REFERENCES

1. Wang, H. G.; Wu, Q.; Wang, Y.; et al. Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv. Energy. Mater. 2019, 9, 1802993.

2. Kim, H.; Kim, H.; Ding, Z.; et al. Recent progress in electrode materials for sodium-ion batteries. Adv. Energy. Mater. 2016, 6, 1600943.

3. Pan, H.; Hu, Y. S.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy. Environ. Sci. 2013, 6, 2338-60.

4. Wang, Q.; Zhao, C.; Lu, Y.; et al. Advanced nanostructured anode materials for sodium-ion batteries. Small 2017, 13, 1701835.

5. Huang, G.; Kong, Q.; Yao, W.; Wang, Q. Poly tannic acid carbon rods as anode materials for high performance lithium and sodium ion batteries. J. Colloid. Interface. Sci. 2023, 629, 832-45.

6. Liu, Y.; Tai, Z.; Zhou, T.; et al. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 2017, 29, 1703028.

7. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-76.

8. Sekai, K.; Azuma, H.; Omaru, A.; et al. Lithium-ion rechargeable cells with LiCoO2 and carbon electrodes. J. Power. Sources. 1993, 43, 241-4.

9. Roberts, S.; Kendrick, E. The re-emergence of sodium ion batteries: testing, processing, and manufacturability. Nanotechnol. Sci. Appl. 2018, 11, 23-33.

10. Usiskin, R.; Lu, Y.; Popovic, J.; et al. Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater. 2021, 6, 1020-35.

11. Zhang, T.; Li, C.; Wang, F.; et al. Recent advances in carbon anodes for sodium-ion batteries. Chem. Rec. 2022, 22, e202200083.

12. Katsuyama, Y.; Nakayasu, Y.; Kobayashi, H.; Goto, Y.; Honma, I.; Watanabe, M. Rational route for increasing intercalation capacity of hard carbons as sodium-ion battery anodes. ChemSusChem 2020, 13, 5762-8.

13. Li, Z.; Chen, Y.; Jian, Z.; et al. Defective hard carbon anode for Na-ion batteries. Chem. Mater. 2018, 30, 4536-42.

14. Olsson, E.; Cottom, J.; Cai, Q. Defects in hard carbon: where are they located and how does the location affect alkaline metal storage? Small 2021, 17, e2007652.

15. Chu, Y.; Zhang, J.; Zhang, Y.; et al. Reconfiguring Hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 2023, 35, e2212186.

16. Ghimbeu C, Górka J, Simone V, Simonin L, Martinet S, Vix-Guterl C. Insights on the Na+ ion storage mechanism in hard carbon: discrimination between the porosity, surface functional groups and defects. Nano. Energy. 2018, 44, 327-35.

17. Li, Y.; Lu, Y.; Meng, Q.; et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy. Mater. 2019, 9, 1902852.

18. Xie, F.; Xu, Z.; Guo, Z.; et al. Disordered carbon anodes for Na-ion batteries - quo vadis? Sci. China. Chem. 2021, 64, 1679-92.

19. Yue, L.; Lei, Y.; Niu, Y.; Qi, Y.; Xu, M. Recent advances of pore structure in disordered carbons for sodium storage: a mini review. Chem. Rec. 2022, 22, e202200113.

20. Stevens, D. A.; Dahn, J. R. High capacity anode materials for rechargeable sodium-ion batteries. J. Electrochem. Soc. 2000, 147, 1271.

21. Stevens, D. A.; Dahn, J. R. An in situ small-angle X-ray scattering study of sodium insertion into a nanoporous carbon anode material within an operating electrochemical cell. J. Electrochem. Soc. 2000, 147, 4428.

22. Cao, Y.; Xiao, L.; Sushko, M. L.; et al. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano. Lett. 2012, 12, 3783-7.

23. Zhu, Y. E.; Gu, H.; Chen, Y. N.; Yang, D.; Wei, J.; Zhou, Z. Hard carbon derived from corn straw piths as anode materials for sodium ion batteries. Ionics 2018, 24, 1075-81.

24. Bommier, C.; Ji, X.; Greaney, P. A. Electrochemical properties and theoretical capacity for sodium storage in hard carbon: insights from first principles calculations. Chem. Mater. 2019, 31, 658-77.

25. Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy. Mater. 2016, 6, 1501874.

26. Komaba, S.; Murata, W.; Ishikawa, T.; et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859-67.

27. Chen, X.; Tian, J.; Li, P.; et al. An overall understanding of sodium storage behaviors in hard carbons by an “adsorption-intercalation/filling” hybrid mechanism. Adv. Energy. Mater. 2022, 12, 2200886.

28. Tang, T.; Zhu, W.; Lan, P.; et al. Macro-micro structure engineering of bio-spore-derived hard carbon as an efficient anode in sodium ion batteries. Chem. Eng. J. 2023, 475, 146212.

29. Chen, X.; Liu, C.; Fang, Y.; et al. Understanding of the sodium storage mechanism in hard carbon anodes. Carbon. Energy. 2022, 4, 1133-50.

30. Dai, S.; Tu, Y.; Yan, L.; et al. Observation and suppression of metallic and metallic-like plating on hard carbon for high-performance sodium-ion batteries. Mater. Today. Energy. 2024, 44, 101605.

31. Qiu, S.; Xiao, L.; Sushko, M. L.; et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy. Mater. 2017, 7, 1700403.

32. Wang, Z.; Feng, X.; Bai, Y.; et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy. Mater. 2021, 11, 2003854.

33. Paul, R.; Zemlyanov, D.; Roy, A. K.; Voevodin, A. A. Chapter 3 - Characterization techniques and analytical methods of carbon-based materials for energy applications. In: Carbon based nanomaterials for advanced thermal and electrochemical energy storage and conversion. 2019; pp. 63-88.

34. Dou, X.; Hasa, I.; Saurel, D.; et al. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry. Mater. Today. 2019, 23, 87-104.

35. Bartoli, M.; Piovano, A.; Elia, G. A.; et al. Pristine and engineered biochar as Na-ion batteries anode material: a comprehensive overview. Renew. Sustain. Energy. Rev. 2024, 194, 114304.

36. Xie, L. J.; Tang, C.; Song, M. X.; et al. Molecular-scale controllable conversion of biopolymers into hard carbons towards lithium and sodium ion batteries: a review. J. Energy. Chem. 2022, 72, 554-69.

37. Yang, C.; Zhao, J.; Dong, B.; et al. Advances in the structural engineering and commercialization processes of hard carbon for sodium-ion batteries. J. Mater. Chem. A. 2024, 12, 1340-58.

38. Zhao, Z.; Sun, L.; Li, Y.; Feng, W. Polymer-derived carbon materials for energy storage devices: a mini review. Carbon 2023, 210, 118066.

39. Wang, Y.; Li, M.; Zhang, Y.; Zhang, N. Hard carbon for sodium storage: mechanism and performance optimization. Nano. Res. 2024, 17, 6038-57.

40. Zhu, Z.; Liang, F.; Zhou, Z.; et al. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries. J. Mater. Chem. A. 2018, 6, 1513-22.

41. Zhang, Y.; Li, X.; Dong, P.; et al. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 42796-803.

42. Li, X.; Zeng, X.; Ren, T.; et al. The transport properties of sodium-ion in the low potential platform region of oatmeal-derived hard carbon for sodium-ion batteries. J. Alloys. Compd. 2019, 787, 229-38.

43. Zhang, Y.; Cheng, H.; Liu, J.; Li, X.; Zhu, Z. Laver-derived carbon as an anode for SIBswith excellent electrochemical performance. Int. J. Electrochem. Sci. 2020, 15, 5144-53.

44. Zhu, Z.; Li, X.; Zhang, Z.; et al. N/S codoping modification based on the metal organic framework-derived carbon to improve the electrochemical performance of different energy storage devices. J. Energy. Chem. 2022, 74, 394-403.

45. Deng, B.; Huang, Q.; Zhang, W.; et al. Design high performance biomass-derived renewable carbon material for electric energy storage system. J. Clean. Prod. 2021, 309, 127391.

46. Zhu, Z.; Zeng, X.; Wu, H.; et al. Green energy application technology of litchi pericarp-derived carbon material with high performance. J. Clean. Prod. 2021, 286, 124960.

47. Zhu, Z.; Zhong, W.; Zhang, Y.; et al. Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries. Carbon. Energy. 2021, 3, 541-53.

