REFERENCES
1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-67.
2. Degen, F.; Winter, M.; Bendig, D.; Tübke, J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy. 2023, 8, 1284-95.
3. Zhong, Y.; Shi, Q.; Zhu, C.; et al. Mechanistic insights into fast charging and discharging of the sodium metal battery anode: a comparison with lithium. J. Am. Chem. Soc. 2021, 143, 13929-36.
4. Lei, T.; Chen, W.; Hu, Y.; et al. A nonflammable and thermotolerant separator suppresses polysulfide dissolution for safe and long-cycle lithium-sulfur batteries. Adv. Energy. Mater. 2018, 8, 1802441.
5. Li, T.; Xu, J.; Wang, C.; Wu, W.; Su, D.; Wang, G. The latest advances in the critical factors (positive electrode, electrolytes, separators) for sodium-sulfur battery. J. Alloys. Compd. 2019, 792, 797-817.
6. Pan, Y.; Chou, S.; Liu, H. K.; Dou, S. X. Functional membrane separators for next-generation high-energy rechargeable batteries. Nat. Sci. Rev. 2017, 4, 917-33.
7. Li, Y.; Wang, X.; Wang, L.; et al. Ni@Ni3N embedded on three-dimensional carbon nanosheets for high-performance lithium/sodium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 48536-45.
8. Jiang, Y.; Yu, Z.; Zhou, X.; et al. Single-atom vanadium catalyst boosting reaction kinetics of polysulfides in Na-S batteries. Adv. Mater. 2023, 35, e2208873.
9. Zhou, X.; Yu, Z.; Yao, Y.; et al. A high-efficiency Mo2 C electrocatalyst promoting the polysulfide redox kinetics for Na-S batteries. Adv. Mater. 2022, 34, e2200479.
10. Xu, W.; Wang, J.; Ding, F.; et al. Lithium metal anodes for rechargeable batteries. Energy. Environ. Sci. 2014, 7, 513-37.
11. Zhang, Y.; Wang, J.; Xue, Z. Electrode protection and electrolyte optimization via surface modification strategy for high-performance lithium batteries. Adv. Funct. Mater. 2024, 34, 2311925.
12. Liu, Z.; Chen, M.; Zhou, D.; Xiao, Z. Scavenging of “dead sulfur” and “dead lithium” revealed by integrated-heterogeneous catalysis for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2306321.
13. Wei, Z.; Ren, Y.; Sokolowski, J.; Zhu, X.; Wu, G. Mechanistic understanding of the role separators playing in advanced lithium-sulfur batteries. InfoMat 2020, 2, 483-508.
14. Hao, H.; Hutter, T.; Boyce, B. L.; Watt, J.; Liu, P.; Mitlin, D. Review of multifunctional separators: stabilizing the cathode and the anode for alkali (Li, Na, and K) metal-sulfur and selenium batteries. Chem. Rev. 2022, 122, 8053-125.
15. Xu, J.; Qiu, Y.; Yang, J.; et al. Review of separator modification strategies: targeting undesired anion transport in room temperature sodium-sulfur/selenium/iodine batteries. Adv. Funct. Mater. 2024, 34, 2306206.
16. Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy. Mater. 2015, 5, 1500408.
17. Ding, Z.; Tang, Y.; Ortmann, T.; et al. The impact of microstructure on filament growth at the sodium metal anode in all-solid-state sodium batteries. Adv. Energy. Mater. 2023, 13, 2302322.
18. Wu, J.; Ye, T.; Wang, Y.; et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS. Nano. 2022, 16, 15734-59.
19. Li, C.; Liu, R.; Xiao, Y.; Cao, F.; Zhang, H. Recent progress of separators in lithium-sulfur batteries. Energy. Storage. Mater. 2021, 40, 439-60.
20. Yu, X.; Manthiram, A. Capacity enhancement and discharge mechanisms of room-temperature sodium-sulfur batteries. ChemElectroChem 2014, 1, 1275-80.
