 2020;146:113160.
140. Anusha BVS, Banerjee S, Chaudhuri S. . DeFraudNet:End2End fingerprint spoof detection using patch level attention. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV); 2020. p. 2695-704.
141. Huang G, Liu Z, van der Maaten L, Weinberger KQ. . Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017. p. 4700-8.
142. Woo S, Park J, Lee J, Kweon IS. . CBAM: convolutional block attention module. In: Ferrari V, Hebert M, Sminchisescu C, Weiss Y, editors. Computer vision - ECCV 2018. Cham: Springer International Publishing; 2018. p. 3-19.
143. Agarwal D, Bansal A. Fingerprint liveness detection through fusion of pores perspiration and texture features. Journal of King Saud University - Computer and Information Sciences 2020; doi: 10.1016/j.jksuci.2020.10.003.
144. Li X, Cheng W, Yuan C, Gu W, Yang B, Cui Q. Fingerprint Liveness detection based on fine-grained feature fusion for intelligent devices. Mathematics 2020;8:517.
145. Sharma D, Selwal A. HyFiPAD: a hybrid approach for fingerprint presentation attack detection using local and adaptive image features. Vis Comput 2021; doi: 10.1007/s00371-021-02173-8.
146. Rattani A, Ross A. . Automatic adaptation of fingerprint liveness detector to new spoof materials. IEEE International Joint Conference on Biometrics; 2014 Sep 29-Oct 2; Clearwater, FL, USA. IEEE; 2014. p. 1-8.
147. Jia X, Zang Y, Zhang N, Yang X, Tian J. . One-class SVM with negative examples for fingerprint liveness detection. In: Sun Z, Shan S, Sang H, Zhou J, Wang Y, Yuan W, editors. Biometric recognition. Cham: Springer International Publishing; 2014. p. 216-24.
148. Rattani A, Scheirer WJ, Ross A. Open set fingerprint spoof detection across novel fabrication materials. IEEE Trans Inform Forensic Secur 2015;10:2447-60.
149. Sequeira AF, Cardoso JS. Fingerprint liveness detection in the presence of capable intruders. Sensors (Basel) 2015;15:14615-38.
150. Ding Y, Ross A. . An ensemble of one-class SVMs for fingerprint spoof detection across different fabrication materials. 2016 IEEE International Workshop on Information Forensics and Security (WIFS); 2016 Dec 4-7; Abu Dhabi, United Arab Emirates. IEEE; 2016. p. 1-6.
151. Gajawada R, Popli A, Chugh T, Namboodiri A, Jain AK. . Universal material translator: towards spoof fingerprint generalization. 2019 International Conference on Biometrics (ICB); 2019 Jun 4-7; Crete, Greece. IEEE; 2019. p. 1-8.
152. Chugh T, Jain AK. . Fingerprint presentation attack detection: generalization and efficiency. 2019 International Conference on Biometrics (ICB); 2019 Jun 4-7; Crete, Greece. IEEE; 2019. p. 1-8.
153. Engelsma JJ, Jain AK. . Generalizing fingerprint spoof detector: learning a one-class classifier. 2019 International Conference on Biometrics (ICB); 2019 Jun 4-7; Crete, Greece. IEEE; 2019. p. 1-8.
154. Grosz SA, Chugh T, Jain AK. . Fingerprint presentation attack detection: a sensor and material agnostic approach. 2020 IEEE International Joint Conference on Biometrics (IJCB); 2020 Sep 28-Oct 1; Houston, TX, USA. IEEE; 2020. p. 1-10.
155. González-Soler LJ, Gomez-Barrero M, Chang L, Perez-Suarez A, Busch C. Fingerprint presentation attack detection based on local features encoding for unknown attacks. IEEE Access 2021;9:5806-20.
156. Chugh T, Jain AK. Fingerprint spoof detector generalization. IEEE Trans Inform Forensic Secur 2021;16:42-55.
157. Nikam SB, Agarwal S. Ridgelet-based fake fingerprint detection. Neurocomputing 2009;72:2491-506.
158. Babu A, Paul V, Baby DE. . An investigation of biometric liveness detection using various techniques. 2017 International Conference on Inventive Systems and Control (ICISC); 2017 Jan 19-20; Coimbatore, India. IEEE; 2017. p. 1-5.
159. Agarwal S, Rattani A, Chowdary CR. A comparative study on handcrafted features v/s deep features for open-set fingerprint liveness detection. Pattern Recognition Letters 2021;147:34-40.
160. Kim W. . Towards real biometrics: an overview of fingerprint liveness detection. 2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA); 2016 Dec 13-16; Jeju, Korea (South). IEEE; 2016. p. 1-3.
161. González-Soler LJ, Gomez-Barrero M, Chang L, Suárez AP, Busch C. . On the impact of different fabrication materials on fingerprint presentation attack detection. 2019 International Conference on Biometrics (ICB); 2019 Jun 4-7; Crete, Greece. IEEE; 2019. p. 1-6.
162. Sharma RP, Dey S. A comparative study of handcrafted local texture descriptors for fingerprint liveness detection under real world scenarios. Multimed Tools Appl 2021;80:9993-10012.
163. Li FF, Fergus R, Perona P. One-shot learning of object categories. IEEE Trans Pattern Anal Mach Intell 2006;28:594-611.