48. Li, X.; Ding, C.; Liang, Q.; et al. Progress in hard carbons for sodium-ion batteries: microstructure, sodium storage mechanism and initial Coulombic efficiency. J. Energy. Storage. 2024, 98, 112986.

49. Zeng, Z.; Mao, Y.; Hu, Z.; et al. Research progress and commercialization of biologically derived hard carbon anode materials for sodium-ion batteries. Ind. Eng. Chem. Res. 2023, 62, 15343-59.

50. Li, Y.; Fu, H.; Feng, W. Recent progress of synthetic polymer-derived hard carbon in sodium-ion batteries. Sci. Technol. 2022, 1, 11-23.

51. Fox, A. M.; Vrankovic, D.; Buchmeiser, M. R. Influence of the silicon-carbon interface on the structure and electrochemical performance of a phenolic resin-derived Si@C core-shell nanocomposite-based anode. ACS. Appl. Mater. Interfaces. 2022, 14, 761-70.

52. Dong, X.; Chen, L.; Liu, J.; Haller, S.; Wang, Y.; Xia, Y. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2016, 2, e1501038.

53. Goujon, N.; Lahnsteiner, M.; Cerrón-Infantes, D. A.; et al. Dual redox-active porous polyimides as high performance and versatile electrode material for next-generation batteries. Mater. Horiz. 2023, 10, 967-76.

54. Narzary, B. B.; Baker, B. C.; Yadav, N.; D’elia, V.; Faul, C. F. J. Crosslinked porous polyimides: structure, properties and applications. Polym. Chem. 2021, 12, 6494-514.

55. Zhao, D.; Wang, H.; Bai, Y.; Yang, H.; Song, H.; Li, B. Preparation of advanced multi-porous carbon nanofibers for high-performance capacitive electrodes in supercapacitors. Polymers 2023, 15, 213.

56. Chou, S. C.; Sun, B. Y.; Cheang, W. H.; et al. A flexible bioelectrode based on IrO2-coated metallized polypropylene micromembrane. Ceram. Int. 2021, 47, 32554-61.

57. Liu, X.; Ma, C.; Wen, Y.; et al. Highly efficient conversion of waste plastic into thin carbon nanosheets for superior capacitive energy storage. Carbon 2021, 171, 819-28.

58. Wang, Y.; Luo, Z.; Qian, Y.; Zhang, W.; Chen, L. Monolithic MXene composites with multi-responsive actuating and energy-storage multi-functions. Chem. Eng. J. 2023, 454, 140513.

59. Xiao, L.; Cao, Y.; Henderson, W. A.; et al. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries. Nano. Energy. 2016, 19, 279-88.

60. He, Y.; Han, X.; Du, Y.; et al. Conjugated polymer-mediated synthesis of sulfur- and nitrogen-doped carbon nanotubes as efficient anode materials for sodium ion batteries. Nano. Res. 2018, 11, 2573-85.

61. Wang, H. L.; Shi, Z. Q.; Jin, J.; Chong, C. B.; Wang, C. Y. Properties and sodium insertion behavior of Phenolic Resin-based hard carbon microspheres obtained by a hydrothermal method. J. Electroanal. Chem. 2015, 755, 87-91.

62. Han, H.; Chen, X.; Qian, J.; et al. Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries. Nanoscale 2019, 11, 21999-2005.

63. Wang, Y.; Lu, Y.; Liu, X.; et al. Facile synthesis and electrochemical properties of alicyclic polyimides based carbon microflowers for electrode materials of supercapacitors. J. Energy. Storage. 2022, 47, 103656.

64. Porporato, S.; Bartoli, M.; Piovano, A.; et al. Repurposing face masks after use: from wastes to anode materials for Na-ion batteries. Batteries 2022, 8, 183.

65. Chen, D.; Luo, K.; Yang, Z.; et al. Direct conversion of ester bond-rich waste plastics into hard carbon for high-performance sodium storage. Carbon 2021, 173, 253-61.

66. Liu, C.; Xiao, N.; Wang, Y.; et al. Carbon clusters decorated hard carbon nanofibers as high-rate anode material for lithium-ion batteries. Fuel. Process. Technol. 2018, 180, 173-9.

