REFERENCES
1. Sunmola, F.; Mbafotu, O. R.; Salihu-Yusuf, M. L.; Sunmola, H. O. Lean green practices in automotive components manufacturing. Procedia. Comput. Sci. 2024, 232, 2001-8.
2. Rosário, A.; Dias, J. Sustainability and the digital transition: a literature review. Sustainability 2022, 14, 4072.
3. Stoycheva, S.; Marchese, D.; Paul, C.; Padoan, S.; Juhmani, A.; Linkov, I. Multi-criteria decision analysis framework for sustainable manufacturing in automotive industry. J. Clean. Prod. 2018, 187, 257-72.
4. Liu, Y.; Wang, Q.; Huang, B.; Zhang, X.; Wang, X.; Long, Y. Status and challenges of green manufacturing: comparative analysis of China and other countries. Resour. Conserv. Recy. 2023, 197, 107051.
5. Peng, D.; Kong, Q. Corporate green innovation under environmental regulation: the role of ESG ratings and greenwashing. Energ. Econ. 2024, 140, 107971.
6. Fentahun, M. A.; Savas, M. A. Materials used in automotive manufacture and material selection using ashby charts. Int. J. Mater. Eng. 2018, 8, 40-54.
7. Lee, Y. J.; Wang, H. Sustainability of methods for augmented ultra-precision machining. Int. J. Pr. Eng. Manuf. GT. 2024, 11, 585-624.
8. Xiao, J.; Zhou, Y.; Zeng, P. How does green strategy orientation promote substantive green innovation? Evidence from Chinese manufacturing enterprises. Econ. Change. Restruct. 2024, 57, 9811.
9. Haleem, A.; Javaid, M.; Singh, R. P.; Suman, R.; Qadri, M. A. A pervasive study on green manufacturing towards attaining sustainability. Green. Technol. Sustain. 2023, 1, 100018.
10. Shui, H.; Jin, X.; Ni, J. Manufacturing productivity and energy efficiency: a stochastic efficiency frontier analysis: stochastic efficiency frontier analysis. Int. J. Energy. Res.2015.
11. Pimenov, D. Y.; Mia, M.; Gupta, M. K.; et al. Resource saving by optimization and machining environments for sustainable manufacturing: a review and future prospects. Renew. Sust. Energy. Rev. 2022, 166, 112660.
13. Singh, S.; Mishra, O.; Kumar, K. Bibliometric Analysis of green manufacturing in automobile sector. In: Bhardwaj A, Pandey PM, Misra A, editors. Optimization of production and industrial systems. Singapore: Springer Nature; 2024. pp. 131-8.
14. Awasthi, A. K.; Li, J. An overview of the potential of eco-friendly hybrid strategy for metal recycling from WEEE. Resour. Conserv. Recy. 2017, 126, 228-39.
15. Chandel, R.; Sharma, N.; Bansal, S. A. A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent. Mater. 2021, 4, 1243-57.
16. Tisza, M.; Lukács, Z. High strength aluminum alloys in car manufacturing. IOP. Conf. Ser. Mater. Sci. Eng. 2018, 418, 012033.
17. Konstantinov, I. L.; Sidelnikov, S. B.; Voroshilov, D. S.; et al. Use of computer simulation for modernization technology of aluminum alloys hot die forging. Int. J. Adv. Manuf. Technol. 2020, 107, 1641-7.
18. He, H.; Huang, S.; Yi, Y.; Guo, W. Simulation and experimental research on isothermal forging with semi-closed die and multi-stage-change speed of large AZ80 magnesium alloy support beam. J. Mater. Process. Tech. 2017, 246, 198-204.
19. Wrobel, R.; Mecrow, B. Additive manufacturing in construction of electrical machines - a review. In: 2019 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Athens, Greece, 22-23 Apr, 2019. IEEE, 2019; pp. 15-22.
20. Li, F.; Chen, S.; Shi, J.; Tian, H.; Zhao, Y. Evaluation and optimization of a hybrid manufacturing process combining wire arc additive manufacturing with milling for the fabrication of stiffened panels. Appl. Sci. 2017, 7, 1233.
21. Ahmad, H.; Markina, A. A.; Porotnikov, M. V.; Ahmad, F. A review of carbon fiber materials in automotive industry. IOP. Conf. Ser. Mater. Sci. Eng. 2020, 971, 032011.