21. Tang, W.; Aslam, M. K.; Xu, M. Towards high performance room temperature sodium-sulfur batteries: strategies to avoid shuttle effect. J. Colloid. Interface. Sci. 2022, 606, 22-37.
22. Lin, L.; Zhang, C.; Huang, Y.; et al. Challenge and strategies in room temperature sodium-sulfur batteries: a comparison with lithium-sulfur batteries. Small 2022, 18, e2107368.
23. Cooper, E. R.; Li, M.; Gentle, I.; Xia, Q.; Knibbe, R. A deeper understanding of metal nucleation and growth in rechargeable metal batteries through theory and experiment. Angew. Chem. Int. Ed. 2023, 62, e202309247.
24. Liu, K.; Zhuo, D.; Lee, H. W.; et al. Extending the life of lithium-based rechargeable batteries by reaction of lithium dendrites with a novel silica nanoparticle sandwiched separator. Adv. Mater. 2017, 29, 1603987.
25. Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. J. Electrochem. Soc. 1999, 146, 4393-400.
26. Lin, D.; Liu, Y.; Li, Y.; et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 2019, 11, 382-9.
27. Wang, L.; Wang, T.; Peng, L.; et al. The promises, challenges and pathways to room-temperature sodium-sulfur batteries. Natl. Sci. Rev. 2022, 9, nwab050.
28. Li, Z.; Wang, C.; Ling, F.; et al. Room-temperature sodium-sulfur batteries: rules for catalyst selection and electrode design. Adv. Mater. 2022, 34, e2204214.
29. Kim, I.; Park, J. Y.; Kim, C. H.; et al. A room temperature Na/S battery using a β″ alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power. Sources. 2016, 301, 332-7.
30. Guan, Y.; Wang, A.; Liu, S.; Li, Q.; Wang, W.; Huang, Y. Protecting lithium anode with LiNO3/Al2O3/PVDF-coated separator for lithium-sulfur batteries. J. Alloys. Compd. 2018, 765, 544-50.
31. Chen, M.; Shao, M.; Jin, J.; Cui, L.; Tu, H.; Fu, X. Configurational and structural design of separators toward shuttling-free and dendrite-free lithium-sulfur batteries: a review. Energy. Storage. Mater. 2022, 47, 629-48.
32. Freitag, A.; Stamm, M.; Ionov, L. Separator for lithium-sulfur battery based on polymer blend membrane. J. Power. Sources. 2017, 363, 384-91.
33. Zhu, Y.; Zhang, Y.; Jin, S.; et al. Toward safe and high-performance lithium-sulfur batteries via polyimide nanosheets-modified separator. ACS. Sustain. Chem. Eng. 2023, 11, 1434-47.
34. Yuan, B.; He, N.; Liang, Y.; et al. A surfactant-modified composite separator for high safe lithium ion battery. J. Energy. Chem. 2023, 76, 398-403.
35. Gu, M.; Wang, J.; Song, Z.; et al. Multifunctional asymmetric separator constructed by polyacrylonitrile-derived nanofibers for lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 51241-51.
36. Zhu, J.; Yanilmaz, M.; Fu, K.; et al. Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. J. Membr. Sci. 2016, 504, 89-96.
37. Li, Y.; Zhu, J.; Zhu, P.; et al. Glass fiber separator coated by porous carbon nanofiber derived from immiscible PAN/PMMA for high-performance lithium-sulfur batteries. J. Membr. Sci. 2018, 552, 31-42.
38. Wang, P.; Bao, J.; Lv, K.; et al. Rational design of a gel-polymer-inorganic separator with uniform lithium-ion deposition for highly stable lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 35788-95.
39. Bharti, V. K.; Pathak, A. D.; Sharma, C. S.; Khandelwal, M. Flexible and free-standing bacterial cellulose derived cathode host and separator for lithium-sulfur batteries. Carbohydr. Polym. 2022, 293, 119731.
40. Zhang, J.; Wang, Y.; Xia, Q.; et al. Confining polymer electrolyte in MOF for safe and high-performance all-solid-state sodium metal batteries. Angew. Chem. Int. Ed. 2024, 63, e202318822.
