REFERENCES

1. Fang, Y.; Gao, H.; Cheng, K.; et al. An overview of photothermal materials for solar-driven interfacial evaporation. Chinese. Chem. Lett. , 2024, 109925.

2. Ellah RG. Water resources in Egypt and their challenges, Lake Nasser case study. Egypt. J. Aquat. Res. 2020, 46, 1-12.

3. Zhang, C.; Liang, H. Q.; Xu, Z. K.; et al. Harnessing Solar-Driven Photothermal Effect toward the Water-Energy Nexus. Adv. Sci. 2019, 6.

4. Lu, Y.; Zhang, H.; Fan, D.; et al. Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment. J. Hazard. Mater. 2022, 423, 127128.

5. Balu, S.; Cheng, S.; Latthe, S. S.; et al. Solar-driven interfacial evaporation: materials design and device assembly. Energy. Mater. 2024, 4, 400021.

6. Cao, S.; Thomas, A.; Li, C. Emerging Materials for Interfacial Solar-Driven Water Purification. Angew. Chemie. -. Int. Ed. 2023, 62, e202214391.

7. Chen, C.; Kuang, Y.; Hu, L. Challenges and Opportunities for Solar Evaporation. Joule 2019, 3, 683-718.

8. Wang, P. Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci. Nano. 2018, 5, 1078-1089.

9. Li, Y.; Shi, Y.; Wang, H.; et al. Recent advances in carbon-based materials for solar-driven interfacial photothermal conversion water evaporation: Assemblies, structures, applications, and prospective. Carbon. Energy. 2023, 5, e331.

10. Nawaz, F.; Yang, Y.; Zhao, S.; et al. Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. J. Mater. Chem. A. Mater. 2021, 9, 16233-16254.

11. Irshad, M. S.; Wang, X.; Abbas, A.; et al. Salt-resistant carbon dots modified solar steam system enhanced by chemical advection. Carbon. N. Y. 2021, 176, 313-326.

12. Irshad, M. S.; Wang, X.; Abbasi, M. S.; et al. Semiconductive, Flexible MnO2 NWs/Chitosan Hydrogels for Efficient Solar Steam Generation. ACS. Sustain. Chem. Eng. 2021, 9, 3887-3900.

13. Peng, B.; Lyu, Q.; Gao, Y.; et al. Composite Polyelectrolyte Photothermal Hydrogel with Anti-biofouling and Antibacterial Properties for the Real-World Application of Solar Steam Generation. ACS. Appl. Mater. Interfaces. 2022, 14, 16546-16557.

14. Irshad, M. S.; Arshad, N.; Zhang, J.; et al. Wormlike Perovskite Oxide Coupled with Phase‐Change Material for All‐Weather Solar Evaporation and Thermal Storage Applications. Adv. Energy. Sustain. Res. 2023, 4, 2200158.

15. Zhang, Y.; Yan, H.; Wang, X.; et al. Highly efficient solar-absorber composite material based on tetrapyridylporphyrin for water evaporation and thermoelectric power generation. RSC. Adv. 2022, 12, 28997-29002.

16. Dao, V. D.; Vu, N. H.; Thi, D. H. L.; et al. Recent advances and challenges for water evaporation-induced electricity toward applications. Nano. Energy. 2021, 85, 105979.

17. Dao, V. D.; Vu, N. H.; Yun, S. Recent advances and challenges for solar-driven water evaporation system toward applications. Nano. Energy. 2020, 68, 104324.

18. Morawiec, S.; Mendes, M. J.; Priolo, F.; et al. Plasmonic nanostructures for light trapping in thin-film solar cells. Mater. Sci. Semicond. Process. 2019, 92, 10-18.

19. Ding, X.; Liow, C. H.; Zhang, M.; et al. . Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. J. Am. Chem. Soc. 2014, 136, 15684-15693.

20. Chen, J.; Ye, Z.; Yang, F.; et al. Plasmonic Nanostructures for Photothermal Conversion. Small. Science. 2021, 1, 2000055.

21. Chen, X.; Liu, S.; Yang, N.; et al. Hierarchical structure regulation for sequential steps in solar vapor generation. EcoMat 2023, 5, e12348.

22. Hanks, D. F.; Lu, Z.; Sircar, J.; et al. Nanoporous membrane device for ultra high heat flux thermal management. Microsyst. Nanoeng. 2018, 4, 1.

23. Ding, S.; Zhang, T.; Wu, M.; et al. Photothermal dual-layer hydrophilic/hydrophobic composite nanofibrous membrane for efficient solar-driven membrane distillation. J. Memb. Sci. 2023, 680, 121740.

24. Deemy, J. B.; Takagi, K. K.; McLachlan, R. L.; et al. Hydrology, geomorphology, and soils: an overview. In: Fundamentals of Tropical Freshwater Wetlands: From Ecology to Conservation Management. Elsevier; 2022:43-86.

