REFERENCES

1. Ashworth A. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 1869;14:146.

2. Paget S. The distribution of secondary growths in cancer of the breast. The Lancet 1889;133:571-3.

3. Bailey P. Medulloblastoma cerebelli: a common type of midcerebellar glioma of childhood. Arch NeurPsych 1925;14:192.

4. Mandel P, Métais P. Nuclear acids in human blood plasma. C R Seances Soc Biol Fil 1948;142:241-3.

5. Paterson E, Farr RF. Cerebellar medulloblastoma: treatment by irradiation of the whole central nervous system. Acta radiol 1953;39:323-36.

6. Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 1975;35:218-24.

7. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res 1977;37:646-50.

8. Eibl RH, Wiestler OD. Induction of primitive neuroectodermal tumors following retrovirus-mediated transfer of SV40 large T antigen into neural transplants. Zülch symposium on growth control and neoplastic transformation in the brain. Clin Neuropathol 1991;10:248-9.

9. Eibl RH, Kleihues P, Jat PS, Wiestler OD. A model for primitive neuroectodermal tumors in transgenic neural transplants harboring the SV40 large T antigen. Am J Pathol 1994;144:556-64.

10. Ohgaki H, Eibl RH, Wiestler OD, Yasargil MG, Newcomb EW, Kleihues P. p53 mutations in nonastrocytic human brain tumors. Cancer Res 1991;51:6202-5.

11. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001;414:105-11.

12. Balaña C, Ramirez JL, Taron M, et al. O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme. Clin Cancer Res 2003;9:1461-8.

13. Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004;10:6897-904.

14. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004;351:781-91.

15. Pantel K, Alix-Panabières C. Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 2010;16:398-406.

16. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6:224ra24.

17. Sullivan JP, Nahed BV, Madden MW, et al. Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov 2014;4:1299-309.

18. Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016;131:803-20.

19. Donaldson J, Park BH. Circulating tumor DNA: measurement and clinical utility. Annu Rev Med 2018;69:223-34.

20. FDA 2018. cobas EGFR Mutation Test v2. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/cobas-egfr-mutation-test-v2 [Last accessed on 27 Sep 2022].

21. Garzia L, Kijima N, Morrissy AS, et al. A hematogenous route for medulloblastoma leptomeningeal metastases. Cell 2018;172:1050-1062.e14.

22. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018;359:926-30.

23. Lennon AM, Buchanan AH, Kinde I, et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 2020;369:eabb9601.

24. Louis DN, Perry A, Wesseling P, et al. The 2021 who classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23:1231-51.

25. Packer RJ, Zhou T, Holmes E, Vezina G, Gajjar A. Survival and secondary tumors in children with medulloblastoma receiving radiotherapy and adjuvant chemotherapy: results of Children’s Oncology Group trial A9961. Neuro Oncol 2013;15:97-103.

26. Jones DT, Jäger N, Kool M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature 2012;488:100-5.

27. Vladoiu MC, El-Hamamy I, Donovan LK, et al. Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature 2019;572:67-73.

28. Hovestadt V, Smith KS, Bihannic L, et al. Resolving medulloblastoma cellular architecture by single-cell genomics. Nature 2019;572:74-9.

29. Luo W, Lin GN, Song W, et al. Single-cell spatial transcriptomic analysis reveals common and divergent features of developing postnatal granule cerebellar cells and medulloblastoma. BMC Biol 2021;19:135.

30. Riemondy KA, Venkataraman S, Willard N, et al. Neoplastic and immune single-cell transcriptomics define subgroup-specific intra-tumoral heterogeneity of childhood medulloblastoma. Neuro Oncol 2022;24:273-86.

31. Saylors RL, Sidransky D, Friedman HS, et al. Infrequent p53 gene mutations in medulloblastomas. Cancer Res 1991;51:4721-3.

32. Wiestler OD, Aguzzi A, Schneemann M, Eibl R, von Deimling A, Kleihues P. Oncogene complementation in fetal brain transplants. Cancer Res 1992;52:3760-7.

33. Radner H, el-Shabrawi Y, Eibl RH, et al. Tumor induction by ras and myc oncogenes in fetal and neonatal brain: modulating effects of developmental stage and retroviral dose. Acta Neuropathol 1993;86:456-65.