22. Zhang, J.; Lin, G.; Vaidya, U.; Wang, H. Past, present and future prospective of global carbon fibre composite developments and applications. Compos. Part. B. Eng. 2023, 250, 110463.
23. Krauklis, A. E.; Karl, C. W.; Gagani, A. I.; Jørgensen, J. K. Composite material recycling technology - state-of-the-art and sustainable development for the 2020s. J. Compos. Sci. 2021, 5, 28.
24. Wei, Y.; Hadigheh, S. Enhancing carbon fibre recovery through optimised thermal recycling: kinetic analysis and operational parameter investigation. Mater. Today. Sustain. 2024, 25, 100661.
25. Lopez-urionabarrenechea, A.; Gastelu, N.; Acha, E.; et al. Reclamation of carbon fibers and added-value gases in a pyrolysis-based composites recycling process. J. Clean. Prod. 2020, 273, 123173.
26. Ali B, Sapuan S, Zainudin E, Othman M. Implementation of the expert decision system for environmental assessment in composite materials selection for automotive components. J. Clean. Prod. 2015, 107, 557-67.
27. Vinodh, S.; Jayakrishna, K. Environmental impact minimisation in an automotive component using alternative materials and manufacturing processes. Mater. Design. 2011, 32, 5082-90.
28. Schneider, F.; Das, J.; Kirsch, B.; Linke, B.; Aurich, J. C. Sustainability in ultra precision and micro machining: a review. Int. J. Pr. Eng. Manuf. GT. 2019, 6, 601-10.
29. Soori, M.; Ghaleh, J. F. K.; Dastres, R.; Arezoo, B. Sustainable CNC machining operations, a review. Sust. Oper. Comput. 2024, 5, 73-87.
30. Li, B.; Cao, H.; Hon, B.; Liu, L.; Gao, X. Exergy-based energy efficiency evaluation model for machine tools considering thermal stability. Int. J. Pr. Eng. Manuf. GT. 2021, 8, 423-34.
31. Abdelaoui, F. Z. E.; Jabri, A.; Barkany, A. E. Optimization techniques for energy efficiency in machining processes-a review. Int. J. Adv. Manuf. Technol. 2023, 125, 2967-3001.
32. Feng, C.; Chen, X.; Zhang, J.; Huang, Y.; Qu, Z. Minimizing the energy consumption of hole machining integrating the optimization of tool path and cutting parameters on CNC machines. Int. J. Adv. Manuf. Technol. 2022, 121, 215-28.
33. Beyralvand, D.; Banazadeh, F. An optimization approach for enhancing energy efficiency, reducing CO2 emission, and improving lubrication reliability in roller bearings using ABC algorithm. Meas. Energy. 2024, 4, 100021.
34. Lee, P.; Nam, J. S.; Li, C.; Lee, S. W. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL). Int. J. Precis. Eng. Manuf. 2012, 13, 331-8.
35. Li, K.; Chou, S. Experimental evaluation of minimum quantity lubrication in near micro-milling. J. Mater. Process. Technol. 2010, 210, 2163-70.
36. Korkmaz, M. E.; Gupta, M. K.; Çelik, E.; Ross, N. S.; Günay, M. A sustainable cooling/lubrication method focusing on energy consumption and other machining characteristics in high-speed turning of aluminum alloy. Sustain. Mater. Technol. 2024, 40, e00919.
37. Gupta, K.; Laubscher, R.; Davim, J. P.; Jain, N. Recent developments in sustainable manufacturing of gears: a review. J. Clean. Prod. 2016, 112, 3320-30.
38. Ming, W.; Shen, F.; Zhang, G.; Liu, G.; Du, J.; Chen, Z. Green machining: a framework for optimization of cutting parameters to minimize energy consumption and exhaust emissions during electrical discharge machining of Al 6061 and SKD 11. J. Clean. Prod. 2021, 285, 124889.
39. Maruthi, G. D.; Rashmi, R. Green manufacturing: it’s tools and techniques that can be implemented in manufacturing sectors. Mater. Today. Proc. 2015, 2, 3350-5.
40. Zhao, J.; Li, L.; Wang, Y.; Sutherland, J. W. Impact of surface machining complexity on energy consumption and efficiency in CNC milling. Int. J. Adv. Manuf. Technol. 2019, 102, 2891-905.
41. Eker, B.; Ekici, B.; Kurt, M.; Bakır, B. Sustainable machining of the magnesium alloy materials in the CNC lathe machine and optimization of the cutting conditions. Mechanika 2014, 20, 310-6.
