REFERENCES
1. Long, X.; Tang, W.; Li, C.; et al. A superior zinc-air battery performance achieved by CoO/Fe3O4 heterostructured nanosheets. Chem. Commun. 2024, 60, 5747-50.
2. Luo, F.; Yu, Y.; Liu, X.; Xie, Y.; Yang, Z. Interfacial electronic modulation enables a robust methanol oxidation. Int. J. Hydrogen. Energy. 2024, 59, 369-74.
4. Han, M.; Mu, Y.; Wei, L.; Zeng, L.; Zhao, T. Multilevel carbon architecture of subnanoscopic silicon for fast-charging high-energy-density lithium-ion batteries. Carbon. Energy. 2024, 6, e377.
5. Pan, S.; Yang, Z.; Luo, F. Ni-based electrocatalysts for urea-assisted water splitting. Chinese. J. Struct. Chem. 2024, 43, 100373.
6. Xu, X.; Sun, H.; Jiang, S. P.; Shao, Z. Modulating metal-organic frameworks for catalyzing acidic oxygen evolution for proton exchange membrane water electrolysis. SusMat 2021, 1, 460-81.
7. Li, Z.; Wu, X.; Jiang, X.; et al. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder. Mater. 2022, 1, 100020.
8. Ding, S.; Wang, H.; Dai, X.; et al. Mn-modulated Co-N-C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese. J. Struct. Chem. 2024, 43, 100302.
9. Long, X.; Xiong, T.; Bao, H.; et al. Tip and heterogeneous effects co-contribute to a boosted performance and stability in zinc air battery. J. Colloid. Interface. Sci. 2024, 662, 676-85.
10. Xu, B.; Ouyang, T.; Wang, Y.; et al. Progresses on two-phase modeling of proton exchange membrane water electrolyzer. Energy. Rev. 2024, 3, 100073.
11. Deng, Y.; Luo, J.; Chi, B.; et al. Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells. Adv. Energy. Mater. 2021, 11, 2101222.
12. Yeo, K.; Kim, H.; Lee, K.; et al. Controlled doping of ultralow amounts Ru on Ni cathode for PEMWE: experimental and theoretical elucidation of enhanced performance. Appl. Catal. B. 2024, 346, 123738.
13. Amano, F.; Tsushiro, K. Proton exchange membrane photoelectrochemical cell for water splitting under vapor feeding. Energy. Mater. 2024, 4, 400006.
14. Li, S.; Jiang, J.; Zhai, N.; et al. A half-wave rectifying triboelectric nanogenerator for self-powered water splitting towards hydrogen production. Nano. Energy. 2022, 93, 106870.
15. Chen, X.; Yan, Z.; Yu, M.; et al. Spinel oxide nanoparticles embedded in nitrogen-doped carbon nanofibers as a robust and self-standing bifunctional oxygen cathode for Zn-air batteries. J. Mater. Chem. A. 2019, 7, 24868-76.
16. Zhang, L.; Jang, H.; Liu, H.; et al. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: a robust pH-universal oxygen evolution electrocatalyst. Angew. Chem. Int. Ed. Engl. 2021, 60, 18821-9.
17. Reier, T.; Nong, H. N.; Teschner, D.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments - reaction mechanisms and catalysts. Adv. Energy. Mater. 2017, 7, 1601275.
18. Chen, Y.; Shang, C.; Xiao, X.; Guo, W.; Xu, Q. Recent progress of electrocatalysts for acidic oxygen evolution reaction. Coord. Chem. Rev. 2024, 508, 215758.
19. Chen, Z.; Fan, Q.; Zhou, J.; et al. Toward understanding the formation mechanism and OER catalytic mechanism of hydroxides by in situ and operando techniques. Angew. Chem. Int. Ed. Engl. 2023, 62, e202309293.
20. Wang, Z.; Goddard, W. A.; Xiao, H. Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides. Nat. Commun. 2023, 14, 4228.
21. Song, H.; Yong, X.; Waterhouse, G. I.; et al. RuO2-CeO2 lattice matching strategy enables robust water oxidation electrocatalysis in acidic media via two distinct oxygen evolution mechanisms. ACS. Catal. 2024, 14, 3298-307.
22. Wang, N.; Ou, P.; Miao, R. K.; et al. Doping shortens the metal/metal distance and promotes OH coverage in non-noble acidic oxygen evolution reaction catalysts. J. Am. Chem. Soc. 2023, 145, 7829-36.
