REFERENCES

1. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16:1066-71.

2. Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev. 2023;103:31-276.

3. Oza PP, Kashfi K. The triple crown: NO, CO, and H2S in cancer cell biology. Pharmacol Ther. 2023;249:108502.

4. Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322:587-90.

5. Jiang M, Wang T, Yan X, et al. A novel rhein derivative modulates bone formation and resorption and ameliorates estrogen-dependent bone loss. J Bone Miner Res. 2019;34:361-74.

6. Zhang CH, Jiang ZL, Meng Y, et al. Hydrogen sulfide and its donors: novel antitumor and antimetastatic agents for liver cancer. Cell Signal. 2023;106:110628.

7. Tang G, Wu L, Liang W, Wang R. Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol. 2005;68:1757-64.

8. Yang W, Yang G, Jia X, Wu L, Wang R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J Physiol. 2005;569:519-31.

9. Kida M, Sugiyama T, Yoshimoto T, Ogawa Y. Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells. Eur J Pharm Sci. 2013;48:211-5.

10. Makarenko VV, Peng YJ, Yuan G, et al. CaV3.2 T-type Ca2+ channels in H2S-mediated hypoxic response of the carotid body. Am J Physiol Cell Physiol. 2015;308:C146-54.

11. Yu M, Du H, Wang B, et al. Exogenous H2S induces Hrd1 S-sulfhydration and prevents CD36 translocation via VAMP3 ubiquitylation in diabetic hearts. Aging Dis. 2020;11:286-300.

12. Leslie M. Inflammation’s stop signals. Science. 2015;347:18-21.

13. Ye S, Jin N, Liu N, et al. Gases and gas-releasing materials for the treatment of chronic diabetic wounds. Biomater Sci. 2024;12:3273-92.

14. Cao H, Zhou X, Zhang J, et al. Hydrogen sulfide protects against bleomycin-induced pulmonary fibrosis in rats by inhibiting NF-κB expression and regulating Th1/Th2 balance. Toxicol Lett. 2014;224:387-94.

15. Datzmann T, Merz T, McCook O, Szabo C, Radermacher P. H2S as a therapeutic adjuvant against COVID-19: why and how? Shock. 2021;56:865-7.

16. Zhou YK, Han CS, Zhu ZL, et al. M2 exosomes modified by hydrogen sulfide promoted bone regeneration by moesin mediated endocytosis. Bioact Mater. 2023;31:192-205.

17. Welsh JA, Goberdhan DCI, O'Driscoll L, et al; MISEV Consortium. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404.

18. Horibe K, Hara M, Nakamura H. M2-like macrophage infiltration and transforming growth factor-β secretion during socket healing process in mice. Arch Oral Biol. 2021;123:105042.

19. Schlundt C, Fischer H, Bucher CH, Rendenbach C, Duda GN, Schmidt-Bleek K. The multifaceted roles of macrophages in bone regeneration: a story of polarization, activation and time. Acta Biomater. 2021;133:46-57.

20. Kong L, Wang Y, Smith W, Hao D. Macrophages in bone homeostasis. Curr Stem Cell Res Ther. 2019;14:474-81.

21. Zhang C, Bao LR, Yang YT, Wang Z, Li Y. [Role of M2 macrophage exosomes in osteogenic differentiation of mouse bone marrow mesenchymal stem cells under high-glucose and high-insulin]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2022;53:63-70.

22. Liu K, Luo X, Lv ZY, et al. Macrophage-derived exosomes promote bone mesenchymal stem cells towards osteoblastic fate through microRNA-21a-5p. Front Bioeng Biotechnol. 2021;9:801432.

23. Bin-Bin Z, Da-Wa ZX, Chao L, et al. M2 macrophagy-derived exosomal miRNA-26a-5p induces osteogenic differentiation of bone mesenchymal stem cells. J Orthop Surg Res. 2022;17:137.

24. Chen X, Wan Z, Yang L, et al. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA. J Nanobiotechnology. 2022;20:110.

25. Li Z, Wang Y, Li S, Li Y. Exosomes derived from M2 macrophages facilitate osteogenesis and reduce adipogenesis of BMSCs. Front Endocrinol. 2021;12:680328.

26. Kang M, Huang CC, Lu Y, et al. Bone regeneration is mediated by macrophage extracellular vesicles. Bone. 2020;141:115627.

27. Sauvanet C, Wayt J, Pelaseyed T, Bretscher A. Structure, regulation, and functional diversity of microvilli on the apical domain of epithelial cells. Annu Rev Cell Dev Biol. 2015;31:593-621.

28. Ogihara T, Mizoi K, Kamioka H, Yano K. Physiological roles of ERM proteins and transcriptional regulators in supporting membrane expression of efflux transporters as factors of drug resistance in cancer. Cancers. 2020;12:3352.

29. Bajusz C, Kristó I, Abonyi C, et al. The nuclear activity of the actin-binding Moesin protein is necessary for gene expression in Drosophila. FEBS J. 2021;288:4812-32.

30. Frame MC, Patel H, Serrels B, Lietha D, Eck MJ. The FERM domain: organizing the structure and function of FAK. Nat Rev Mol Cell Biol. 2010;11:802-14.

31. Rody WJ Jr, Chamberlain CA, Emory-Carter AK, et al. The proteome of extracellular vesicles released by clastic cells differs based on their substrate. PLoS One. 2019;14:e0219602.

32. Holliday LS, Faria LP, Rody WJ Jr. Actin and actin-associated proteins in extracellular vesicles shed by osteoclasts. Int J Mol Sci. 2019;21:158.

33. Cruciat CM, Ohkawara B, Acebron SP, et al. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science. 2010;327:459-63.

34. Martin-Orozco E, Sanchez-Fernandez A, Ortiz-Parra I, Ayala-San Nicolas M. WNT signaling in tumors: the way to evade drugs and immunity. Front Immunol. 2019;10:2854.

35. Orian-Rousseau V. CD44 acts as a signaling platform controlling tumor progression and metastasis. Front Immunol. 2015;6:154.

36. Kleinman HK, Kulik V, Goldstein AL. Thymosin β4 and the anti-fibrotic switch. Int Immunopharmacol. 2023;115:109628.

37. Chu X, Liu D, Li T, et al. Hydrogen sulfide-modified extracellular vesicles from mesenchymal stem cells for treatment of hypoxic-ischemic brain injury. J Control Release. 2020;328:13-27.

38. Holliday LS PS, Rody WJ Jr. RANKL and RANK in extracellular vesicles: surprising new players in bone remodeling. Extracellular Vesicles Circ Nucl Acids. 2021;2:18-28.

39. Datta A, Kim H, McGee L, et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: a drug repurposing strategy for advanced cancer. Sci Rep. 2018;8:8161.

40. Du W, Zhang K, Zhang S, et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer. Biomaterials. 2017;133:70-81.

41. Lu C, Chen L, Hua Y. Cystathionine gamma lyase aggravates orthodontic root resorption in mice. Ann Transl Med. 2019;7:787.

42. Liu F, Wen F, He D, et al. Force-induced H2S by PDLSCs modifies osteoclastic activity during tooth movement. J Dent Res. 2017;96:694-702.

43. Song D, He J, Cheng T, et al. Cystathionine γ-lyase contributes to exacerbation of periodontal destruction in experimental periodontitis under hyperglycemia. J Periodontol. 2024;Epub ahead of print.

44. Planells-Cases R, Pérez-Payá E, Messeguer A, Carreño C, Ferrer-Montiel A. Small molecules targeting the NMDA receptor complex as drugs for neuropathic pain. Mini Rev Med Chem. 2003;3:749-56.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/