41. Yang, K.; Li, C.; Qi, H.; Dai, Y.; Cui, Y.; He, Y. Developing a MXene quantum dot-based separator for Li-S batteries. J. Mater. Chem. A. 2023, 11, 10425-34.
42. Wang, Y.; Wu, Y.; Mao, P.; et al. A Keggin Al13-montmorillonite modified separator retards the polysulfide shuttling and accelerates
43. Kang, X.; He, T.; Zou, R.; et al. Size effect for inhibiting polysulfides shuttle in lithium-sulfur batteries. Small 2024, 20, e2306503.
44. Razaq, R.; Din, M. M. U.; Småbråten, D. R.; et al. Synergistic effect of bimetallic MOF modified separator for long cycle life lithium-sulfur batteries. Adv. Energy. Mater. 2024, 14, 2302897.
45. Li, Z.; Zhang, F.; Tang, L.; et al. High areal loading and long-life cycle stability of lithium-sulfur batteries achieved by a dual-function ZnS-modified separator. Chem. Eng. J. 2020, 390, 124653.
46. Feng, S.; Wang, J.; Wen, J.; et al. Improvement of redox kinetics of dendrite-free lithium-sulfur battery by bidirectional catalysis of cationic dual-active sites. ACS. Sustain. Chem. Eng. 2023, 11, 8544-55.
47. He, J.; Bhargav, A.; Manthiram, A. Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium-sulfur batteries. Adv. Mater. 2020, 32, e2004741.
48. Zhang, Z.; Xu, Y.; Xiong, D.; et al. Improving sulfur transformation of lean electrolyte lithium-sulfur battery using nickel nanoparticles encapsulated in N-doped carbon nanotubes. Electron 2024, 2, e19.
49. Nitou, M. V. M.; Pang, Y.; Wan, Z.; et al. LiFePO4 as a dual-functional coating for separators in lithium-ion batteries: a new strategy for improving capacity and safety. J. Energy. Chem. 2023, 86, 490-8.
50. Hou, Q.; Yu, M.; Jiang, H.; et al. Scalable, flexible and fire-retardant Janus membranes for simultaneously inhibiting dendrite growth and catalyzing polysulfide conversion in lithium-sulfur batteries. Energy. Storage. Mater. 2023, 60, 102807.
51. Shrshr, A. E.; Dong, Y.; Al-Tahan, M. A.; et al. Modified separator engineering with 2D ultrathin Ni3B@rGO: extraordinary electrochemical performance of the lithium-sulfur battery with enormous-sulfur-content cathode in low electrolyte/sulfur ratio. J. Alloys. Compd. 2022, 910, 164917.
52. Cao, Y.; Wu, H.; Li, G.; et al. Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium-sulfur batteries. Nano. Lett. 2021, 21, 2997-3006.
53. Huang, Y.; Wang, Y.; Fu, Y. A thermoregulating separator based on black phosphorus/MOFs heterostructure for thermo-stable lithium-sulfur batteries. Chem. Eng. J. 2023, 454, 140250.
54. Zhang, B.; Qie, J.; Liu, X.; et al. Watermelon flesh-like Ni3S2@C composite separator with polysulfide shuttle inhibition for high-performance lithium-sulfur batteries. Small 2023, 19, e2300687.
55. Chen, L.; Yu, H.; Li, W.; Dirican, M.; Liu, Y.; Zhang, X. Interlayer design based on carbon materials for lithium-sulfur batteries: a review. J. Mater. Chem. A. 2020, 8, 10709-35.
56. Liu, N.; Huang, B.; Wang, W.; et al. Modified separator using thin carbon layer obtained from its cathode for advanced lithium sulfur batteries. ACS. Appl. Mater. Interfaces. 2016, 8, 16101-7.
57. Li, B.; Sun, Z.; Zhao, Y.; et al. Functional separator for Li/S batteries based on boron-doped graphene and activated carbon. J. Nanopart. Res. 2019, 21, 4451.