23. Li, L.; Wang, P.; Shao, Q.; Huang, X. Recent progress in advanced electrocatalyst design for acidic oxygen evolution reaction. Adv. Mater. 2021, 33, e2004243.
24. Xie, Y.; Yang, Z. Morphological and coordination modulations in iridium electrocatalyst for robust and stable acidic OER catalysis. Chem. Rec. 2023, 23, e202300129.
25. Siwal, S. S.; Yang, W.; Zhang, Q. Recent progress of precious-metal-free electrocatalysts for efficient water oxidation in acidic media. J. Energy. Chem. 2020, 51, 113-33.
26. Feng, Z.; Dai, C.; Shi, P.; et al. Seven mechanisms of oxygen evolution reaction proposed recently: a mini review. Chem. Eng. J. 2024, 485, 149992.
27. Zhang, Q.; Xiao, W.; Fu, H. C.; et al. Unraveling the mechanism of self-repair of NiFe-based electrocatalysts by dynamic exchange of iron during the oxygen evolution reaction. ACS. Catal. 2023, 13, 14975-86.
28. Lazaridou, A.; Smith, L. R.; Pattisson, S.; et al. Recognizing the best catalyst for a reaction. Nat. Rev. Chem. 2023, 7, 287-95.
29. Sun, L.; Feng, M.; Peng, Y.; et al. Constructing oxygen vacancies by doping Mo into spinel Co3O4 to trigger a fast oxide path mechanism for acidic oxygen evolution reaction. J. Mater. Chem. A. 2024, 12, 8796-804.
30. Wang, D.; Xue, J.; Ding, X.; et al. Neighboring cationic vacancy assisted adsorption optimization on single-atom sites for improved oxygen evolution. ACS. Catal. 2022, 12, 12458-68.
31. Jiao, Y.; Yan, H.; Tian, C.; Fu, H. Structure engineering and electronic modulation of transition metal interstitial compounds for electrocatalytic water splitting. Acc. Mater. Res. 2023, 4, 42-56.
32. Kaushik, S.; Xiao, X.; Xu, Q. Design strategies of electrocatalysts for acidic oxygen evolution reaction. EnergyChem 2023, 5, 100104.
33. Pham, C. V.; Escalera-lópez, D.; Mayrhofer, K.; Cherevko, S.; Thiele, S. Essentials of high performance water electrolyzers - from catalyst layer materials to electrode engineering. Adv. Energy. Mater. 2021, 11, 2101998.
34. Huang, Z.; Song, J.; Du, Y.; et al. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy. 2019, 4, 329-38.
35. Wang, Y.; Hao, S.; Liu, X.; et al. Ce-doped IrO2 electrocatalysts with enhanced performance for water oxidation in acidic media. ACS. Appl. Mater. Interfaces. 2020, 12, 37006-12.
36. Xie, Y.; Feng, Y.; Pan, S.; et al. Electrochemical leaching of Ni dopants in IrRu alloy electrocatalyst boosts overall water splitting. Adv. Funct. Mater. 2024, 34, 2406351.
37. Grimaud, A.; Demortière, A.; Saubanère, M.; et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy. 2017, 2, 16189.
38. Zhou, D.; Li, P.; Lin, X.; et al. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790-817.
39. Zhou, L.; Lu, S.; Guo, S. Recent progress on precious metal single atom materials for water splitting catalysis. SusMat 2021, 1, 194-210.
40. Rong, C.; Dastafkan, K.; Wang, Y.; Zhao, C. Breaking the activity and stability bottlenecks of electrocatalysts for oxygen evolution reactions in acids. Adv. Mater. 2023, 35, e2211884.
41. Yuan, C.; Zhao, H.; Huang, S.; et al. Designing and regulating catalysts for enhanced oxygen evolution in acid electrolytes. Carbon. Neutralization. 2023, 2, 467-93.
42. Lin, C.; Li, J.; Li, X.; et al. In-situ reconstructed Ru atom array on α-MnO2 with enhanced performance for acidic water oxidation. Nat. Catal. 2021, 4, 1012-23.
43. Zhang, N.; Feng, X.; Rao, D.; et al. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation. Nat. Commun. 2020, 11, 4066.
44. Du, H.; Luo, H.; Jiang, M.; Yan, X.; Jiang, F.; Chen, H. A review of activating lattice oxygen of metal oxides for catalytic reactions: reaction mechanisms, modulation strategies of activity and their practical applications. Appl. Catal. A. 2023, 664, 119348.