34. Kleihues P, Ohgaki H, Eibl RH, et al. Type and frequency of p53 mutations in tumors of the nervous system and its coverings. In: Wiestler OD, Schlegel U, Schramm J, editors. Molecular neuro-oncology and its impact on the clinical management of brain tumors. Berlin: Springer Berlin Heidelberg; 1994. p. 25-31.

35. Louis DN, von Deimling A, Chung RY, et al. Comparative study of p53 gene and protein alterations in human astrocytic tumors. J Neuropathol Exp Neurol 1993;52:31-8.

36. Ohgaki H, Eibl RH, Schwab M, et al. Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system. Mol Carcinog 1993;8:74-80.

37. von Deimling A, Eibl RH, Ohgaki H, et al. p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 1992;52:2987-90.

38. Preuss I, Haas S, Eichhorn U, et al. Activity of the DNA repair protein O6-methylguanine-DNA methyltransferase in human tumor and corresponding normal tissue. Cancer Detect Prev 1996;20:130-6.

39. Preuss I, Eberhagen I, Haas S, et al. O6-methylguanine-DNA methyltransferase activity in breast and brain tumors. Int J Cancer 1995;61:321-6.

40. Wiestler OD, Brüstle O, Eibl RH, Radner H, Aguzzi A, Kleihues P. Retrovirus-mediated oncogene transfer into neural transplants. Brain Pathol 1992;2:47-59.

41. Wiestler OD, Brüstle O, Eibl RH, et al. A new approach to the molecular basis of neoplastic transformation in the brain. Neuropathol Appl Neurobiol 1992;18:443-53.

42. Martínez-Ricarte F, Mayor R, Martínez-Sáez E, et al. Molecular diagnosis of diffuse gliomas through sequencing of cell-free circulating tumor DNA from cerebrospinal fluid. Clin Cancer Res 2018;24:2812-9.

43. Miller AM, Shah RH, Pentsova EI, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature 2019;565:654-8.

44. Mouliere F, Mair R, Chandrananda D, et al. Detection of cell-free DNA fragmentation and copy number alterations in cerebrospinal fluid from glioma patients. EMBO Mol Med 2018;10:e9323.

45. Pan Y, Long W, Liu Q. Current advances and future perspectives of cerebrospinal fluid biopsy in midline brain malignancies. Curr Treat Options Oncol 2019;20:88.

46. Wang Y, Springer S, Zhang M, et al. Detection of tumor-derived DNA in cerebrospinal fluid of patients with primary tumors of the brain and spinal cord. Proc Natl Acad Sci U S A 2015;112:9704-9.

47. De Mattos-Arruda L, Mayor R, Ng CKY, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun 2015;6:8839.

48. SMART. Servier Med Art. Available from: https://smart.servier.com/ [Last accessed on Sep 27 2022].

49. Creative Commons - Attribution 3.0 Unported - CC BY 3.0. Available from: https://creativecommons.org/licenses/by/3.0/ [Last accessed on Sep 27 2022].

50. Eibl RH, Schneemann M. Liquid biopsy and primary brain tumors. Cancers (Basel) 2021;13:5429.

51. Eibl RH, Schneemann M. Cell-free DNA as a biomarker in cancer. Extracell Vesicles Circ Nucleic Acids 2022;3:178-98.

52. Müller C, Holtschmidt J, Auer M, et al. Hematogenous dissemination of glioblastoma multiforme. Sci Transl Med 2014;6:247ra101.

53. Perryman L, Erler JT. Brain cancer spreads. Sci Transl Med 2014;6:247fs28.

54. Macarthur KM, Kao GD, Chandrasekaran S, et al. Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res 2014;74:2152-9.

55. Krol I, Castro-Giner F, Maurer M, et al. Detection of circulating tumour cell clusters in human glioblastoma. Br J Cancer 2018;119:487-91.

56. Gao F, Cui Y, Jiang H, et al. Circulating tumor cell is a common property of brain glioma and promotes the monitoring system. Oncotarget 2016;7:71330-40.

57. Eibl RH, Pietsch T, Moll J, et al. Expression of variant CD44 epitopes in human astrocytic brain tumors. J Neurooncol 1995;26:165-70.