58. Zeng, P.; Huang, L.; Zhang, X.; Zhang, R.; Wu, L.; Chen, Y. Long-life and high-areal-capacity lithium-sulfur batteries realized by a honeycomb-like N, P dual-doped carbon modified separator. Chem. Eng. J. 2018, 349, 327-37.
59. Li, Q.; Liu, Y.; Yang, L.; et al. N, O co-doped chlorella-based biomass carbon modified separator for lithium-sulfur battery with high capacity and long cycle performance. J. Colloid. Interface. Sci. 2021, 585, 43-50.
60. Ma, Z.; Jing, F.; Fan, Y.; Li, J.; Zhao, Y.; Shao, G. High electrical conductivity of 3D mesporous carbon nanocage as an efficient polysulfide buffer layer for high sulfur utilization in lithium-sulfur batteries. J. Alloys. Compd. 2019, 789, 71-9.
61. Saroha, R.; Heo, J.; Li, X.; et al. Asymmetric separator integrated with ferroelectric-BaTiO3 and mesoporous-CNT for the reutilization of soluble polysulfide in lithium-sulfur batteries. J. Alloys. Compd. 2022, 893, 162272.
62. Jiang, Y.; Chen, F.; Gao, Y.; et al. Inhibiting the shuttle effect of Li-S battery with a graphene oxide coating separator: performance improvement and mechanism study. J. Power. Sources. 2017, 342, 929-38.
63. Lin, W.; Chen, Y.; Li, P.; et al. Enhanced performance of lithium sulfur battery with a reduced graphene oxide coating separator. J. Electrochem. Soc. 2015, 162, A1624-9.
64. Lei, T.; Chen, W.; Lv, W.; et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091-104.
65. Bai, S.; Liu, X.; Zhu, K.; Wu, S.; Zhou, H. Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy. 2016, 1, 16094.
66. Hall, E. A.; Redfern, L. R.; Wang, M. H.; Scheidt, K. A. Lewis acid activation of a hydrogen bond donor metal-organic framework for catalysis. ACS. Catal. 2016, 6, 3248-52.
67. Zhang, Y.; Lin, S.; Xiao, J.; Hu, X. Introduced hierarchically ordered porous architecture on a separator as an efficient polysulfide trap toward high-mass-loading Li-S batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 3888-900.
68. Yu, X.; Wu, H.; Koo, J. H.; Manthiram, A. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium-sulfur batteries. Adv. Energy. Mater. 2020, 10, 1902872.
69. Sun, S.; Han, L.; Hou, J.; et al. Single-walled carbon nanotube gutter layer supported ultrathin zwitterionic microporous polymer membrane for high-performance lithium-sulfur battery. J. Colloid. Interface. Sci. 2022, 628, 1012-22.
70. Tao, X.; Wang, J.; Liu, C.; et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.
71. Yang, Y.; Huang, X.; Cao, Z.; Chen, G. Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries. Nano. Energy. 2016, 22, 301-9.
72. Lin, Z.; Xu, J.; Lei, Y.; et al. Enhanced Li-S battery performance boosted by a large surface area mesoporous alumina-based interlayer. ACS. Appl. Energy. Mater. 2022, 5, 15615-23.
73. Zhang, Y. C.; Li, Y. W.; Han, C.; et al. Ultrathin MgB2 nanosheet-modified polypropylene separator for high-efficiency lithium-sulfur batteries. J. Colloid. Interface. Sci. 2024, 653, 664-72.
74. Wu, T.; Yang, T.; Zhang, J.; et al. CoB and BN composites enabling integrated adsorption/catalysis to polysulfides for inhibiting shuttle-effect in Li-S batteries. J. Energy. Chem. 2021, 59, 220-8.
75. Liang, Q.; Wang, S.; Yao, Y.; Dong, P.; Song, H. Transition metal compounds family for Li-S batteries: the DFT-guide for suppressing polysulfides shuttle. Adv. Funct. Mater. 2023, 33, 2300825.
76. Huang, Y.; Lin, L.; Zhang, Y.; et al. Dual-functional lithiophilic/sulfiphilic binary-metal selenide quantum dots toward high-performance Li-S full batteries. Nanomicro. Lett. 2023, 15, 67.