45. Huang, Z. F.; Xi, S.; Song, J.; et al. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.
46. Pan, Y.; Xu, X.; Zhong, Y.; et al. Direct evidence of boosted oxygen evolution over perovskite by enhanced lattice oxygen participation. Nat. Commun. 2020, 11, 2002.
47. Chen, H.; Lim, C.; Zhou, M.; et al. Activating lattice oxygen in perovskite oxide by B-site cation doping for modulated stability and activity at elevated temperatures. Adv. Sci. 2021, 8, e2102713.
48. Grimaud, A.; Diaz-Morales, O.; Han, B.; et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457-65.
49. Chen, L.; Liu, F.; Li, X.; et al. Surface adsorbed and lattice oxygen activated by the CeO2/Co3O4 interface for enhancive catalytic soot combustion: experimental and theoretical investigations. J. Colloid. Interface. Sci. 2023, 638, 109-22.
50. Zhang, N.; Chai, Y. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy. Environ. Sci. 2021, 14, 4647-71.
51. Zhai, P.; Wang, C.; Zhao, Y.; et al. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat. Commun. 2023, 14, 1873.
52. Jing, C.; Li, L.; Chin, Y. Y.; et al. Balance between FeIV-NiIV synergy and lattice oxygen contribution for accelerating water oxidation. ACS. Nano. 2024, 18, 14496-506.[DOI:10.1021/acsnano.4c01718.
53. Adamu, H.; Abba, S. I.; Anyin, P. B.; Sani, Y.; Yamani, Z. H.; Qamar, M. Tuning OER Electrocatalysts toward LOM pathway through the lens of multi-descriptor feature selection by artificial intelligence-based approach. ACS. Mater. Lett. 2023, 5, 299-320.
54. Zheng, Z.; Wu, D.; Chen, G.; et al. Microcrystallization and lattice contraction of NiFe LDHs for enhancing water electrocatalytic oxidation. Carbon. Energy. 2022, 4, 901-13.
55. Yang, S.; Qin, L.; Zhang, W.; et al. The mechanism of water oxidation from Mn-based heterogeneous electrocatalysts. Chinese. J. Struct. Chem. 2022, 41, 2204022-33.
56. Zhang, G.; Pei, J.; Wang, Y.; et al. Selective activation of lattice oxygen site through coordination engineering to boost the activity and stability of oxygen evolution reaction. Angew. Chem. Int. Ed. Engl. 2024, 63, e202407509.
57. Han, J.; Wang, H.; Wang, Y.; et al. Lattice oxygen activation through deep oxidation of Co4N by jahn-teller-active dopants for improved electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. Engl. 2024, 63, e202405839.
58. Zhang, Y.; Zhang, W.; Zhang, X.; et al. Activating lattice oxygen based on energy band engineering in oxides for industrial water/saline oxidation. Energy. Environ. Sci. 2024, 17, 3347-57.
59. Li, X.; Cheng, Z.; Wang, X. Understanding the mechanism of the oxygen evolution reaction with consideration of Spin. Electrochem. Energ. Rev. 2021, 4, 136-45.
60. Dong, J.; Qian, Z.; Xu, P.; et al. In situ raman spectroscopy reveals the structure evolution and lattice oxygen reaction pathway induced by the crystalline-amorphous heterojunction for water oxidation. Chem. Sci. 2022, 13, 5639-49.
61. Ma, Q.; Mu, S. Acidic oxygen evolution reaction: mechanism, catalyst classification, and enhancement strategies. Interdiscip. Mater. 2023, 2, 53-90.
62. Hu, Y.; Zheng, Y.; Jin, J.; et al. Understanding the sulphur-oxygen exchange process of metal sulphides prior to oxygen evolution reaction. Nat. Commun. 2023, 14, 1949.
63. Dionigi, F.; Zeng, Z.; Sinev, I.; et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 2020, 11, 2522.
64. Cho, K. H.; Park, S.; Seo, H.; et al. Capturing manganese oxide intermediates in electrochemical water oxidation at neutral pH by in situ raman spectroscopy. Angew. Chem. Int. Ed. Engl. 2021, 60, 4673-81.
65. Chen, D.; Yu, R.; Yu, K.; et al. Bicontinuous RuO2 nanoreactors for acidic water oxidation. Nat. Commun. 2024, 15, 3928.