67. Wu, F.; Dong, R.; Bai, Y.; et al. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 21335-42.

68. Dong, D.; Xiao, Y. Recent progress and challenges in coal-derived porous carbon for supercapacitor applications. Chem. Eng. J. 2023, 470, 144441.

69. Wang, B.; Xia, J.; Dong, X.; Guo, H.; Li, W. Study on sodium storage behavior of hard carbons derived from coal with different grades of metamorphism. CIESC. J. 2021, 72, 5738-50.

70. Zou, Y.; Li, H.; Qin, K.; et al. Low-cost lignite-derived hard carbon for high-performance sodium-ion storage. J. Mater. Sci. 2020, 55, 5994-6004.

71. Zhao, G.; Xu, T.; Zhao, Y.; et al. Conversion of aliphatic structure-rich coal maceral into high-capacity hard carbons for sodium-ion batteries. Energy. Storage. Mater. 2024, 67, 103282.

72. Rybarczyk, M. K.; Li, Y.; Qiao, M.; Hu, Y. S.; Titirici, M. M.; Lieder, M. Hard carbon derived from rice husk as low cost negative electrodes in Na-ion batteries. J. Energy. Chem. 2019, 29, 17-22.

73. Wang, Q.; Zhu, X.; Liu, Y.; Fang, Y.; Zhou, X.; Bao, J. Rice husk-derived hard carbons as high-performance anode materials for sodium-ion batteries. Carbon 2018, 127, 658-66.

74. Cao, L.; Hui, W.; Xu, Z.; et al. Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries. J. Alloys. Compd. 2017, 695, 632-7.

75. Wu, F.; Liu, L.; Yuan, Y.; et al. Expanding interlayer spacing of hard carbon by natural K+ doping to boost Na-ion storage. ACS. Appl. Mater. Interfaces. 2018, 10, 27030-8.

76. Zhang, F.; Yao, Y.; Wan, J.; Henderson, D.; Zhang, X.; Hu, L. High temperature carbonized grass as a high performance sodium ion battery anode. ACS. Appl. Mater. Interfaces. 2017, 9, 391-7.

77. Deng, W.; Cao, Y.; Yuan, G.; Liu, G.; Zhang, X.; Xia, Y. Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode. ACS. Appl. Mater. Interfaces. 2021, 13, 47728-39.

78. Wang, Y.; Feng, Z.; Zhu, W.; et al. High capacity and high efficiency maple tree-biomass-derived hard carbon as an anode material for sodium-ion batteries. Materials 2018, 11, 1294.

79. Wang, P.; Qiao, B.; Du, Y.; et al. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J. Phys. Chem. C. 2015, 119, 21336-44.

80. Wang, J.; Yan, L.; Ren, Q.; Fan, L.; Zhang, F.; Shi, Z. Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochim. Acta. 2018, 291, 188-96.

81. Muruganantham, R.; Wang, F. M.; Yuwono, R. A.; Sabugaa, M.; Liu, W. R. Biomass feedstock of waste mango-peel-derived porous hard carbon for sustainable high-performance lithium-ion energy storage devices. Energy. Fuels. 2021, 35, 10878-89.

82. Lu, M.; Huang, Y.; Chen, C. Cedarwood bark-derived hard carbon as an anode for high-performance sodium-ion batteries. Energy. Fuels. 2020, 34, 11489-97.

83. Elizabeth, I.; Singh, B. P.; Trikha, S.; Gopukumar, S. Bio-derived hierarchically macro-meso-micro porous carbon anode for lithium/sodium ion batteries. J. Power. Sources. 2016, 329, 412-21.

84. Liu, H.; Jia, M.; Yue, S.; et al. Creative utilization of natural nanocomposites: nitrogen-rich mesoporous carbon for a high-performance sodium ion battery. J. Mater. Chem. A. 2017, 5, 9572-9.

85. Zhu, X.; Li, Q.; Qiu, S.; et al. Hard carbon fibers pyrolyzed from wool as high-performance anode for sodium-ion batteries. JOM. 2016, 68, 2579-84.

86. Tang, Z.; Zhang, R.; Wang, H.; et al. Revealing the closed pore formation of waste wood-derived hard carbon for advanced sodium-ion battery. Nat. Commun. 2023, 14, 6024.