43. Malinauskas, M.; Žukauskas, A.; Hasegawa, S.; et al. Ultrafast laser processing of materials: from science to industry. Light. Sci. Appl. 2016, 5, e16133.
44. Golinska-Dawson, P.; Kawa, A. Remanufacturing in automotive industry: Challenges and limitations. J. Ind. Eng. Manage. 2011, 4, 453-66.
45. Stavropoulos, P.; Papacharalampopoulos, A.; Athanasopoulou, L.; Kampouris, K.; Lagios, P. Designing a digitalized cell for remanufacturing of automotive frames. Procedia. CIRP. 2022, 109, 513-9.
46. Liu, B.; Chen, D.; Zhou, W.; et al. The effect of remanufacturing and direct reuse on resource productivity of China’s automotive production. J. Clean. Prod. 2018, 194, 309-17.
47. Diener, D. L.; Tillman, A. Scrapping steel components for recycling - isn’t that good enough? Seeking improvements in automotive component end-of-life. Resour. Conserv. Recy. 2016, 110, 48-60.
48. Bobba, S.; Tecchio, P.; Ardente, F.; Mathieux, F.; dos Santos, F. M.; Pekar, F. Analysing the contribution of automotive remanufacturing to the circularity of materials. Procedia. CIRP. 2020, 90, 67-72.
49. Cao, J.; Chen, X.; Zhang, X.; Gao, Y.; Zhang, X.; Kumar, S. Overview of remanufacturing industry in China: government policies, enterprise, and public awareness. J. Clean. Prod. 2020, 242, 118450.
50. Kanishka, K.; Acherjee, B. A systematic review of additive manufacturing-based remanufacturing techniques for component repair and restoration. J. Manuf. Proc. 2023, 89, 220-83.
51. Harper, G.; Sommerville, R.; Kendrick, E.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75-86.
52. Li, J.; Duan, C.; Yuan, L.; et al. Recycling spent lead-acid batteries into lead halide for resource purification and multifunctional perovskite diodes. Environ. Sci. Technol. 2021, 55, 8309-17.
53. Zhou, Q.; Huang, Z.; Liu, J.; et al. A closed-loop regeneration of LiNi0.6Co0.2Mn0.2O2 and graphite from spent batteries via efficient lithium supplementation and structural remodelling. Sustain. Energy. Fuels. 2021, 5, 4981-91.
54. Kriegler, J.; Binzer, M.; Zaeh, M. F. Process strategies for laser cutting of electrodes in lithium-ion battery production. J. Laser. Appl. 2021, 33, 012006.
55. Teixeira, E. L. S.; Tjahjono, B.; Beltran, M.; Julião, J. Demystifying the digital transition of remanufacturing: a systematic review of literature. Comput. Ind. 2022, 134, 103567.
56. Bai, Y.; Muralidharan, N.; Sun, Y.; Passerini, S.; Stanley, W. M.; Belharouak, I. Energy and environmental aspects in recycling lithium-ion batteries: concept of battery identity global passport. Mater. Today. 2020, 41, 304-15.
57. Alqahtani, A. Y.; Gupta, S. M.; Nakashima, K. Warranty and maintenance analysis of sensor embedded products using internet of things in industry 4.0. Int. J. Prod. Econ. 2019, 208, 483-99.
58. Kravchenko, M.; Pigosso, D. C. A.; McAloone, T. C. Circular economy enabled by additive manufacturing: potential opportunities and key sustainability aspects. In: Proceedings of NordDesign 2020, Lyngby, Denmark, 12-14, Aug, 2020.
59. Le, V. T.; Paris, H.; Mandil, G. Process planning for combined additive and subtractive manufacturing technologies in a remanufacturing context. J. Manuf. Syst. 2017, 44, 243-54.
60. Welter, E. S. Manufacturing exposure to coolant-lubricants. A preliminary report. J. Occup. Med. 1978, 20, 535-8.
61. Kui, G. W. A.; Islam, S.; Reddy, M. M.; Khandoker, N.; Chen, V. L. C. Recent progress and evolution of coolant usages in conventional machining methods: a comprehensive review. Int. J. Adv. Manuf. Technol. 2022, 119, 3-40.
62. Zhang, X.; Cui, W.; Li, W.; Liou, F. A hybrid process integrating reverse engineering, pre-repair processing, additive manufacturing, and material testing for component remanufacturing. Materials 2019, 12, 1961.