66. Hao, Y.; Cao, X.; Lei, C.; Chen, Z.; Yang, X.; Gong, M. Chemical oxygen species on electrocatalytic materials during oxygen evolution reaction. Mater. Today. Catal. 2023, 2, 100012.
67. Su, H.; Zhou, W.; Zhou, W.; et al. In-situ spectroscopic observation of dynamic-coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation. Nat. Commun. 2021, 12, 6118.
68. Li, N.; Cai, L.; Gao, G.; et al. Operando direct observation of stable water-oxidation intermediates on Ca2-xIrO4 nanocrystals for efficient acidic oxygen evolution. Nano. Lett. 2022, 22, 6988-96.
69. Pastor, E.; Lian, Z.; Xia, L.; et al. Complementary probes for the electrochemical interface. Nat. Rev. Chem. 2024, 8, 159-78.
70. Zhu, K.; Zhu, X.; Yang, W. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. Int. Ed. Engl. 2019, 58, 1252-65.
71. Xin, S.; Tang, Y.; Jia, B.; et al. Coupling adsorbed evolution and lattice oxygen mechanism in Fe-Co(OH)2/Fe2O 3 heterostructure for enhanced electrochemical water oxidation. Adv. Funct. Materials. 2023, 33, 2305243.
72. Yao, N.; Jia, H.; Zhu, J.; et al. Atomically dispersed Ru oxide catalyst with lattice oxygen participation for efficient acidic water oxidation. Chem 2023, 9, 1882-96.
73. Yang, X.; Cheng, J.; Li, H.; Xu, Y.; Tu, W.; Zhou, J. Self-supported N-doped hierarchical Co3O4 electrocatalyst with abundant oxygen vacancies for acidic water oxidation. Chemical. Engineering. Journal. 2023, 465, 142745.
74. He, Z.; Zhang, J.; Gong, Z.; et al. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 2022, 13, 2191.
75. Nguyen, H. M.; Tang, H.; Huang, W.; Lin, M. Mechanisms for reactions of trimethylaluminum with molecular oxygen and water. Comput. Theor. Chem. 2014, 1035, 39-43.
76. Wang, X.; Xi, S.; Huang, P.; et al. Pivotal role of reversible NiO6 geometric conversion in oxygen evolution. Nature 2022, 611, 702-8.
77. Lim, C. Y. J.; Yilmaz, M.; Arce-Ramos, J. M.; et al. Surface charge as activity descriptors for electrochemical CO2 reduction to multi-carbon products on organic-functionalised Cu. Nat. Commun. 2023, 14, 335.
78. Kamar, R.; Agoston, R.; van, R. G. A.; Hinsley, G.; O'mullane, A. P.; Jones, M. W. M. Probing the effect of metal to ligand charge transfer on the oxygen evolution reaction in Au incorporated Co(OH)2 thin film electrocatalysts. J. Mater. Chem. A. 2023, 11, 20816-23.
79. Chen, F.; Wu, Z.; Adler, Z.; Wang, H. Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design. Joule 2021, 5, 1704-31.
80. Giordano, L.; Han, B.; Risch, M.; et al. pH dependence of OER activity of oxides: current and future perspectives. Catal. Today. 2016, 262, 2-10.
81. Pan, Y.; Wang, Z.; Wang, K.; et al. Dual doping of B and Fe activated lattice oxygen participation for enhanced oxygen evolution reaction activity in alkaline freshwater and seawater. Adv. Funct. Mater. 2024, 34, 2402264.
82. Tan, X.; Zhang, M.; Chen, D.; et al. Electrochemical etching switches electrocatalytic oxygen evolution pathway of IrOx/Y2O3 from adsorbate evolution mechanism to lattice-oxygen-mediated mechanism. Small 2023, 19, e2303249.
83. Niu, Z.; Lu, Z.; Qiao, Z.; et al. Robust Ru-VO2 bifunctional catalysts for all-pH overall water splitting. Adv. Mater. 2024, 36, e2310690.
84. Han, N.; Zhao, F.; Li, Y. Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J. Mater. Chem. A. 2015, 3, 16348-53.
85. Seabold, J. A.; Choi, K. S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186-92.
86. Ping, X.; Liu, Y.; Zheng, L.; et al. Locking the lattice oxygen in RuO2 to stabilize highly active Ru sites in acidic water oxidation. Nat. Commun. 2024, 15, 2501.
