REFERENCES

1. Zhang H. Inauguration of the newly launched journal of Green Manufacturing Open: how does manufacturing industry cope with rapid emerged environment and climate crisis in this planet. Green Manuf Open 2022;1:1.

2. Matthews HD, Wynes S. Current global efforts are insufficient to limit warming to 1.5 °C. Science 2022;376:1404-9.

3. Dani AA, Roy K, Masood R, Fang Z, Lim JBP. A comparative study on the life cycle assessment of new zealand residential buildings. Buildings 2022;12:50.

4. Agency, IE. 2021, Global energy review: CO2 emissions in 2021. Available from: https://www.iea.org/data-and-statistics/data-product/global-energy-review-co2-emissions-in-2021# [Last accessed on 6 Feb 2023].

5. Nguyen XP, Hoang AT, Ölçer AI, Huynh TT. Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energy Source Part A 2021;1:4.

6. An Y, Zhou D, Yu J, Shi X, Wang Q. Carbon emission reduction characteristics for China’s manufacturing firms: implications for formulating carbon policies. J Environ Manage 2021;284:112055.

7. Liu J, Yang Q, Ou S, Liu J. Factor decomposition and the decoupling effect of carbon emissions in China’s manufacturing high-emission subsectors. Energy 2022;248:123568.

8. Tridech S, Cheng K. Low carbon manufacturing: characterisation, theoretical models and implementation. IJMR 2011;6:110.

9. Ai X, Jiang Z, Zhang H, Wang Y. Low-carbon product conceptual design from the perspectives of technical system and human use. J Clean Prod 2020;244:118819.

10. Deng Z, Lv L, Huang W, Shi Y. A high efficiency and low carbon oriented machining process route optimization model and its application. Int J of Precis Eng and Manuf Green Tech 2019;6:23-41.

11. Li Y, Huang W, Wu R, Guo K. An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job shop scheduling problem. Appl Soft Comput 2020;95:106544.

12. Du Y, Yi Q, Li C, Liao L. Life cycle oriented low-carbon operation models of machinery manufacturing industry. J Clean Prod 2015;91:145-57.

13. Cordella M, Alfieri F, Sanfelix J. Reducing the carbon footprint of ICT products through material efficiency strategies: a life cycle analysis of smartphones. J Ind Ecol 2021;25:448-64.

14. Tisza M, Czinege I. Comparative study of the application of steels and aluminium in lightweight production of automotive parts. IInt J Lightweight Mater Manuf 2018;1:229-38.

15. Gagliardi F, La Rosa AD, Filice L, Ambrogio G. Environmental impact of material selection in a car body component - The side door intrusion beam. J Clean Prod 2021;318:128528.

16. Xiang F, Zhang Z, Zuo Y, Tao F. Digital twin driven green material optimal-selection towards sustainable manufacturing. Procedia CIRP 2019;81:1290-4.

17. Li B, Hong J, Liu Z. A novel topology optimization method of welded box-beam structures motivated by low-carbon manufacturing concerns. J Clean Prod 2017;142:2792-803.

18. Liu H, Li B, Tang W. Manufacturing oriented topology optimization of 3D structures for carbon emission reduction in casting process. J Clean Prod 2019;225:755-70.

19. Wang H, Xie H, Liu Q, Shen Y, Wang P, Zhao L. Structural topology optimization of a stamping die made from high-strength steel sheet metal based on load mapping. Struct Multidisc Optim 2018;58:769-84.

20. Cavazzuti M, Baldini A, Bertocchi E, Costi D, Torricelli E, Moruzzi P. High performance automotive chassis design: a topology optimization based approach. Struct Multidisc Optim 2011;44:45-56.

21. Zhang J, Li Z, Sang T, Ji M. Structure design of LFT passenger car seat structure based on topology optimisation. Int J Crashworthiness 2021;26:617-27.

22. Sutherland JW, Skerlos SJ, Haapala KR, Cooper D, Zhao F, Huang A. Industrial sustainability: reviewing the past and envisioning the future. J Manuf Sci Eng 2020;142:110806.

23. Wu J, Zhang C, Jiang P, Li C, Cao H. A prediction approach of fiber laser surface treatment using ensemble of metamodels considering energy consumption and processing quality. Green Manuf Open 2022;1:3.

24. Götze U, Koriath H, Kolesnikov A, Lindner R, Paetzold J. Integrated methodology for the evaluation of the energy- and cost-effectiveness of machine tools. CIRP J Manuf Sci Technol 2012;5:151-63.

25. Zhang Y, Li L, Liu W, et al. Dynamics analysis and energy consumption modelling based on bond graph: taking the spindle system as an example. Manuf Syst 2022;62:539-49.

26. Yoon H, Singh E, Min S. Empirical power consumption model for rotational axes in machine tools. J Clean Prod 2018;196:370-81.

27. Shang Z, Gao D, Jiang Z, Lu Y. Towards less energy intensive heavy-duty machine tools: power consumption characteristics and energy-saving strategies. Energy 2019;178:263-76.

28. Liu W, Li L, Cai W, et al. Dynamic characteristics and energy consumption modelling of machine tools based on bond graph theory. Energy 2020;212:118767.

29. Zhao K, Liu Z, Yu S, Li X, Huang H, Li B. Analytical energy dissipation in large and medium-sized hydraulic press. J Clean Prod 2015;103:908-15.