164. Raja KB, Raghavendra R, Venkatesh S, Gomez-barrero M, Rathgeb C, Busch C. . A study of hand-crafted and naturally learned features for fingerprint presentation attack detection. In: Marcel S, Nixon MS, Fierrez J, Evans N, editors. Handbook of biometric anti-spoofing. Cham: Springer International Publishing; 2019. p. 33-48.
165. Tuveri P, Ghiani L, Zurutuza M, Mura V, Marcialis GL. . Interoperability among capture devices for fingerprint presentation attacks detection. In: Marcel S, Nixon MS, Fierrez J, Evans N, editors. Handbook of biometric anti-spoofing. Cham: Springer International Publishing; 2019. p. 71-108.
166. Marasco E, Sansone C. . On the robustness of fingerprint liveness detection algorithms against new materials used for spoofing. Proceedings of the International Conference on Bio-inspired Systems and Signal Processing (MPBS-2011); Setúbal: SciTePress; 2011. p. 553-8.
167. Singh M, Singh R, Ross A. A comprehensive overview of biometric fusion. Information Fusion 2019;52:187-205.
169. Unar J, Seng WC, Abbasi A. A review of biometric technology along with trends and prospects. Pattern Recognition 2014;47:2673-88.
170. Dahea W, Fadewar HS. Multimodal biometric system: a review. International Journal of Research in Advanced Engineering and Technology 2018;4:25-31.
171. Goswami G, Mittal P, Majumdar A, Vatsa M, Singh R. Group sparse representation based classification for multi-feature multimodal biometrics. Information Fusion 2016;32:3-12.
172. Hamad AM, Elhadary RS, Elkhateeb AO. Multimodal biometric personal identification system based on Iris & Fingerprint. International Journal of Computer Science & Communication Networks 2013;3:53-60.
173. Jain AK, Hong L, and Kulkarni Y. . A multimodal biometric system using fingerprint, face, and speech. International Conference on Audio- and Video-Based Biometric Person Authentication (AVBPA); 1999. p. 182-7.
174. . Ben Ayed NG, Masmoudi AD, Masmoudi DS. A new human identification based on fusion fingerprints and faces biometrics using LBP and GWN descriptors. Eighth International Multi-Conference on Systems, Signals & Devices; 2011 Mar 22-25; Sousse, Tunisia. IEEE; 2011. p. 1-7.
175. Kwon YB, Kim J. Multi-modal authentication using score fusion of ECG and fingerprints. Journal of information and communication convergence engineering 2020;18:132-46.
176. Jomaa RM, Islam MS, Mathkour H. . Improved sequential fusion of heart-signal and fingerprint for anti-spoofing. 2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis (ISBA); 2018 Jan 11-12; Singapore. IEEE; 2018. p. 1-7.
177. Alajlan N, Islam MS, Ammour N. . Fusion of fingerprint and heartbeat biometrics using fuzzy adaptive genetic algorithm. World Congress on Internet Security (WorldCIS-2013); 2013 Dec 9-12; London, UK. IEEE; 2013. p. 76-81.
178. O'gorman L. Comparing passwords, tokens, and biometrics for user authentication. Proc IEEE 2003;91:2021-40.
179. He D, Wang D. Robust biometrics-based authentication scheme for multiserver environment. IEEE Systems Journal 2015;9:816-23.
180. Qiu S, Wang D, Xu G, Kumari S. Practical and provably secure three-factor authentication protocol based on extended chaotic-maps for mobile lightweight devices. IEEE Trans Dependable and Secure Comput 2020; doi: 10.1109/tdsc.2020.3022797.
181. Wang D, Wang P. Two birds with one stone: two-factor authentication with security beyond conventional bound. IEEE Trans Dependable and Secure Comput 2018;15:708-22.
182. Juels A, Rivest RL. . Honeywords: making password-cracking detectable. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security (CCS '13); 2013 Nov 04; New York, NY, USA. Springer; 2013. p.145-160.
183. Kim H, Lee S, Yoo K. ID-based password authentication scheme using smart cards and fingerprints. SIGOPS Oper Syst Rev 2003;37:32-41.
184. Scott M. Cryptanalysis of an ID-based password authentication scheme using smart cards and fingerprints. SIGOPS Oper Syst Rev 2004;38:73-5.
185. Lin C, Lai Y. A flexible biometrics remote user authentication scheme. Computer Standards & Interfaces 2004;27:19-23.
186. Khan MK, Zhang J. Improving the security of ‘a flexible biometrics remote user authentication scheme’. Computer Standards & Interfaces 2007;29:82-5.
187. Rhee HS, Kwon JO, Lee DH. A remote user authentication scheme without using smart cards. Computer Standards & Interfaces 2009;31:6-13.
188. Chen C, Lee C, Hsu C. Mobile device integration of a fingerprint biometric remote authentication scheme. Int J Commun Syst 2012;25:585-97.
189. Khan MK, Kumari S, Gupta MK. More efficient key-hash based fingerprint remote authentication scheme using mobile device. Computing 2014;96:793-816.
190. Liu S, Davison AJ, and E. . Johns E. Self-supervised generalisation with meta auxiliary learning. arXiv preprint arXiv:1901.08933, 2019.