REFERENCES

1. Önning G, Palm R, Linninge C, Larsson N. New Lactiplantibacillus plantarum and Lacticaseibacillus rhamnosus strains: well tolerated and improve infant microbiota. Pediatr Res. 2022;91:1849-57.

2. Avila M, Ojcius DM, Yilmaz O. The oral microbiota: living with a permanent guest. DNA Cell Biol. 2009;28:405-11.

3. Saïz P, Taveira N, Alves R. Probiotics in oral health and disease: a systematic review. Applied Sciences. 2021;11:8070.

4. Zeng Y, Fadaak A, Alomeir N, et al. Lactobacillus plantarum Disrupts S mutans-C. albicans cross-kingdom biofilms. Front Cell Infect Microbiol. 2022;12:872012.

5. Bao J, Huang X, Zeng Y, et al. Dose-dependent inhibitory effect of probiotic Lactobacillus plantarum on Streptococcus mutans-Candida albicans cross-kingdom microorganisms. Pathogens. 2023;12:848.

6. Zeng Y, Fadaak A, Alomeir N, et al. Effect of probiotic Lactobacillus plantarum on Streptococcus mutans and Candida albicans clinical isolates from children with early childhood caries. Int J Mol Sci. 2023;24:2991.

7. Zhang J, Duan Z. Identification of a new probiotic strain, Lactiplantibacillus plantarum VHProbi® V38, and its use as an oral health agent. Front Microbiol. 2022;13:1000309.

8. Zhang J, Li K, Bu X, Cheng S, Duan Z. Characterization of the anti-pathogenic, genomic and phenotypic properties of a Lacticaseibacillus rhamnosus VHProbi M14 isolate. PLoS One. 2023;18:e0285480.

9. Giordani B, Parolin C, Vitali B. Lactobacilli as anti-biofilm strategy in oral infectious diseases: a mini-review. Front Med Technol. 2021;3:769172.

10. Wang X, Tang J, Zhang S, Zhang N. Effects of Lactiplantibacillus plantarum 19-2 on immunomodulatory function and gut microbiota in mice. Front Microbiol. 2022;13:926756.

11. Yu YY, Wu LY, Sun X, Gu Q, Zhou QQ. Effect of Lactobacillus plantarum ZFM4 in Helicobacter pylori-infected C57BL/6 mice: prevention is better than cure. Front Cell Infect Microbiol. 2023;13:1320819.

12. Song Y, Sun M, Mu G, Tuo Y. Exopolysaccharide produced by Lactiplantibacillus plantarum Y12 exhibits inhibitory effect on the Shigella flexneri genes expression related to biofilm formation. Int J Biol Macromol. 2023;253:127048.

13. Mathipa-Mdakane MG, Thantsha MS. Lacticaseibacillus rhamnosus: a suitable candidate for the construction of novel bioengineered probiotic strains for targeted pathogen control. Foods. 2022;11:785.

14. Echegaray N, Yilmaz B, Sharma H, et al. A novel approach to Lactiplantibacillus plantarum: from probiotic properties to the omics insights. Microbiol Res. 2023;268:127289.

15. Garcia-Gonzalez N, Battista N, Prete R, Corsetti A. Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms. 2021;9:349.

16. Segers ME, Lebeer S. Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microb Cell Fact. 2014;13 Suppl 1:S7.

17. Sanwlani R, Bramich K, Mathivanan S. Role of probiotic extracellular vesicles in inter-kingdom communication and current technical limitations in advancing their therapeutic utility. Extracell Vesicles Circ Nucleic Acids. 2024;5:609-26.

18. Doron S, Snydman DR. Risk and safety of probiotics. Clin Infect Dis. 2015;60 Suppl 2:S129-34.

19. Vinderola G, Sanders ME, Salminen S. The concept of postbiotics. Foods. 2022;11:1077.

20. Petrariu OA, Barbu IC, Niculescu AG, et al. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front Microbiol. 2023;14:1296447.

21. Magryś A, Pawlik M. Postbiotic fractions of probiotics Lactobacillus plantarum 299v and Lactobacillus rhamnosus GG show immune-modulating effects. Cells. 2023;12:2538.

22. Banakar M, Pourhajibagher M, Etemad-Moghadam S, et al. Antimicrobial effects of postbiotic mediators derived from Lactobacillus rhamnosus GG and Lactobacillus reuteri on Streptococcus mutans. Front Biosci. 2023;28:88.