87. Lagunov, O.; Drenchev, N.; Chakarova, K.; Panayotov, D.; Hadjiivanov, K. Isotopic labelling in vibrational spectroscopy: a technique to decipher the structure of surface species. Top. Catal. 2017, 60, 1486-95.
88. Roth, J. P. Oxygen isotope effects as probes of electron transfer mechanisms and structures of activated O2. Acc. Chem. Res. 2009, 42, 399-408.
89. Kajihara, K.; Skuja, L.; Hosono, H. 18O-labeled interstitial oxygen molecules as probes to study reactions involving oxygen-related species in amorphous SiO2. J. Non-Cryst. Solids. 2012, 358, 3524-30.
90. Wen, X.; Sun, X.; Zhang, S.; Yu, G.; Sargent, S. D.; Lee, X. Continuous measurement of water vapor D/H and 18O/16O isotope ratios in the atmosphere. J. Hydrol. 2008, 349, 489-500.
91. Kerstel, E. R.; van, T. R.; Reuss, J.; Meijer, H. A. Simultaneous determination of the 2H/1H, 17O/16O, and 18O/16O isotope abundance ratios in water by means of laser spectrometry. Anal. Chem. 1999, 71, 5297-303.
92. Fan, J.; Zhang, X.; Han, M.; et al. Amorphous Ni-Fe-Mo oxides coupled with crystalline metallic domains for enhanced electrocatalytic oxygen evolution by promoted lattice-oxygen participation. Small 2024, 20, e2303927.
93. He, W.; Tan, X.; Guo, Y.; Xiao, Y.; Cui, H.; Wang, C. Grain-boundary-rich RuO2 porous nanosheet for efficient and stable acidic water oxidation. Angew. Chem. Int. Ed. Engl. 2024, 63, e202405798.
94. Zhang, L.; Wang, L.; Wen, Y.; Ni, F.; Zhang, B.; Peng, H. Boosting neutral water oxidation through surface oxygen modulation. Adv. Mater. 2020, 32, e2002297.
95. Wang, Y.; Yang, R.; Ding, Y.; et al. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation. Nat. Commun. 2023, 14, 1412.
96. Zhu, Y.; Tahini, H. A.; Hu, Z.; et al. Boosting oxygen evolution reaction by activation of lattice-oxygen sites in layered ruddlesden-popper oxide. EcoMat 2020, 2, e12021.
97. Liu, Z.; Li, H.; Kang, H.; N'diaye, A. T.; Lee, M. H. Lattice oxygen-mediated Ni-O-O-M formation for efficient oxygen evolution reaction in MOF@LDH core-shell structures. Chem. Eng. J. 2023, 454, 140403.
98. Liu, C.; Qian, J.; Ye, Y.; et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36-45.
99. Jo, S.; Park, W. B.; Lee, K. B.; et al. Bi/BiFe(oxy)hydroxide for sustainable lattice oxygen-boosted electrocatalysis at a practical high current density. Appl. Catal. B:. Environ. 2022, 317, 121685.
100. Xu, J.; Jin, H.; Lu, T.; et al. IrOx·nH2O with lattice water-assisted oxygen exchange for high-performance proton exchange membrane water electrolyzers. Sci. Adv. 2023, 9, eadh1718.
101. Li, Q.; He, Y.; Zhang, L.; et al. Optimizing oxygen transport in proton exchange membrane water electrolysis through tailored porosity configurations of porous transport layers. Appl. Energy. 2024, 370, 123621.
102. Wu, Z. Y.; Chen, F. Y.; Li, B.; et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2023, 22, 100-8.
103. Kong, S.; Li, A.; Long, J.; et al. Acid-stable manganese oxides for proton exchange membrane water electrolysis. Nat. Catal. 2024, 7, 252-61.
104. Zhang, Z.; Jia, C.; Ma, P.; et al. Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution. Nat. Commun. 2024, 15, 1767.
105. Liu, J.; Wang, T.; Lin, Z.; et al. Single-atom Co dispersed on polyoxometalate derivatives confined in bamboo-like carbon nanotubes enabling efficient dual-site lattice oxygen mediated oxygen evolution electrocatalysis for acidic water electrolyzers. Energy. Environ. Sci. 2024, 17, 3088-98.