77. Sun, L.; Zhang, W.; Fu, J.; et al. Highly active rare earth sulfur oxides used for membrane modification of lithium sulfur batteries. Chem. Eng. J. 2023, 457, 141240.
78. Zuo, Y.; Zhu, Y.; Tang, X.; et al. MnO2 supported on acrylic cloth as functional separator for high-performance lithium-sulfur batteries. J. Power. Sources. 2020, 464, 228181.
79. Zhu, W.; Zhang, Z.; Wei, J.; et al. A synergistic modification of polypropylene separator toward stable lithium-sulfur battery. J. Membr. Sci. 2020, 597, 117646.
80. Zhu, H.; Dong, S.; Xiong, J.; et al. MOF derived cobalt-nickel bimetallic phosphide (CoNiP) modified separator to enhance the polysulfide adsorption-catalysis for superior lithium-sulfur batteries. J. Colloid. Interface. Sci. 2023, 641, 942-9.
81. He, J.; Chen, Y.; Manthiram, A. Vertical Co9S8 hollow nanowall arrays grown on a Celgard separator as a multifunctional polysulfide barrier for high-performance Li-S batteries. Energy. Environ. Sci. 2018, 11, 2560-8.
82. Ghazi, Z. A.; He, X.; Khattak, A. M.; et al. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries. Adv. Mater. 2017, 29, 1606817.
83. Fan, B.; He, Q.; Wei, Q.; Liu, W.; Zhou, B.; Zou, Y. Anchoring and catalyzing polysulfides by rGO/MoS2/C modified separator in lithium-sulfur batteries. Carbon 2023, 214, 118361.
84. Zhou, X.; Cui, Y.; Huang, X.; Zhang, Q.; Wang, B.; Tang, S. Interface engineering of Fe3Se4/FeSe heterostructures encapsulated in MXene for boosting LiPS conversion and inhibiting shuttle effect. Chem. Eng. J. 2023, 457, 141139.
85. Wang, M.; Zhu, Y.; Sun, Y.; et al. A universal graphene-selenide heterostructured reservoir with elevated polysulfide evolution efficiency for pragmatic lithium-sulfur battery. Adv. Funct. Mater. 2023, 33, 2211978.
86. Zhang, J.; Cheng, Y.; Chen, H.; et al. MoP quantum dot-modified N,P-carbon nanotubes as a multifunctional separator coating for high-performance lithium-sulfur batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 16289-99.
87. Qiu, W.; An, C.; Yan, Y.; et al. Suppressed polysulfide shuttling and improved Li+ transport in Li S batteries enabled by NbN modified PP separator. J. Power. Sources. 2019, 423, 98-105.
88. Zhang, J.; Wang, Y.; Zhou, Z.; Chen, Q.; Tang, Y. Mo2C-loaded porous carbon nanosheets as a multifunctional separator coating for high-performance lithium-sulfur batteries. Materials 2023, 16, 1635.
89. Pan, H.; Tan, Z.; Zhou, H.; et al. Fe3C-N-doped carbon modified separator for high performance lithium-sulfur batteries. J. Energy. Chem. 2019, 39, 101-8.
90. Ma, F.; Yu, B.; Zhang, X.; et al. WN0.67-embedded N-doped graphene-nanosheet Interlayer as efficient polysulfide catalyst and absorbant for high-performance lithium-sulfur batteries. Chem. Eng. J. 2022, 431, 133439.
91. Ma, F.; Chen, Y. Mo2N quantum dots decorating N-doped carbon nanosheets for kinetics-enhanced Li-S batteries. Surf. Interfaces. 2023, 42, 103521.
92. Li, Y. X.; Feng, Y. S.; Li, L. X.; Yin, X.; Cao, F. F.; Ye, H. Green synthesis and applications of MXene for lithium-sulfur batteries. Energy. Storage. Mater. 2024, 67, 103257.