87. Wang, Y.; Yi, Z.; Xie, L.; et al. Releasing free radicals in precursor triggers the formation of closed pores in hard carbon for sodium-ion batteries. Adv. Mater. 2024, 36, e2401249.

88. Gao, L.; Zhang, G.; Cai, J.; Huang, L.; Zhou, J.; Zhang, L. Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano. Res. 2020, 13, 1604-13.

89. Amiri, A.; Conlee, B.; Tallerine, I.; Kennedy, W. J.; Naraghi, M. A novel path towards synthesis of nitrogen-rich porous carbon nanofibers for high performance supercapacitors. Chem. Eng. J. 2020, 399, 125788.

90. Guo, Q.; Zhao, X.; Li, Z.; Wang, D.; Nie, G. A novel solid-state electrochromic supercapacitor with high energy storage capacity and cycle stability based on poly(5-formylindole)/WO3 honeycombed porous nanocomposites. Chem. Eng. J. 2020, 384, 123370.

91. Bin, D.; Wang, F.; Tamirat, A. G.; et al. Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy. Mater. 2018, 8, 1703008.

92. Mélinon, P. Vitreous carbon, geometry and topology: a hollistic approach. Nanomaterials 2021, 11, 1694.

93. Wahid, M.; Puthusseri, D.; Gawli, Y.; Sharma, N.; Ogale, S. Hard carbons for sodium-ion battery anodes: synthetic strategies, material properties, and storage mechanisms. ChemSusChem 2018, 11, 506-26.

94. Wang, G.; Yu, M.; Feng, X. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388-443.

95. Wu, Y. P.; Rahm, E.; Holze, R. Carbon anode materials for lithium ion batteries. J. Power. Sources. 2003, 114, 228-36.

96. Zhao, C.; Liu, L.; Qi, X.; et al. Solid-state sodium batteries. Adv. Energy. Mater. 2018, 8, 1703012.

97. Franklin, R. E. Crystallite growth in graphitizing and non-graphitizing carbons. Proc. R. Soc. Lond. A. 1951, 209, 196-218.

98. Ban, L. L.; Crawford, D.; Marsh, H. Lattice-resolution electron microscopy in structural studies of non-graphitizing carbons from polyvinylidene chloride (PVDC). J. Appl. Crystallogr. 1975, 8, 415-20.

99. Townsend, S. J.; Lenosky, T. J.; Muller, D. A.; Nichols, C. S.; Elser, V. Negatively curved graphitic sheet model of amorphous carbon. Phys. Rev. Lett. 1992, 69, 921.

100. Harris, P. J. F.; Tsang, S. C. High-resolution electron microscopy studies of non-graphitizing carbons. Philos. Mag. A. 1997, 76, 667-77.

101. Mcdonald-Wharry, J. S.; Manley-Harris, M.; Pickering, K. L. Reviewing, combining, and updating the models for the nanostructure of non-graphitizing carbons produced from oxygen-containing precursors. Energy. Fuels. 2016, 30, 7811-26.

102. Li, Y.; Paranthaman, M. P.; Akato, K.; et al. Tire-derived carbon composite anodes for sodium-ion batteries. J. Power. Sources. 2016, 316, 232-8.

103. Navarro-Suárez, A. M.; Saurel, D.; Sánchez-Fontecoba, P.; Castillo-Martínez, E.; Carretero-González, J.; Rojo, T. Temperature effect on the synthesis of lignin-derived carbons for electrochemical energy storage applications. J. Power. Sources. 2018, 397, 296-306.

104. Saurel, D.; Orayech, B.; Xiao, B.; Carriazo, D.; Li, X.; Rojo, T. From charge storage mechanism to performance: a roadmap toward high specific energy sodium-ion batteries through carbon anode optimization. Adv. Energy. Mater. 2018, 8, 1703268.

105. Cowlard, F. C.; Lewis, J. C. Vitreous carbon - A new form of carbon. J. Mater. Sci. 1967, 2, 507-12.

106. Li, Z.; Bommier, C.; Chong, Z. S.; et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv. Energy. Mater. 2017, 7, 1602894.

107. Olsson, E.; Cottom, J.; Au, H.; et al. Elucidating the effect of planar graphitic layers and cylindrical pores on the storage and diffusion of Li, Na, and K in carbon materials. Adv. Funct. Mater. 2020, 30, 1908209.