58. Eibl RH. Single-molecule studies of integrins by AFM-based force spectroscopy on living cells. In: Bhushan B, editor. Scanning probe microscopy in nanoscience and nanotechnology 3. Berlin, Heidelberg: Springer; 2013. p. 137-69.

59. Eibl RH, Benoit M. Molecular resolution of cell adhesion forces. IEE Proc Nanobiotechnol 2004;151:128.

60. Eibl RH, Moy VT. Atomic force microscopy measurements of protein-ligand interactions on living cells. protein-ligand interactions. New Jersey: Humana Press; 2005. p. 439-50.

61. Eibl RH. Comment on “A method to measure cellular adhesion utilizing a polymer micro-cantilever” [Appl Phys Lett 2013;103:123702]. Appl Phys Lett 2014;104:236103.

62. Eibl RH. Cell adhesion receptors studied by AFM-based single-molecule force spectroscopy. In: Bhushan B, editor. Scanning probe microscopy in nanoscience and nanotechnology 2. Berlin, Heidelberg: Springer; 2011. p. 197-215.

63. Eibl RH. Direct force measurements of receptor-ligand interactions on living cells. In: Bhushan B, Fuchs H, editors. Applied scanning probe methods XII: characterization. Berlin, Heidelberg: Springer; 2009. p. 1-31.

64. Eibl RH. First measurement of physiologic VLA-4 activation by SDF-1 at the single-molecule level on a living cell. In: Hinterdorfer P, Schütz G, Pohl P, editors. Proceedings of the VIII. Linz Winter Workshop 2006: Advances in Single Molecule Research for Biology and Nanoscience. Linz: Trauner; 2006. p. 40-3.

65. Eibl RH, Moy VT. AFM-based adhesion measurements of single receptor-ligand bonds on living cells. In: Pandalai SG, editor. Recent research developments in biophysics. Trivandrum: Transworld Research Network; 2004. p. 235-46. Available from: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17751719 [Last accessed on Sep 27 2022].

66. Chen WW, Balaj L, Liau LM, et al. BEAMing and droplet digital PCR analysis of mutant IDH1 mRNA in glioma patient serum and cerebrospinal fluid extracellular vesicles. Mol Ther Nucleic Acids 2013;2:e109.

67. Yasui T, Yanagida T, Ito S, et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci Adv 2017;3:e1701133.

68. Floyd D, Purow B. Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs. Neuro Oncol 2014;16:622-7.

69. Kitano Y, Aoki K, Ohka F, et al. Urinary microRNA-based diagnostic model for central nervous system tumors using nanowire scaffolds. ACS Appl Mater Interfaces 2021;13:17316-29.

70. Lee B, Mahmud I, Pokhrel R, et al. Medulloblastoma cerebrospinal fluid reveals metabolites and lipids indicative of hypoxia and cancer-specific RNAs. Acta Neuropathol Commun 2022;10:25.

71. Hao X, Guo Z, Sun H, et al. Urinary protein biomarkers for pediatric medulloblastoma. J Proteomics 2020;225:103832.

72. Gonzalez-Beltran AN, Masuzzo P, Ampe C, et al. Community standards for open cell migration data. Gigascience 2020;9:giaa041.

73. Escudero L, Llort A, Arias A, et al. Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma. Nat Commun 2020;11:5376.

74. Li J, Zhao S, Lee M, et al. Reliable tumor detection by whole-genome methylation sequencing of cell-free DNA in cerebrospinal fluid of pediatric medulloblastoma. Sci Adv 2020;6:eabb5427.

75. Liu APY, Smith KS, Kumar R, et al. Serial assessment of measurable residual disease in medulloblastoma liquid biopsies. Cancer Cell 2021;39:1519-1530.e4.

76. Sun Y, Li M, Ren S, et al. Exploring genetic alterations in circulating tumor DNA from cerebrospinal fluid of pediatric medulloblastoma. Sci Rep 2021;11:5638.

77. Pagès M, Rotem D, Gydush G, et al. Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell-free DNA in peripheral blood, CSF, and urine. Neuro Oncol 2022;24:1352-63.

78. Home - ClinicalTrials. gov. Available from: https://clinicaltrials.gov/ct2/show/NCT03936465?term=NCT03936465&draw=2&rank=1 [Last accessed on Sep 27 2022].

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/