93. Li, Y.; Li, Z.; Zhou, C.; et al. Gradient sulfur fixing separator with catalytic ability for stable lithium sulfur battery. Chem. Eng. J. 2021, 422, 130107.
94. Guan, B.; Zhang, Y.; Fan, L.; et al. Blocking polysulfide with Co2B@CNT via “synergetic adsorptive effect” toward ultrahigh-rate capability and robust lithium-sulfur battery. ACS. Nano. 2019, 13, 6742-50.
95. Jin, L.; Ni, J.; Shen, C.; et al. Metallically conductive TiB2 as a multi-functional separator modifier for improved lithium sulfur batteries. J. Power. Sources. 2020, 448, 227336.
96. Wang, Y.; Wang, P.; Yuan, J.; et al. Binary sulfiphilic nickel boride on boron-doped graphene with beneficial interfacial charge for accelerated Li-S dynamics. Small 2023, 19, e2208281.
97. Ponraj, R.; Kannan, A. G.; Ahn, J. H.; et al. Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium-sulfur cells with enhanced cycling stability. ACS. Appl. Mater. Interfaces. 2017, 9, 38445-54.
98. Li, H.; Zhou, Y.; Zhao, M.; et al. Suppressed shuttle via inhibiting the formation of long-chain lithium polysulfides and functional separator for greatly improved lithium-organosulfur batteries performance. Adv. Energy. Mater. 2020, 10, 1902695.
99. Wu, S.; Yao, Y.; Nie, X.; Yu, Z.; Yu, Y.; Huang, F. Interfacial engineering of binder-free janus separator with ultra-thin multifunctional layer for simultaneous enhancement of both metallic Li anode and sulfur cathode. Small 2022, 18, e2202651.
100. Chang, C.; Yang, C.; Wu, Q.; et al. All-in-one Janus separator for lithium-sulfur batteries with lithium polysulfide and dendrite growth suppressed at temperature gradient effect. J. Power. Sources. 2022, 550, 232115.
101. Dang, B.; Gao, D.; Luo, Y.; Zhang, Z.; Li, J.; Wu, F. Bifunctional design of cerium-based metal-organic framework-808 membrane modified separator for polysulfide shuttling and dendrite growth inhibition in lithium-sulfur batteries. J. Energy. Storage. 2022, 52, 104981.
102. Chen, X.; Huang, Y.; Li, J.; et al. Bifunctional separator with sandwich structure for high-performance lithium-sulfur batteries. J. Colloid. Interface. Sci. 2020, 559, 13-20.
103. Xiang, Y.; Wang, Z.; Qiu, W.; et al. Interfacing soluble polysulfides with a SnO2 functionalized separator: an efficient approach for improving performance of Li-S battery. J. Membr. Sci. 2018, 563, 380-7.
104. Wang, B.; Guo, W.; Fu, Y. Anodized aluminum oxide separators with aligned channels for high-performance Li-S batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 5831-7.
105. Liu, J.; Duan, C.; Hong, Z.; et al. Interfacial polymerization achieved integration of pore size adjustment, electrostatic repulsion and physical adsorption into one to inhibit polysulfide shuttle for enhanced lithium-sulfur battery. J. Power. Sources. 2024, 594, 233975.
106. Wu, J.; Zeng, H.; Li, X.; et al. Ultralight layer-by-layer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites. Adv. Energy. Mater. 2018, 8, 1802430.
107. Liu, H.; Wang, X.; Wang, Q.; Pei, C.; Wang, H.; Guo, S. Dual-functional cobalt phosphide nanoparticles for performance enhancement of lithium-sulfur battery. J. Nanostruct. Chem. 2024, 14, 281-92.
108. Li, Y.; Wang, Z.; Gu, H.; Jia, H.; Long, Z.; Yan, X. Niobium boride/graphene directing high-performance lithium-sulfur batteries derived from favorable surface passivation. ACS. Nano. 2024, 18, 8863-75.
109. Pu, J.; Wang, T.; Tan, Y.; Fan, S.; Xue, P. Effect of heterostructure-modified separator in lithium-sulfur batteries. Small 2023, 19, e2303266.