106. Zhao, H.; Zhu, L.; Yin, J.; et al. Stabilizing lattice oxygen through Mn doping in NiCo2O4-δ spinel electrocatalysts for efficient and durable acid oxygen evolution. Angew. Chem. Int. Ed. Engl. 2024, 63, e202402171.
107. Huo, Y.; Xiu, S.; Meng, L.; Quan, B. Solvothermal synthesis and applications of micro/nano carbons: a review. Chem. Eng. J. 2023, 451, 138572.
108. Jo, S.; Kim, M.; Lee, K. B.; Choi, H.; Zhang, L.; Sohn, J. I. Nonprecious high-entropy chalcogenide glasses-based electrocatalysts for efficient and stable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Adv. Energy. Mater. 2023, 13, 2301420.
109. Thao, N. T. T.; Jang, J. U.; Nayak, A. K.; Han, H. Current trends of iridium-based catalysts for oxygen evolution reaction in acidic water electrolysis. Small. Sci. 2024, 4, 2300109.
110. Li, W.; Bu, Y.; Ge, X.; Li, F.; Han, G. F.; Baek, J. B. Recent advances in iridium-based electrocatalysts for acidic electrolyte oxidation. ChemSusChem 2024, 17, e202400295.
111. Li, W.; Feng, G.; Liu, J.; et al. The structural and chemical reactivity of lattice oxygens on β-PbO2 EOP electrocatalysts. Chinese. J. Struct. Chem. 2022, 41, 2212051-9.
112. Liu, Y.; Liang, X.; Chen, H.; et al. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chinese. J. Catal. 2021, 42, 1054-77.
113. Hu, J.; Jiang, D.; Weng, Z.; et al. A universal electrochemical activation enabling lattice oxygen activation in nickel-based catalyst for efficient water oxidation. Chem. Eng. J. 2022, 430, 132736.
114. Huang, Y.; Pellegrinelli, C.; Wachsman, E. D. Oxygen dissociation kinetics of concurrent heterogeneous reactions on metal oxides. ACS. Catal. 2017, 7, 5766-72.
115. Joshi, B.; Shivashankar, M. Recent advancement in the synthesis of Ir-based complexes. ACS. Omega. 2023, 8, 43408-32.
116. Chen, L.; Liang, H. Ir-based bifunctional electrocatalysts for overall water splitting. Catal. Sci. Technol. 2021, 11, 4673-89.
117. Xie, Y.; Yu, X.; Li, X.; Long, X.; Chang, C.; Yang, Z. Stable and high-performance Ir electrocatalyst with boosted utilization efficiency in acidic overall water splitting. Chem. Eng. J. 2021, 424, 130337.
118. Xie, Y.; Long, X.; Li, X.; Chang, C.; Qu, K.; Yang, Z. The template synthesis of ultrathin metallic Ir nanosheets as a robust electrocatalyst for acidic water splitting. Chem. Commun. 2021, 57, 8620-3.
119. Kwon, J.; Sun, S.; Choi, S.; et al. Tailored electronic structure of Ir in high entropy alloy for highly active and durable bifunctional electrocatalyst for water splitting under an acidic environment. Adv. Mater. 2023, 35, e2300091.
120. Yang, M.; Zhou, K.; Wang, C.; et al. Iridium single-atom catalyst coupled with lattice oxygen activated CoNiO2 for accelerating the oxygen evolution reaction. J. Mater. Chem. A. 2022, 10, 25692-700.
121. Wu, J.; Zou, W.; Zhang, J.; et al. Regulating Ir-O covalency to boost acidic oxygen evolution reaction. Small 2024, 20, e2308419.
122. Wang, Y.; Liu, S.; Qin, Q.; et al. Praseodymium iridium oxide as a competitive electrocatalyst for oxygen evolution reaction in acid media. Sci. China. Mater. 2021, 64, 2193-201.
123. Shi, Z.; Wang, Y.; Li, J.; et al. Confined Ir single sites with triggered lattice oxygen redox: toward boosted and sustained water oxidation catalysis. Joule 2021, 5, 2164-76.
124. Zhu, W.; Song, X.; Liao, F.; et al. Stable and oxidative charged Ru enhance the acidic oxygen evolution reaction activity in two-dimensional ruthenium-iridium oxide. Nat. Commun. 2023, 14, 5365.
125. Long, X.; Zhao, B.; Zhao, Q.; et al. Ru-RuO2 nano-heterostructures stabilized by the sacrificing oxidation strategy of Mn3O4 substrate for boosting acidic oxygen evolution reaction. Appl. Catal. B:. Environ. 2024, 343, 123559.