23. Butrungrod W, Chaiyasut C, Makhamrueang N, Peerajan S, Chaiyana W, Sirilun S. Postbiotic metabolite of Lactiplantibacillus plantarum PD18 against periodontal pathogens and their virulence markers in biofilm formation. Pharmaceutics. 2023;15:1419.

24. Hu A, Huang W, Shu X, et al. Lactiplantibacillus plantarum postbiotics suppress salmonella infection via modulating bacterial pathogenicity, autophagy and inflammasome in mice. Animals. 2023;13:3215.

25. Spaggiari L, Sala A, Ardizzoni A, et al. Lactobacillus acidophilus, L. plantarum, L. rhamnosus, and L. reuteri cell-free supernatants inhibit Candida parapsilosis pathogenic potential upon infection of vaginal epithelial Cells monolayer and in a transwell coculture system in vitro. Microbiol Spectr. 2022;10:e0269621.

26. Molina-Tijeras JA, Gálvez J, Rodríguez-Cabezas ME. The immunomodulatory properties of extracellular vesicles derived from probiotics: a novel approach for the management of gastrointestinal diseases. Nutrients. 2019;11:1038.

27. Rubio AP, D'Antoni CL, Piuri M, Pérez OE. Probiotics, their extracellular vesicles and infectious diseases. Front Microbiol. 2022;13:864720.

28. Kullar R, Goldstein EJC, Johnson S, McFarland LV. Lactobacillus bacteremia and probiotics: a review. Microorganisms. 2023;11:896.

29. Kulig K, Kowalik K, Surowiec M, et al. Isolation and characteristics of extracellular vesicles produced by probiotics: yeast Saccharomyces boulardii CNCM I-745 and bacterium Streptococcus salivarius K12. Probiotics Antimicrob Proteins. 2024;16:936-48.

30. Surman M, Hoja-Łukowicz D, Szwed S, et al. An insight into the proteome of uveal melanoma-derived ectosomes reveals the presence of potentially useful biomarkers. Int J Mol Sci. 2019;20:3789.

31. Karkowska-Kuleta J, Kulig K, Bras G, et al. Candida albicans biofilm-derived extracellular vesicles are involved in the tolerance to caspofungin, biofilm detachment, and fungal proteolytic activity. J Fungi. 2023;9:1078.

32. Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50:D543-52.

33. UniProt Consortium. UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523-31.

34. Paysan-Lafosse T, Blum M, Chuguransky S, et al. InterPro in 2022. Nucleic Acids Res. 2023;51:D418-27.

35. Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev. 2019;43:273-303.

36. Briaud P, Carroll RK. Extracellular vesicle biogenesis and functions in gram-positive bacteria. Infect Immun. 2020:88.

37. Jeong D, Kim MJ, Park Y, et al. Visualizing extracellular vesicle biogenesis in gram-positive bacteria using super-resolution microscopy. BMC Biol. 2022;20:270.

38. Le LHM, Steele JR, Ying L, Schittenhelm RB, Ferrero RL. A new isolation method for bacterial extracellular vesicles providing greater purity and improved proteomic detection of vesicle proteins. J Extracell Biol. 2023;2:e84.

39. Reis FCG, Borges BS, Jozefowicz LJ, et al. A novel protocol for the isolation of fungal extracellular vesicles reveals the participation of a putative scramblase in polysaccharide export and capsule construction in cryptococcus gattii. mSphere. 2019;4:e00080-19.

40. Moradi M, Kousheh SA, Almasi H, et al. Postbiotics produced by lactic acid bacteria: the next frontier in food safety. Compr Rev Food Sci Food Saf. 2020;19:3390-415.

41. Cuevas-González PF, Liceaga AM, Aguilar-Toalá JE. Postbiotics and paraprobiotics: from concepts to applications. Food Res Int. 2020;136:109502.

42. Kudra A, Kaźmierczak-Siedlecka K, Sobocki BK, et al. Postbiotics in oncology: science or science fiction? Front Microbiol. 2023;14:1182547.

43. Rawling M, Schiavone M, Mugnier A, et al. Modulation of zebrafish (Danio rerio) intestinal mucosal barrier function fed different postbiotics and a probiotic from Lactobacilli. Microorganisms. 2023;11:2900.

44. Krzyżek P, Marinacci B, Vitale I, Grande R. Extracellular vesicles of probiotics: shedding light on the biological activity and future applications. Pharmaceutics. 2023;15:522.