108. Sun, N.; Guan, Z.; Liu, Y.; et al. Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons. Adv. Energy. Mater. 2019, 9, 1901351.

109. Emmerich, F. G. Evolution with heat treatment of crystallinity in carbons. Carbon 1995, 33, 1709-15.

110. Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano. Lett. 2015, 15, 5888-92.

111. Kubota, K.; Shimadzu, S.; Yabuuchi, N.; et al. Structural analysis of sucrose-derived hard carbon and correlation with the electrochemical properties for lithium, sodium, and potassium insertion. Chem. Mater. 2020, 32, 2961-77.

112. Alvin, S.; Yoon, D.; Chandra, C.; et al. Extended flat voltage profile of hard carbon synthesized using a two-step carbonization approach as an anode in sodium ion batteries. J. Power. Sources. 2019, 430, 157-68.

113. Gomez-Martin, A.; Martinez-Fernandez, J.; Ruttert, M.; Winter, M.; Placke, T.; Ramirez-Rico, J. Correlation of structure and performance of hard carbons as anodes for sodium ion batteries. Chem. Mater. 2019, 31, 7288-99.

114. Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS. Nano. 2011, 5, 26-41.

115. Yazyev, O. V.; Louie, S. G. Topological defects in graphene: dislocations and grain boundaries. Phys. Rev. B. 2010, 81, 195420.

116. Bommier, C.; Mitlin, D.; Ji, X. Internal structure - Na storage mechanisms - electrochemical performance relations in carbons. Prog. Mater. Sci. 2018, 97, 170-203.

117. Zhang, B.; Ghimbeu, C. M.; Laberty, C.; Vix-Guterl, C.; Tarascon, J. M. Correlation between microstructure and Na storage behavior in hard carbon. Adv. Energy. Mater. 2016, 6, 1501588.

118. Chen, C.; Huang, Y.; Zhu, Y.; et al. Nonignorable influence of oxygen in hard carbon for sodium ion storage. ACS. Sustain. Chem. Eng. 2020, 8, 1497-506.

119. Sun, D.; Luo, B.; Wang, H.; Tang, Y.; Ji, X.; Wang, L. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano. Energy. 2019, 64, 103937.

120. Guo, R.; Lv, C.; Xu, W.; et al. Effect of intrinsic defects of carbon materials on the sodium storage performance. Adv. Energy. Mater. 2020, 10, 1903652.

121. Shen, F.; Luo, W.; Dai, J.; et al. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv. Energy. Mater. 2016, 6, 1600377.

122. Xie, F.; Xu, Z.; Jensen, A. C. S.; et al. Hard-soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 2019, 29, 1901072.

123. Zhang, X.; Dong, X.; Qiu, X.; et al. Extended low-voltage plateau capacity of hard carbon spheres anode for sodium ion batteries. J. Power. Sources. 2020, 476, 228550.

124. Lu, P.; Sun, Y.; Xiang, H.; Liang, X.; Yu, Y. 3D amorphous carbon with controlled porous and disordered structures as a high-rate anode material for sodium-ion batteries. Adv. Energy. Mater. 2018, 8, 1702434.

125. Yang, J.; Wang, X.; Dai, W.; et al. From micropores to ultra-micropores inside hard carbon: toward enhanced capacity in room-/low-temperature sodium-ion storage. Nanomicro. Lett. 2021, 13, 98.

126. Alptekin, H.; Au, H.; Jensen, A. C.; et al. Sodium storage mechanism investigations through structural changes in hard carbons. ACS. Appl. Energy. Mater. 2020, 3, 9918-27.

127. Dahbi, M.; Kiso, M.; Kubota, K.; et al. Synthesis of hard carbon from argan shells for Na-ion batteries. J. Mater. Chem. A. 2017, 5, 9917-28.

128. Au, H.; Alptekin, H.; Jensen, A. C. S.; et al. A revised mechanistic model for sodium insertion in hard carbons. Energy. Environ. Sci. 2020, 13, 3469-79.

129. Yamamoto, H.; Muratsubaki, S.; Kubota, K.; et al. Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J. Mater. Chem. A. 2018, 6, 16844-8.