110. Wang, X.; Deng, N.; Liu, Y.; et al. Porous and heterostructured molybdenum-based phosphide and oxide nanobelts assisted by the structural engineering to enhance polysulfide anchoring and conversion for lithium-sulfur batteries. Chem. Eng. J. 2022, 450, 138191.
111. Lv, Y.; Bai, L.; Jin, Q.; et al. VSe2/V2C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries: Remedies polysulfide shuttle and conversion kinetics. J. Energy. Chem. 2024, 89, 397-409.
112. Liang, Q.; Wang, S.; Lu, X.; et al. High-entropy MXene as bifunctional mediator toward advanced Li-S full batteries. ACS. Nano. 2024, 18, 2395-408.
113. Yao, Y.; Wang, S.; Jia, X.; et al. Freestanding sandwich-like hierarchically TiS2-TiO2/Mxene bi-functional interlayer for stable Li-S batteries. Carbon 2022, 188, 533-42.
114. Ma, F.; Zhang, X.; Sriniva, K.; et al. NbN nanodot decorated N-doped graphene as a multifunctional interlayer for high-performance lithium-sulfur batteries. J. Mater. Chem. A. 2022, 10, 8578-90.
115. Ma, F.; Srinivas, K.; Zhang, X.; et al. Mo2N quantum dots decorated N-doped graphene nanosheets as dual-functional interlayer for dendrite-free and shuttle-free lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2206113.
116. Zhang, J.; Hu, J.; Li, X.; et al. High-performance MoS2 quantum dots/graphene functionalized separator and its failure analysis under high sulfur loading. Chem. Eng. J. 2023, 456, 140972.
117. Ma, F.; Chen, Z.; Srinivas, K.; et al. VN quantum dots anchored N-doped carbon nanosheets as bifunctional interlayer for high-performance lithium-metal and lithium-sulfur batteries. Chem. Eng. J. 2023, 459, 141526.
118. Zhang, Y.; Guo, C.; Zhou, J.; et al. Anisotropically hybridized porous crystalline Li-S battery separators. Small 2023, 19, e2206616.
119. Wu, H.; Jiang, M.; Gao, X.; et al. All-in-one Janus covalent organic frameworks separator as fast Li nucleator and polysulfides catalyzer in lithium-sulfur batteries. J. Colloid. Interface. Sci. 2024, 662, 138-48.
120. Wang, Z.; Feng, L.; Deng, C.; Wang, S. 2,5-Dimercapto-1,3,4-thiadiazole/acetylene black@polypropylene separator for inhibiting the shuttle effect and electrocatalyzing electrode reactions in Li-S batteries. Chem. Eng. J. 2022, 446, 137153.
121. Li, R.; Li, J.; Wang, X.; et al. Surface design for high ion flux separator in lithium-sulfur batteries. J. Colloid. Interface. Sci. 2024, 654, 13-24.
122. Hwang, J. Y.; Kim, H. M.; Shin, S.; Sun, Y. K. Designing a high-performance lithium-sulfur batteries based on layered double hydroxides-carbon nanotubes composite cathode and a dual-functional graphene-polypropylene-Al2O3 separator. Adv. Funct. Mater. 2018, 28, 1704294.
123. Yu, B.; Fan, Y.; Mateti, S.; et al. An ultra-long-life flexible lithium-sulfur battery with lithium cloth anode and polysulfone-functionalized separator. ACS. Nano. 2021, 15, 1358-69.
124. Zhang, J.; Zhang, G.; Chen, Z.; et al. Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries. Energy. Stor. Mater. 2020, 26, 513-33.
125. Bauer, I.; Kohl, M.; Althues, H.; Kaskel, S. Shuttle suppression in room temperature sodium-sulfur batteries using ion selective polymer membranes. Chem. Commun. 2014, 50, 3208-10.
126. Wang, Y.; Zhang, Y.; Cheng, H.; et al. Research progress toward room temperature sodium sulfur batteries: a review. Molecules 2021, 26, 1535.