63. Ma, F.; Zhang, H.; Hon, K.; Gong, Q. An optimization approach of selective laser sintering considering energy consumption and material cost. J. Clean. Prod. 2018, 199, 529-37.
64. Wang, X. V.; Wang, L. A cloud-based production system for information and service integration: an internet of things case study on waste electronics. Enterp. Inf. Syst. 2017, 11, 952-68.
65. Xu, F.; Li, Y.; Feng, L. The influence of big data system for used product management on manufacturing-remanufacturing operations. J. Clean. Prod. 2019, 209, 782-94.
66. Kumar, R.; Bilga, P. S.; Singh, S. Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation. J. Clean. Prod. 2017, 164, 45-57.
67. Kellens, K.; Mertens, R.; Paraskevas, D.; Dewulf, W.; Duflou, J. R. Environmental impact of additive manufacturing processes: does AM contribute to a more sustainable way of part manufacturing? Procedia. CIRP. 2017, 61, 582-7.
68. Javaid, M.; Haleem, A.; Suman, R. Digital Twin applications toward Industry 4.0: a review. Cogn. Robot. 2023, 3, 71-92.
69. Wu, L.; Leng, J.; Ju, B. Digital twins-based smart design and control of ultra-precision machining: a review. Symmetry 2021, 13, 1717.
70. Kamble, S. S.; Gunasekaran, A.; Parekh, H.; Mani, V.; Belhadi, A.; Sharma, R. Digital twin for sustainable manufacturing supply chains: current trends, future perspectives, and an implementation framework. Technol. Forecast. Soc. Change. 2022, 176, 121448.
71. Chen, R.; Shen, H.; Lai, Y. A metaheuristic optimization algorithm for energy efficiency in digital twins. Internet. Things. Cyber. Phys. Syst. 2022, 2, 159-69.
72. Minerva, R.; Lee, G. M.; Crespi, N. Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models. Proc. IEEE. 2020, 108, 1785-824.
73. Soori, M.; Arezoo, B.; Dastres, R. Digital twin for smart manufacturing, a review. Sust. Manuf. Serv. Econ. 2023, 2, 100017.
74. Kaewunruen, S.; Lian, Q. Digital twin aided sustainability-based lifecycle management for railway turnout systems. J. Clean. Prod. 2019, 228, 1537-51.
75. Leng, J.; Wang, D.; Shen, W.; Li, X.; Liu, Q.; Chen, X. Digital twins-based smart manufacturing system design in Industry 4.0: a review. J. Manuf. Syst. 2021, 60, 119-37.
76. Shokrani, A.; Dhokia, V.; Newman, S. Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids. Int. J. Mach. Tool. Manu. 2012, 57, 83-101.
77. Ni, H.; Yan, C.; Ge, W.; Ni, S.; Sun, H.; Xu, T. Integrated optimization of cutting parameters and hob parameters for energy-conscious gear hobbing. Int. J. Adv. Manuf. Technol. 2022, 118, 1609-26.
78. Li, X.; Wang, B.; Peng, T.; Xu, X. Greentelligence: smart manufacturing for a greener future. Chin. J. Mech. Eng. 2021, 34, 656.
79. Yanase, Y.; Usude, J.; Ishizu, K.; Kikuchi, T.; Ochi, M. The latest gear manufacturing technology for high accuracy and efficiency. Mitsub. Heavy. Ind. Tech. Rev. 2018, 55, 1-7. https://www.academia.edu/86506685/The_Latest_Gear_Manufacturing_Technology_for_High_Accuracy_and_Efficiency. (accessed 2025-03-06)
80. Hailu, H. N.; Redda, D. T. Design and development of power transmission system for green and light weight vehicles: a review. TOMEJ. 2018, 12, 81-94.
81. Flodin, A. Powder metal gear technology. In: Advances in gear design and manufacture. CRC Press, 2019; pp. 329-62. https://www.taylorfrancis.com/chapters/edit/10.1201/9781351049832-9/powder-metal-gear-technology-anders-flodin?context=ubx&refId=8dc83ff5-1850-4c94-92d2-6fa69c37bf38. (accessed 2025-03-06).
82. Lingam, D.; Ananthanarayanan, R.; Jeevanantham, A. K.; Seenivasagam, D. R. Optimization methods in powder metallurgy for enhancing the mechanical properties: a systematic literature review. Eng. Res. Express. 2024, 6, 022504.