25. Zhao, Z.; Wang, C.; Wei, D.; et al. Condensation device design represents a critical step for solar-driven water evaporation toward practical applications. Cell. Rep. Phys. Sci. 2024, 5, 101794.

26. Wang, J.; Kong, Y.; Liu, Z.; et al. Solar-driven interfacial evaporation: Design and application progress of structural evaporators and functional distillers. Nano. Energy. 2023, 108, 108115.

27. Zhu, L.; Gao, M.; Peh, C. K. N.; et al. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano. Energy. 2019, 57, 507-518.

28. Van, E. M. P. C.; Zijlstra, B.; Hensen, E. J. M.; et al. Enumerating active sites on metal nanoparticles: Understanding the size dependence of cobalt particles for CO dissociation. ACS. Catal. 2021, 11, 8484-8492.

29. Zhu, Q. L.; Xu, Q. Immobilization of Ultrafine Metal Nanoparticles to High-Surface-Area Materials and Their Catalytic Applications. Chem 2016, 1, 220-245.

30. Hutter, E.; Fendler, J. H. Exploitation of localized surface plasmon resonance. Advanced. Materials. 2004, 16, 1685-1706.

31. Peiris, S.; McMurtrie, J.; Zhu, H. Y. Metal nanoparticle photocatalysts: Emerging processes for green organic synthesis. Catal. Sci. Technol. 2016, 6, 320-338.

32. Boerigter, C.; Campana, R.; Morabito, M.; et al. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 2016, 7, 10545.

33. Liao, J.; Zhan, Y.; Liu, Q.; et al. Tunable surface plasmon resonance of Al-Cu bimetallic nanoparticles thin films induced by pulsed-laser. Appl. Surf. Sci. 2021, 540, 148397.

34. Tian, W.; Wu, H.; Su, C.; et al. Heterostructure based on silver/silver chloride nanocubes loaded titanium dioxide nanofibers: A high-efficient and recyclable visible light-responsive photocatalyst. J. Photochem. Photobiol. A. Chem. 2018, 350, 122-129.

35. Liu, Y.; Huang, S.; Huang, X.; et al. Enhanced photocatalysis of metal/covalent organic frameworks by plasmonic nanoparticles and homo/hetero-junctions. Mater. Horiz. 2024, 11, 1611-1637.

36. Tsarmpopoulou, M.; Ntemogiannis, D.; Stamatelatos, A.; et al. Silver Nanoparticles’ Localized Surface Plasmon Resonances Emerged in Polymeric Environments: Theory and Experiment. Micro 2024, 4, 318-333.

37. Cui, R.; Wei, J.; Du, C.; et al. Engineering trace AuNPs on monodispersed carbonized organosilica microspheres drives highly efficient and low-cost solar water purification. J. Mater. Chem. A. Mater. 2020, 8, 13311-13319.

38. Shi, L.; Wang, X.; Hu, Y.; et al. Solar-thermal conversion and steam generation: a review. Appl. Therm. Eng. 2020, 179, 115691.

39. Sharma, G.; Kumar, A.; Sharma, S.; et al. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King. Saud. Univ. Sci. 2019, 31, 257-269.

40. Ali, S.; Razzaq, A.; Kim, H.; et al. Activity, selectivity, and stability of earth-abundant CuO/Cu2O/Cu0-based photocatalysts toward CO2 reduction. Chem. Eng. J. 2022, 429, 131579.

41. Hossain, N.; Mobarak, M. H.; Mimona, M. A.; et al. Advances and significances of nanoparticles in semiconductor applications - A review. Results. Eng. 2023, 19, 101347.

42. Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol. C. Photochem. 2011, 12, 237-268.

43. Zhang, H.; Liu, J.; Xu, T.; et al. Recent Advances on Small Band Gap Semiconductor Materials (≤2.1 eV) for Solar Water Splitting. Catalysts 2023, 13, 728.

44. Zhang, F.; Wang, X.; Liu, H.; et al. Recent Advances and Applications of Semiconductor Photocatalytic Technology. Appl. Sci. 2019, 9, 2489.

45. Ahmad, I.; Zou, Y.; Yan, J.; et al. Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Adv. Colloid. Interface. Sci. 2023, 311, 102830.

46. Hassaan, M. A.; El-Nemr, M. A.; Elkatory, M. R.; et al. Principles of Photocatalysts and Their Different Applications: A Review. Top. Curr. Chem. 2023, 381, 31.

47. Tang, Z.; Ma, D.; Chen, Q.; et al. Nanomaterial-enabled photothermal-based solar water disinfection processes: Fundamentals, recent advances, and mechanisms. J. Hazard. Mater. 2022, 437, 129373.