45. González-Lozano E, García-García J, Gálvez J, et al. Novel horizons in postbiotics: Lactobacillaceae extracellular vesicles and their applications in health and disease. Nutrients. 2022;14:5296.

46. Croatti V, Parolin C, Giordani B, Foschi C, Fedi S, Vitali B. Lactobacilli extracellular vesicles: potential postbiotics to support the vaginal microbiota homeostasis. Microb Cell Fact. 2022;21:237.

47. Li M, Lee K, Hsu M, Nau G, Mylonakis E, Ramratnam B. Lactobacillus-derived extracellular vesicles enhance host immune responses against vancomycin-resistant enterococci. BMC Microbiol. 2017;17:66.

48. Bajic SS, Cañas MA, Tolinacki M, et al. Proteomic profile of extracellular vesicles released by Lactiplantibacillus plantarum BGAN8 and their internalization by non-polarized HT29 cell line. Sci Rep. 2020;10:21829.

49. Kurata A, Kiyohara S, Imai T, et al. Characterization of extracellular vesicles from Lactiplantibacillus plantarum. Sci Rep. 2022;12:13330.

50. Dean SN, Leary DH, Sullivan CJ, Oh E, Walper SA. Isolation and characterization of Lactobacillus-derived membrane vesicles. Sci Rep. 2019;9:877.

51. Dean SN, Rimmer MA, Turner KB, et al. Lactobacillus acidophilus membrane vesicles as a vehicle of bacteriocin delivery. Front Microbiol. 2020;11:710.

52. Caruana JC, Dean SN, Walper SA. Isolation and characterization of membrane vesicles from Lactobacillus species. Bio Protoc. 2021;11:e4145.

53. Kim MH, Choi SJ, Choi HI, et al. Lactobacillus plantarum-derived extracellular vesicles protect atopic dermatitis induced by Staphylococcus aureus-derived extracellular vesicles. Allergy Asthma Immunol Res. 2018;10:516-32.

54. Hao H, Zhang X, Tong L, et al. Effect of extracellular vesicles derived from Lactobacillus plantarum Q7 on gut microbiota and ulcerative colitis in mice. Front Immunol. 2021;12:777147.

55. Kim W, Lee EJ, Bae IH, et al. Lactobacillus plantarum-derived extracellular vesicles induce anti-inflammatory M2 macrophage polarization in vitro. J Extracell Vesicles. 2020;9:1793514.

56. Behzadi E, Mahmoodzadeh Hosseini H, Imani Fooladi AA. The inhibitory impacts of Lactobacillus rhamnosus GG-derived extracellular vesicles on the growth of hepatic cancer cells. Microb Pathog. 2017;110:1-6.

57. Tong L, Zhang X, Hao H, et al. Lactobacillus rhamnosus GG derived extracellular vesicles modulate gut microbiota and attenuate inflammatory in DSS-induced colitis mice. Nutrients. 2021;13:3319.

58. Champagne-Jorgensen K, Mian MF, McVey Neufeld KA, Stanisz AM, Bienenstock J. Membrane vesicles of Lacticaseibacillus rhamnosus JB-1 contain immunomodulatory lipoteichoic acid and are endocytosed by intestinal epithelial cells. Sci Rep. 2021;11:13756.

59. Lee BH, Chen YZ, Shen TL, Pan TM, Hsu WH. Proteomic characterization of extracellular vesicles derived from lactic acid bacteria. Food Chem. 2023;427:136685.

60. Sánchez B, Schmitter JM, Urdaci MC. Identification of novel proteins secreted by Lactobacillus plantarum that bind to mucin and fibronectin. J Mol Microbiol Biotechnol. 2009;17:158-62.

61. Garvie EI. Bacterial lactate dehydrogenases. Microbiol Rev. 1980;44:106-39.

62. Llibre A, Grudzinska FS, O'Shea MK, et al. Lactate cross-talk in host-pathogen interactions. Biochem J. 2021;478:3157-78.

63. Eijsink VG, Axelsson L, Diep DB, Håvarstein LS, Holo H, Nes IF. Production of class II bacteriocins by lactic acid bacteria; an example of biological warfare and communication. Antonie Van Leeuwenhoek. 2002;81:639-54.

64. Wu KH, Tai PC. Cys32 and His105 are the critical residues for the calcium-dependent cysteine proteolytic activity of CvaB, an ATP-binding cassette transporter. J Biol Chem. 2004;279:901-9.