130. Zhang, N.; Liu, Q.; Chen, W.; et al. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries. J. Power. Sources. 2018, 378, 331-7.

131. Liu, J.; Wang, L.; Huang, Z.; Fan, F.; Jiao, L.; Li, F. Facile synthesis of high quality hard carbon anode from Eucalyptus wood for sodium-ion batteries. Chem. Pap. 2022, 76, 7465-73.

132. Huang, Z.; Qiu, X.; Wang, C.; et al. Revealing the effect of hard carbon structure on the sodium storage behavior by using a model hard carbon precursor. J. Energy. Storage. 2023, 72, 108406.

133. Zhang, P.; Shu, Y.; Wang, Y.; Ye, J.; Yang, L. Simple and efficient synthesis methods for fabricating anode materials of sodium-ion batteries and their sodium-ion storage mechanism study. J. Mater. Chem. A. 2023, 11, 2920-32.

134. Ilic, I. K.; Schutjajew, K.; Zhang, W.; Oschatz, M. Sodium storage with high plateau capacity in nitrogen doped carbon derived from melamine-terephthalaldehyde polymers. J. Mater. Chem. A. 2021, 9, 8711-20.

135. Cheng, D.; Zhou, X.; Hu, H.; et al. Electrochemical storage mechanism of sodium in carbon materials: a study from soft carbon to hard carbon. Carbon 2021, 182, 758-69.

136. Yuan, M.; Cao, B.; Liu, H.; et al. Sodium storage mechanism of nongraphitic carbons: a general model and the function of accessible closed pores. Chem. Mater. 2022, 34, 3489-500.

137. Xu, R.; Yi, Z.; Song, M.; et al. Boosting sodium storage performance of hard carbons by regulating oxygen functionalities of the cross-linked asphalt precursor. Carbon 2023, 206, 94-104.

138. Zheng, Z.; Hu, S.; Yin, W.; et al. CO2-etching creates abundant closed pores in hard carbon for high-plateau-capacity sodium storage. Adv. Energy. Mater. 2024, 14, 2303064.

139. Morishita, T.; Tsumura, T.; Toyoda, M.; et al. A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon 2010, 48, 2690-707.

140. Qiu, C.; Li, A.; Qiu, D.; et al. One-step construction of closed pores enabling high plateau capacity hard carbon anodes for sodium-ion batteries: closed-pore formation and energy storage mechanisms. ACS. Nano. 2024, 18, 11941-54.

141. Glatthaar, C.; Wang, M.; Wagner, L. Q.; et al. Lignin-derived mesoporous carbon for sodium-ion batteries: block copolymer soft templating and carbon microstructure analysis. Chem. Mater. 2023, 35, 10416-33.

142. Yin, X.; Lu, Z.; Wang, J.; et al. Enabling fast Na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage. Adv. Mater. 2022, 34, e2109282.

143. Xi, Y.; Wang, Y.; Yang, D.; et al. K2CO3 activation enhancing the graphitization of porous lignin carbon derived from enzymatic hydrolysis lignin for high performance lithium-ion storage. J. Alloys. Compd. 2019, 785, 706-14.

144. Zhao, J.; He, X. X.; Lai, W. H.; et al. Catalytic defect-repairing using manganese ions for hard carbon anode with high-capacity and high-initial-coulombic-efficiency in sodium-ion batteries. Adv. Energy. Mater. 2023, 13, 2300444.

145. Meng, Q.; Lu, Y.; Ding, F.; Zhang, Q.; Chen, L.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS. Energy. Lett. 2019, 4, 2608-12.

146. Huang, Y.; Zhong, X.; Hu, X.; et al. Rationally designing closed pore structure by carbon dots to evoke sodium storage sites of hard carbon in low-potential region. Adv. Funct. Mater. 2024, 34, 2308392.

147. Rawat, S.; Wang, C. T.; Lay, C. H.; Hotha, S.; Bhaskar, T. Sustainable biochar for advanced electrochemical/energy storage applications. J. Energy. Storage. 2023, 63, 107115.

148. Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710-25.

149. Wang, K.; Sun, F.; Wang, H.; et al. Altering thermal transformation pathway to create closed pores in coal-derived hard carbon and boosting of Na+ plateau storage for high-performance sodium-ion battery and sodium-ion capacitor. Adv. Funct. Mater. 2022, 32, 2203725.