83. Spasenović, J.; Blagojević, I. Composite materials in automotive industry: a review. Industrija 2021, 49, 57-68.
84. Morgan, J.; Halton, M.; Qiao, Y.; Breslin, J. G. Industry 4.0 smart reconfigurable manufacturing machines. J. Manuf. Syst. 2021, 59, 481-506.
85. Yang, T.; Yi, X.; Lu, S.; Johansson, K. H.; Chai, T. Intelligent manufacturing for the process industry driven by industrial artificial intelligence. Engineering 2021, 7, 1224-30.
86. Mischos, S.; Dalagdi, E.; Vrakas, D. Intelligent energy management systems: a review. Artif. Intell. Rev. 2023, 56, 11635-74.
87. Niu, B.; Wang, L. How does green manufacturing promote the recycling of renewable solid waste and carbon reduction? Resour. Conserv. Recy. 2024, 203, 107410.
88. Abualfaraa, W.; Salonitis, K.; Al-Ashaab, A.; Ala’raj, M. Lean-green manufacturing practices and their link with sustainability: a critical review. Sustainability 2020, 12, 981.
89. Li, C.; Ahmad, S. F.; Ahmad, A. A. Y. A. B.; et al. Green production and green technology for sustainability: the mediating role of waste reduction and energy use. Heliyon 2023, 9, e22496.
90. Zeng, H.; Yu, C.; Zhang, G. How does green manufacturing enhance corporate ESG performance? - Empirical evidence from machine learning and text analysis. J. Environ. Manage. 2024, 370, 122933.
91. Yao, S.; Zhu, H.; Zhang, S.; Chang, H.; Wang, H. Green steel: the future path towards sustainable automotive manufacturing. Resour. Conserv. Recy. 2024, 200, 107319.
92. Gholami, H.; Abu, F.; Lee, J. K. Y.; Karganroudi, S. S.; Sharif, S. Sustainable manufacturing 4.0 - pathways and practices. Sustainability 2021, 13, 13956.
93. Paul, I.; Bhole, G.; Chaudhari, J. A review on green manufacturing: it’s important, methodology and its application. Procedia. Mater. Sci. 2014, 6, 1644-9.
94. Lv, L.; Deng, Z.; Liu, T.; et al. A composite evaluation model of sustainable manufacturing in machining process for typical machine tools. Processes 2019, 7, 110.
95. Korkmaz, M. E.; Gupta, M.; Ross, N. S.; Sivalingam, V. Implementation of green cooling/lubrication strategies in metal cutting industries: a state of the art towards sustainable future and challenges. Sustain. Mater. Technol. 2023, 36, e00641.
96. Denkena, B.; Abele, E.; Brecher, C.; Dittrich, M.; Kara, S.; Mori, M. Energy efficient machine tools. CIRP. Annals. 2020, 69, 646-67.
97. Zhang, W.; Xu, J. Advanced lightweight materials for automobiles: a review. Mater. Design. 2022, 221, 110994.
98. Tan, Z.; Zhang, Q.; Guo, X.; Zhao, W.; Zhou, C.; Liu, Y. New development of powder metallurgy in automotive industry. J. Cent. South. Univ. 2020, 27, 1611-23.
99. Zhang, Z.; Matsubae, K.; Nakajima, K. Impact of remanufacturing on the reduction of metal losses through the life cycles of vehicle engines. Resour. Conserv. Recy. 2021, 170, 105614.
100. Tran, M.; Doan, H.; Vu, V. Q.; Vu, L. T. Machine learning and IoT-based approach for tool condition monitoring: a review and future prospects. Measurement 2023, 207, 112351.
101. Yang, J.; Shan, H.; Xian, P.; Xu, X.; Li, N. Impact of digital transformation on green innovation in manufacturing under dual carbon targets. Sustainability 2024, 16, 7652.
102. Krishnan, R. Y.; Manikandan, S.; Subbaiya, R.; Karmegam, N.; Kim, W.; Govarthanan, M. Recent approaches and advanced wastewater treatment technologies for mitigating emerging microplastics contamination - a critical review. Sci. Total. Environ. 2023, 858, 159681.
103. Kimulu A, Nduku Mutuku W, Muthama Mutua N. Car antifreeze and coolant: comparing water and ethylene glycol as nano fluid base fluid. IJASRE. 2018, 4, 17-37.
