REFERENCES

1. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014;30:255-89.

2. Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014;29:116-25.

3. Kalluri R, LeBleu VS. The biology, function and biomedical applications of exosomes. Science 2020;367:eaau6977.

4. Andaloussi S, Mäger I, Breakefield XO, Wood MJ. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 2013;12:347-57.

5. Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018;19:213-28.

6. Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 2017;27:172-88.

7. Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med 2018;379:2179-81.

8. Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol 2021;22:560-70.

9. Théry C. Cancer: Diagnosis by extracellular vesicles. Nature 2015;523:161-2.

10. Xiao Y, Zhong J, Zhong B, et al. Exosomes as potential sources of biomarkers in colorectal cancer. Cancer Lett 2020;476:13-22.

11. Zimmerberg J, McLaughlin S. Membrane curvature: how BAR domains bend bilayers. Curr Biol 2004;14:R250-2.

12. Drin G, Casella JF, Gautier R, et al. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 2007;14:138-46.

13. Saludes JP, Morton LA, Ghosh N, et al. Detection of highly curved membrane surfaces using a cyclic peptide derived from synaptotagmin-I. ACS Chem Biol 2012;7:1629-35.

14. Morton LA, Yang H, Saludes JP, et al. MARCKS-ED peptide as a curvature and lipid sensor. ACS Chem Biol 2013;8:218-25.

15. Yan L, de Jesus AJ, Tamura R, et al. Curvature sensing MARCKS-ED peptides bind to membranes in a stereo-independent manner. J Pept Sci 2015;21:577-85.

16. Saludes JP, Morton LA, Coulup SK, et al. Multivalency amplifies the selection and affinity of bradykinin-derived peptides for lipid nanovesicles. Mol Biosyst 2013;9:2005-9.

17. Bonechi C, Ristori S, Martini G, Martini S, Rossi C. Study of bradykinin conformation in the presence of model membrane by Nuclear Magnetic Resonance and molecular modelling. Biochim Biophys Acta 2009;1788:708-16.

18. Langelaan DN, Rainey JK. Membrane catalysis of peptide-receptor binding. Biochem Cell Biol 2010;88:203-10.

19. Chatterjee C, Mukhopadhyay C. Conformational alteration of bradykinin in presence of GM1 micelle. Biochem Biophys Res Commun 2004;315:866-71.

20. Février B, Raposo G. Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 2004;16:415-21.

21. Subra C, Laulagnier K, Perret B, Record M. Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 2007;89:205-12.

22. Zhang Y, Jin X, Liang J, et al. Extracellular vesicles derived from ODN-stimulated macrophages transfer and activate Cdc42 in recipient cells and thereby increase cellular permissiveness to EV uptake. Sci Adv 2019;5:eaav1564.

23. Zhang Y, Xiao Y, Sun G, et al. Harnessing the therapeutic potential of extracellular vesicles for cancer treatment. Semin Cancer Biol 2021;74:92-104.

Extracellular Vesicles and Circulating Nucleic Acids
ISSN 2767-6641 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/