127. Yin, C.; Li, Z.; Zhao, D.; et al. Azo-branched covalent organic framework thin films as active separators for superior sodium-sulfur batteries. ACS. Nano. 2022, 16, 14178-87.
129. Dong, C.; Zhou, H.; Liu, H.; et al. Inhibited shuttle effect by functional separator for room-temperature sodium-sulfur batteries. J. Mater. Sci. Technol. 2022, 113, 207-16.
130. Yang, W.; Yang, W.; Zou, R.; et al. Cellulose nanofiber-derived carbon aerogel for advanced room-temperature sodium-sulfur batteries. Carbon. Energy. 2023, 5, e203.
131. Dong, C.; Zhou, H.; Jin, B.; et al. Enabling high-performance room-temperature sodium/sulfur batteries with few-layer 2H-MoSe2 embellished nitrogen-doped hollow carbon spheres as polysulfide barriers. J. Mater. Chem. A. 2021, 9, 3451-63.
132. Zhang, J.; Zhang, X.; Wang, J.; et al. The explicit multi-electron catalytic mechanism of heteropolyvanadotungstate dominating ultra-durable room-temperature Na-S batteries. Adv. Funct. Mater. 2024, 34, 2400170.
133. Chen, S.; Liang, L.; Li, Y.; et al. Brain capillary-inspired self-assembled covalent organic framework membrane for sodium-sulfur battery separator. Adv. Energy. Mater. 2023, 13, 2204334.
134. Xu, H.; Xiang, Y.; Xu, X.; et al. A polysulfides-defensive, dendrite-suppressed, and flame-retardant separator with lean electrolyte for room temperature sodium-sulfur batteries. Adv. Funct. Mater. 2024, 2403663.
135. Zhou, D.; Tang, X.; Guo, X.; et al. Polyolefin-based janus separator for rechargeable sodium batteries. Angew. Chem. Int. Ed. 2020, 59, 16725-34.
136. Wang, C.; Wu, K.; Cui, J.; Fang, X.; Li, J.; Zheng, N. Robust room-temperature sodium-sulfur batteries enabled by a sandwich-structured MXene@C/polyolefin/MXene@C dual-functional separator. Small 2022, 18, e2106983.
137. Sun, W.; Hou, J.; Zhou, Y.; et al. Amorphous FeSnOx nanosheets with hierarchical vacancies for room-temperature sodium-sulfur batteries. Angew. Chem. Int. Ed. 2024, 63, e202404816.
138. Yu, X.; Manthiram, A. Performance enhancement and mechanistic studies of room-temperature sodium-sulfur batteries with a carbon-coated functional Nafion separator and a Na2S/activated carbon nanofiber cathode. Chem. Mater. 2016, 28, 896-905.
139. Wang, H.; Deng, C.; Li, X.; et al. Designing dual-defending system based on catalytic and kinetic iron Pyrite@C hybrid fibers for long-life room-temperature sodium-sulfur batteries. Chem. Eng. J. 2021, 420, 129681.
140. Li, H.; Zhao, M.; Jin, B.; Wen, Z.; Liu, H. K.; Jiang, Q. Mesoporous nitrogen-doped carbon nanospheres as sulfur matrix and a novel chelate-modified separator for high-performance room-temperature Na-S batteries. Small 2020, 16, e1907464.
141. Yu, X.; Manthiram, A. Ambient-temperature sodium-sulfur batteries with a sodiated Nafion membrane and a carbon nanofiber-activated carbon composite electrode. Adv. Energy. Mater. 2015, 5, 1500350.
142. Fang, Y.; Zhang, Y.; Zhu, K.; et al. Lithiophilic three-dimensional porous Ti2C3Tx-rGO membrane as a stable scaffold for safe alkali metal (Li or Na) anodes. ACS. Nano. 2019, 13, 14319-28.
143. Chen, Y.; Yao, Y.; Zhao, W.; et al. Precise solid-phase synthesis of CoFe@FeOx nanoparticles for efficient polysulfide regulation in lithium/sodium-sulfur batteries. Nat. Commun. 2023, 14, 7487.