150. Jagtoyen, M.; Derbyshire, F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon 1998, 36, 1085-97.

151. Xu, T.; Qiu, X.; Zhang, X.; Xia, Y. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance. Chem. Eng. J. 2023, 452, 139514.

152. He, J.; Lan, N.; Yu, H.; Du, D.; He, H.; Zhang, C. Chemical crosslinking regulating microstructure of lignin-derived hard carbon for high-performance sodium storage. J. Polymer. Sci. 2024, 62, 3216-24.

153. Shao, W.; Cao, Q.; Liu, S.; et al. Replacing “Alkyl” with “Aryl” for inducing accessible channels to closed pores as plateau-dominated sodium-ion battery anode. SusMat 2022, 2, 319-34.

154. Chen, Y.; Li, F.; Guo, Z.; et al. Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery. J. Power. Sources. 2023, 557, 232534.

155. Schutjajew, K.; Giusto, P.; Härk, E.; Oschatz, M. Preparation of hard carbon/carbon nitride nanocomposites by chemical vapor deposition to reveal the impact of open and closed porosity on sodium storage. Carbon 2021, 185, 697-708.

156. Zhu, Z.; Men, Y.; Zhang, W.; et al. Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems. eScience 2024, 4, 100249.

157. Sun, F.; Wang, H.; Qu, Z.; et al. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: synergistic enhancement of adsorption and intercalation mechanisms. Adv. Energy. Mater. 2021, 11, 2002981.

158. Saurel, D.; Segalini, J.; Jauregui, M.; et al. A SAXS outlook on disordered carbonaceous materials for electrochemical energy storage. Energy. Storage. Mater. 2019, 21, 162-73.

159. Morikawa, Y.; Nishimura, S.; Hashimoto, R.; Ohnuma, M.; Yamada, A. Mechanism of sodium storage in hard carbon: an X-ray scattering analysis. Adv. Energy. Mater. 2020, 10, 1903176.

160. Ilic, I. K.; Schutjajew, K.; Zhang, W.; Oschatz, M. Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes. Carbon 2022, 186, 55-63.

161. Song, X.; Xu, L.; Sun, X.; Han, B. In situ/operando characterization techniques for electrochemical CO2 reduction. Sci. China. Chem. 2023, 66, 315-23.

162. Li, Y.; Hu, Y. S.; Titirici, M. M.; Chen, L.; Huang, X. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy. Mater. 2016, 6, 1600659.

163. Liu, G.; Wang, Z.; Yuan, H.; et al. Deciphering electrolyte dominated Na+ storage mechanisms in hard carbon anodes for sodium-ion batteries. Adv. Sci. 2023, 10, e2305414.

164. Li, Q.; Zhang, J.; Zhong, L.; et al. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes. Adv. Energy. Mater. 2022, 12, 2201734.

165. Alcántara, R.; Ortiz, G. F.; Lavela, P.; Tirado, J. L.; Stoyanova, R.; Zhecheva, E. EPR, NMR, and electrochemical studies of surface-modified carbon microbeads. Chem. Mater. 2006, 18, 2293-301.

166. Nagmani, Manna S, Puravankara S. Hierarchically porous closed-pore hard carbon as a plateau-dominated high-performance anode for sodium-ion batteries. Chem. Commun. 2024, 60, 3071-4.

167. Yu, Z. E.; Lyu, Y.; Wang, Y.; et al. Hard carbon micro-nano tubes derived from kapok fiber as anode materials for sodium-ion batteries and the sodium-ion storage mechanism. Chem. Commun. 2020, 56, 778-81.

168. Alcántara, R.; Lavela, P.; Ortiz, G. F.; Tirado, J. L. Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem. Solid. State. Lett. 2005, 8, A222.

169. Zhou, S.; Tang, Z.; Pan, Z.; et al. Regulating closed pore structure enables significantly improved sodium storage for hard carbon pyrolyzing at relatively low temperature. SusMat 2022, 2, 357-67.

170. Qiu, D.; Hou, Y. Carbon materials toward efficient potassium storage: rational design, performance evaluation and potassium storage mechanism. Green. Energy. Environ. 2023, 8, 115-40.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/