65. Luo R, Chang Y, Liang H, et al. Interactions between extracellular vesicles and microbiome in human diseases: new therapeutic opportunities. Imeta. 2023;2:e86.

66. Christensen LF, Høie MH, Bang-Berthelsen CH, Marcatili P, Hansen EB. Comparative structure analysis of the multi-domain, cell envelope proteases of lactic acid bacteria. Microorganisms. 2023;11:2256.

67. Kieliszek M, Pobiega K, Piwowarek K, Kot AM. Characteristics of the proteolytic enzymes produced by lactic acid bacteria. Molecules. 2021;26:1858.

68. Giard DJ, Aaronson SA, Todaro GJ, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417-23.

69. Du T, Lei A, Zhang N, Zhu C. The beneficial role of probiotic Lactobacillus in respiratory diseases. Front Immunol. 2022;13:908010.

70. Yuksel N, Gelmez B, Yildiz-Pekoz A. Lung microbiota: its relationship to respiratory system diseases and approaches for lung-targeted probiotic bacteria delivery. Mol Pharm. 2023;20:3320-37.

71. Fan J, Zhang Y, Zuo M, et al. Novel mechanism by which extracellular vesicles derived from Lactobacillus murinus alleviates deoxynivalenol-induced intestinal barrier disruption. Environ Int. 2024;185:108525.

72. Fakharian F, Sadeghi A, Pouresmaeili F, Soleimani N, Yadegar A. Anti-inflammatory effects of extracellular vesicles and cell-free supernatant derived from Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-induced inflammatory response in gastric epithelial cells in vitro. Folia Microbiol (Praha). 2024;69:927-39.

73. Keyhani G, Mahmoodzadeh Hosseini H, Salimi A. Effect of extracellular vesicles of Lactobacillus rhamnosus GG on the expression of CEA gene and protein released by colorectal cancer cells. Iran J Microbiol. 2022;14:90-6.

74. Lee KS, Kim Y, Lee JH, et al. Human probiotic Lactobacillus paracasei-derived extracellular vesicles improve tumor necrosis factor-α-induced inflammatory phenotypes in human skin. Cells. 2023;12:2789.

75. Mierzejewska J, Kowalska P, Marlicka K, et al. Exploring extracellular vesicles of probiotic yeast as carriers of biologically active molecules transferred to human intestinal cells. Int J Mol Sci. 2023;24:11340.

76. Kim JH, Jeun EJ, Hong CP, et al. Extracellular vesicle-derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression. J Allergy Clin Immunol. 2016;137:507-16.e8.

77. Nasiri G, Azimirad M, Goudarzi H, et al. The inhibitory effects of live and UV-killed Akkermansia muciniphila and its derivatives on cytotoxicity and inflammatory response induced by Clostridioides difficile RT001 in vitro. Int Microbiol. 2024;27:393-409.

78. Liu H, Geng Z, Su J. Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for targeted therapy. Extracell Vesicles Circ Nucleic Acids. 2022;3:63-86.

79. Liu H, Li M, Zhang T, Liu X, Zhang H, Geng Z, Su, J. Engineered bacterial extracellular vesicles for osteoporosis therapy. Chem Eng Journ. 2022;450:138309.

80. Ji N, Wang F, Wang M, Zhang W, Liu H, Su J. Engineered bacterial extracellular vesicles for central nervous system diseases. J Control Release. 2023;364:46-60.

81. Gujrati V, Kim S, Kim SH, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano. 2014;8:1525-37.

82. Li Z, Liu J, Song J, et al. Multifunctional hydrogel-based engineered extracellular vesicles delivery for complicated wound healing. Theranostics. 2024;14:4198-217.

83. Liu H, Zhang H, Wang S, et al. Bone-targeted bioengineered bacterial extracellular vesicles delivering siRNA to ameliorate osteoporosis. Compos Part B Eng. 2023;255:110610.

84. Liu H, Song P, Zhang H, et al. Synthetic biology-based bacterial extracellular vesicles displaying BMP-2 and CXCR4 to ameliorate osteoporosis. J Extracell Vesicles. 2024;13:e12429.

85. Mondal J, Pillarisetti S, Junnuthula V, et al. Extracellular vesicles and exosome-like nanovesicles as pioneering oral drug delivery systems. Front Bioeng Biotechnol. 2023;11:1307878.

86. Fusco C, De Rosa G, Spatocco I, et al. Extracellular vesicles as human therapeutics: a scoping review of the literature. J Extracell Vesicles. 2024;13:e12433.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/