30. Gao M, Li L, Wang Q, Liu C. Energy efficiency and dynamic analysis of a novel hydraulic system with double actuator. Int J of Precis Eng and Manuf Green Tech 2020;7:643-55.

31. Jin R, Huang H, Li L, Zhu L, Liu Z, Liu Z. Energy saving strategy of the variable-speed variable-displacement pump unit based on neural network. Procedia CIRP 2019;80:84-8.

32. Cai W, Li Y, Li L, et al. Energy saving and high efficiency production oriented forward-and-reverse multidirectional turning: energy modeling and application. Energy 2022;252:123981.

33. Balogun VA, Mativenga PT. Modelling of direct energy requirements in mechanical machining processes. J Clean Prod 2013;41:179-86.

34. Li L, Huang H, Zhao F, et al. Variations of energy demand with process parameters in cylindrical drawing of stainless steel. J Manuf Sci Eng 2019;141:091002.

35. Han F, Li L, Cai W, Li C, Deng X, Sutherland JW. Parameters optimization considering the trade-off between cutting power and MRR based on linear decreasing particle swarm algorithm in milling. J Clean Prod 2020;262:121388.

36. Zhao X, Li C, Chen X, Cui J, Cao B. Data-driven cutting parameters optimization method in multiple configurations machining process for energy consumption and production time saving. Int J of Precis Eng and Manuf -Green Tech 2022;9:709-28.

37. Lin W, Yu D, Zhang C, et al. A multi-objective teaching-learning-based optimization algorithm to scheduling in turning processes for minimizing makespan and carbon footprint. J Clean Prod 2015;101:337-47.

38. May G, Stahl B, Taisch M, Prabhu V. Multi-objective genetic algorithm for energy-efficient job shop scheduling. Int J Prod Res 2015;53:7071-89.

39. Lu C, Gao L, Li X, Pan Q, Wang Q. Energy-efficient permutation flow shop scheduling problem using a hybrid multi-objective backtracking search algorithm. J Clean Prod 2017;144:228-38.

40. Zhang H, Zhao F, Sutherland JW. Scheduling of a single flow shop for minimal energy cost under real-time electricity pricing. J Manuf Sci Eng 2017;139:014502.

41. Baykasoğlu A, Ozsoydan FB. Dynamic scheduling of parallel heat treatment furnaces: a case study at a manufacturing system. J Manuf Syst 2018;46:152-62.

42. Yu T, Zhu C, Chang Q, Wang J. Imperfect corrective maintenance scheduling for energy efficient manufacturing systems through online task allocation method. J Manuf Syst 2019;53:282-90.

43. Li Y, He Y, Wang Y, Tao F, Sutherland JW. An optimization method for energy-conscious production in flexible machining job shops with dynamic job arrivals and machine breakdowns. J Clean Prod 2020;254:120009.

44. Wang S, Lu X, Li X, Li W. A systematic approach of process planning and scheduling optimization for sustainable machining. J Clean Prod 2015;87:914-29.

45. Yan J, Li L, Zhao F, Zhang F, Zhao Q. A multi-level optimization approach for energy-efficient flexible flow shop scheduling. J Clean Prod 2016;137:1543-52.

46. Koltsaklis NE, Giannakakis M, Georgiadis MC. Optimal energy planning and scheduling of microgrids. Chem Eng Res Des 2018;131:318-32.

47. Zhang C, Ji W. Digital twin-driven carbon emission prediction and low-carbon control of intelligent manufacturing job-shop. Procedia CIRP 2019;83:624-9.

48. Ren L, Zhou S, Peng T, Ou X. Greenhouse gas life cycle analysis of China’s fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types. Energy 2022;249:123628.

49. Zhang C, Huang H, Zhang L, Bao H, Liu Z. Low-carbon design of structural components by integrating material and structural optimization. Int J Adv Manuf Technol 2018;95:4547-60.

50. BP. 2021, Statistical review of world energy. Available from: https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Last accessed on 6 Feb 2023].

51. NBSC. 2019, China statistical yearbook 2021, National Bureau of Statistics of China. Available from: http://www.stats.gov.cn/tjsj/ndsj/2021/indexch.htm [Last accessed on 6 Feb 2023].

52. Zhang L, Huang H, Hu D, Li B, Zhang C. Greenhouse gases (GHG) emissions analysis of manufacturing of the hydraulic press slider within forging machine in China. J Clean Prod 2016;113:565-76.

53. Li L, Huang H, Zhao F, Sutherland JW, Liu Z. An energy-saving method by balancing the load of operations for hydraulic press. IEEE/ASME Trans Mechatron 2017;22:2673-83.

54. Huang H, Jin R, Li L, Liu Z. Improving the energy efficiency of a hydraulic press via variable-speed variable-displacement pump unit. J Dyn Syst-T ASME 2018;140:111006.

55. Li L, Huang H, Zhao F, Liu Z. A coordinate method applied to partitioned energy-saving control for grouped hydraulic presses. J Manuf Syst 2016;41:102-10.

56. Liu Z, Wang Y, Huang H, Li X, Li L, Zhou D. An energy matching method for hydraulic press group based on operation load profile. Procedia CIRP 2016;48:219-23.

57. Li L, Huang H, Liu Z, Li X, Triebe MJ, Zhao F. An energy-saving method to solve the mismatch between installed and demanded power in hydraulic press. J Clean Prod 2016;139:636-45.

Green Manufacturing Open
ISSN 2835-7590 (Online)
Follow Us

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will preserved here permanently:

https://www.portico.org/publishers/oae/