104. Neri, A.; Butturi, M. A.; Gamberini, R. Sustainable management of electric vehicle battery remanufacturing: a systematic literature review and future directions. J. Manuf. Syst. 2024, 77, 859-74.
105. Saraogi A, Ibrahim M, Sangeethkumar E, Ramanathan V, Jaikumar M, Venkatesan H. Battery materials for electric vehicle - a comprehensive review. Mater. Today. Proc. 2023, 72, 2206-11.
106. Tao, R.; Gu, Y.; Du, Z.; Lyu, X.; Li, J. Advanced electrode processing for lithium-ion battery manufacturing. Nat. Rev. Clean. Technol. 2025, 1, 116-31.
107. Hao, H.; Geng, Y.; Sarkis, J. Carbon footprint of global passenger cars: scenarios through 2050. Energy 2016, 101, 121-31.
108. Lee, J.; Choe, H.; Yoon, H. Past trends and future directions for circular economy in electric vehicle waste battery reuse and recycling: a bibliometric analysis. Sust. Energy. Technol. Assess. 2025, 75, 104198.
109. Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M. Development of a recycling process for Li-ion batteries. J. Power. Sources. 2012, 207, 173-82.
110. Jiang, R.; Wu, C.; Feng, W.; et al. Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China. Sci. Rep. 2025, 15, 2267.
111. Zhang, Y.; Li, L.; Cui, X.; et al. Lubricant activity enhanced technologies for sustainable machining: mechanisms and processability. Chin. J. Aeronaut.2024.
112. Dambatta, Y. S.; Li, C.; Yang, M.; et al. Grinding with minimum quantity lubrication: a comparative assessment. Int. J. Adv. Manuf. Technol. 2023, 128, 955-1014.
113. Hogarth, T. COVID-19 and the demand for labour and skills in Europe: early evidence and implications for migration policy. 2021. https://www.voced.edu.au/content/ngv:91163. (accessed 2025-03-06).
114. Bellora, C.; Fontagné, L. EU in search of a carbon border adjustment mechanism. Energy. Econ. 2023, 123, 106673.
115. Melo J, Solleder J. Barriers to trade in environmental goods: how important they are and what should developing countries expect from their removal. World. Dev. 2020, 130, 104910.
116. Zhang, W.; Ye, S.; Mangla, S. K.; Emrouznejad, A.; Song, M. Smart platforming in automotive manufacturing for NetZero: intelligentization, green technology, and innovation dynamics. Int. J. Prod. Econ. 2024, 274, 109289.
117. He, B.; Bai, K. Digital twin-based sustainable intelligent manufacturing: a review. Adv. Manuf. 2021, 9, 1-21.
118. Wang, B.; Khan, I.; Ge, C.; Naz, H. Digital transformation of enterprises promotes green technology innovation - the regulated mediation model. Technol. Forecast. Soc. Change. 2024, 209, 123812.
119. Yaga, D.; Mell, P.; Roby, N.; Scarfone, K. Blockchain technology overview. arxiv2019, arxiv:1906.11078. Available online: https://doi.org/10.48550/arXiv.1906.11078. (accessed 6 Mar 2025)
120. Kabir, E.; Kumar, P.; Kumar, S.; Adelodun, A. A.; Kim, K. Solar energy: potential and future prospects. Renew. Sust. Energy. Rev. 2018, 82, 894-900.
121. Jamshidi, M.; Hatch, A.; Lowery, A. D.; Smith, J. E. The future of solar energy. Int. J. Contemp. Energy. 2017, 3, 8-15.
122. Madarkar, R.; Luo, X.; Walker, C.; et al. Prospects of digital twin for dynamic life cycle assessment of smart manufacturing systems. MATEC. Web. Conf. 2024, 401, 13006.
123. Katna, R.; Suhaib, M.; Agrawal, N.; Bhati, V.; Kumar, P.; Ahmad, K. M. Green manufacturing - optimization of novel biodegradable cutting fluid for machining. Mater. Today. Proc.2023.
124. Lu, Y.; Xu, X.; Wang, L. Smart manufacturing process and system automation - A critical review of the standards and envisioned scenarios. J. Manuf. Syst. 2020, 56, 312-25.
125. Han, F.; Mao, X.; Yu, X.; Yang, L. Government environmental protection subsidies and corporate green innovation: evidence from Chinese microenterprises. J. Innov. Knowl. 2024, 9, 100458.