126. Vijayakumar, P.; Lenus, S.; Pradeeswari, K.; et al. In situ reconstructed layered double hydroxides via MOF engineering and Ru doping for decoupled acidic water oxidation enhancement. Energy. Fuels. 2024, 38, 4504-15.
127. Jin, H.; Liu, X.; An, P.; et al. Dynamic rhenium dopant boosts ruthenium oxide for durable oxygen evolution. Nat. Commun. 2023, 14, 354.
128. Zhou, G.; Wang, P.; Hu, B.; et al. Spin-related symmetry breaking induced by half-disordered hybridization in BixEr2-xRu2O7 pyrochlores for acidic oxygen evolution. Nat. Commun. 2022, 13, 4106.
129. Wen, Y.; Liu, C.; Huang, R.; et al. Introducing brønsted acid sites to accelerate the bridging-oxygen-assisted deprotonation in acidic water oxidation. Nat. Commun. 2022, 13, 4871.
130. Wang, H.; Yan, Z.; Cheng, F.; Chen, J. Advances in noble metal electrocatalysts for acidic oxygen evolution reaction: construction of under-coordinated active sites. Adv. Sci. 2024, 11, e2401652.
131. Chang, J.; Shi, Y.; Wu, H.; et al. Oxygen radical coupling on short-range ordered Ru atom arrays enables exceptional activity and stability for acidic water oxidation. J. Am. Chem. Soc. 2024, 146, 12958-68.
132. Wang, K.; Wang, Y.; Yang, B.; et al. Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy. Environ. Sci. 2022, 15, 2356-65.
133. Zhu, W.; Yao, F.; Cheng, K.; et al. Direct dioxygen radical coupling driven by octahedral ruthenium-oxygen-cobalt collaborative coordination for acidic oxygen evolution reaction. J. Am. Chem. Soc. 2023, 145, 17995-8006.
134. He, J.; Chen, W.; Gao, H.; et al. Tuning hydrogen binding modes within RuO2 lattice by proton and electron co-doping for active and stable acidic oxygen evolution. Chem. Catal. 2022, 2, 578-94.
135. Li, X.; Li, C.; Xie, Y.; Pan, S.; Luo, F.; Yang, Z. Anion effect on oxygen reduction reaction activity of nitrogen doped carbon nanotube encapsulated cobalt nanoparticles. Appl. Surf. Sci. 2024, 648, 158975.
136. Luo, F.; Pan, S.; Xie, Y.; Li, C.; Yu, Y.; Yang, Z. Atomically dispersed Ni electrocatalyst for superior urea-assisted water splitting. J. Energy. Chem. 2024, 90, 1-6.
137. Cui, X.; Ren, P.; Deng, D.; Deng, J.; Bao, X. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy. Environ. Sci. 2016, 9, 123-9.
138. Liu, J.; Ning, G.; Shi, K.; et al. N-doped hollow porous carbon spheres@Co Cu Fe alloy nanospheres as novel non-precious metal electrocatalysts for HER and OER. Inter. J. Hydrogen. Energy. 2022, 47, 5947-60.
139. Tan, B.; Huo, Z.; Sun, L.; et al. Ionic liquid-modulated synthesis of MnO2 nanowires for promoting propane combustion: microstructure engineering and regulation mechanism. Colloids. . Surf. A:. Phy. Eng. Aspects. 2023, 656, 130431.
140. Selvadurai, A. PB, Xiong T, Huang P, et al. Tailoring the cationic and anionic sites of LaFeO3 -based perovskite generates multiple vacancies for efficient water oxidation. J. Mater. Chem. A. 2021, 9, 16906-16.
141. Shi, Y.; Ma, Z. R.; Xiao, Y. Y.; et al. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat. Commun. 2021, 12, 3021.
142. Ham, K.; Kang, S.; Kim, Y.; Lee, Y.; Kim, Y.; Lee, J. Participation of the unstable lattice oxygen of cation-exchanged δ-MnO2 in the water oxidation reaction. J. Mater. Chem. A. 2023, 11, 21686-93.
143. Shi, Z.; Li, J.; Jiang, J.; et al. Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5-x catalyst/support interfaces. Angew. Chem. Int. Ed. Engl. 2022, 61, e202212341.
144. Yao, Y.; Hu, S.; Chen, W.; et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304-13.