48. Sun, Y.; Zhao, X.; Song, X.; et al. An all-in-one FeOx-rGO sponge fabricated by solid-phase microwave thermal shock for water evaporation and purification. J. Environ. Sci. 2024, 138, 671-683.

49. Wang, Y.; Zhang, Q.; Liu, Z.; et al. Photothermal water evaporation and purification on the interface evaporator constructed by Cu@Bi2WO6-C. Sep. Purif. Technol. 2024, 347, 127702.

50. Cheng, P.; Wang, D.; Schaaf, P. A Review on Photothermal Conversion of Solar Energy with Nanomaterials and Nanostructures: From Fundamentals to Applications. Adv. Sustain. Syst. 2022, 6, 2200115.

51. Shridharan, T. S.; Sivanantham, A.; Lee, J. H.; et al. Mechanochemical activation of silicon photothermal material for efficient interfacial solar desalination and wastewater purification. Chem. Eng. J. 2024, 486, 150247.

52. Cui, X.; Ruan, Q.; Zhuo, X.; et al. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem. Rev. 2023, 123, 6891-6952.

53. Sun, L.; Li, Z.; Li, Z.; et al. Design and mechanism of core-shell TiO2 nanoparticles as a high-performance photothermal agent. Nanoscale 2017, 9, 16183-16192.

54. Liu, L.; Miao, X.; Cheng, X.; et al. Preparation and characterization of ZnO/SiO2@n-octadecane nanocapsule for ultraviolet absorbing and photothermal conversion energy storage. J. Energy. Storage. 2022, 54, 105363.

55. Roca, A. G.; Lopez-Barbera, J. F.; Lafuente, A.; et al. Iron oxide nanoparticles (Fe3O4, γ-Fe2O3 and FeO) as photothermal heat mediators in the first, second and third biological windows. Phys. Rep. 2023, 1043, 1-35.

56. Chang, F.; Chen, H.; Zhang, X.; et al. N-p heterojunction Bi4O5I2/Fe3O4 composites with efficiently magnetic recyclability and enhanced visible-light-driven photocatalytic performance. Sep. Purif. Technol. 2020, 238, 116442.

57. Lv, X.; Dong, J.; Yuan, B.; et al. 2D/2D MoS2/ZnIn2S4 heterojunction for simultaneous realization of solar water evaporation and photocatalytic dye degradation. J. Alloys. Compd. 2023, 965, 171382.

58. Malik, A. H.; Habib, F.; Qazi, M. J.; et al. A short review article on conjugated polymers. J. Polym. Res. 2023, 30, 115.

59. Mdluli, S. B.; Ramoroka, M. E.; Yussuf, S. T.; et al. π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells. Polymers. (Basel). 2022, 14, 716.

60. Kang, S.; Kim, G. H.; Park, S. J. Conjugated Block Copolymers for Functional Nanostructures. Acc. Chem. Res. 2022, 55, 2224-2234.

61. Tran, V. V.; Lee, S.; Lee, D.; et al. Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications. Polymers. (Basel). 2022, 14, 3730.

62. K, N.; Rout, C. S. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC. Adv. 2021, 11, 5659-5697.

63. Kim, S.; Landfester, K.; Ferguson, C. T. J. Hairy Conjugated Microporous Polymer Nanoparticles Facilitate Heterogeneous Photoredox Catalysis with Solvent-Specific Dispersibility. ACS. Nano. 2022, 16, 17041-17048.

64. Guo, S.; Gu, D.; Yang, Y.; et al. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J. Nanobiotechnology. 2023, 21, 348.

65. Zhang, Z.; Shu, M.; Jiang, Y.; et al. Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. Chem. Eng. J. 2021, 414, 128889.

66. Zhang, H.; Wei, W.; Zhang, K. Emerging conjugated polymers for heterogeneous photocatalytic chemical transformation. Chem. Commun. 2023, 59, 9167-9181.

67. Qiao, S.; Di, M.; Jiang, J. X.; et al. Conjugated porous polymers for photocatalysis: The road from catalytic mechanism, molecular structure to advanced applications. EnergyChem 2022, 4, 100094.

68. Gong, H.; Xing, Y.; Li, J.; et al. Functionalized Linear Conjugated Polymer/TiO2 Heterojunctions for Significantly Enhancing Photocatalytic H2 Evolution. Molecules 2024, 29, 1103.

69. Guo, Y.; Hasi, Q. M.; Yu, J.; et al. Carboxymethyl cellulose/sulfonated conjugated microporous polymer composite aerogel for efficient pollution removal and water evaporation. Sep. Purif. Technol. 2023, 324, 124518.

70. Zhu, J.; Huang, L.; Bao, F.; et al. Carbon materials for enhanced photothermal conversion: Preparation and applications on steam generation. Mater. Rep:. Energy. 2024, 4, 100245.

71. Wei, C.; Jin, X.; Wu, C.; et al. Carbon spheres with high photothermal conversion efficiency for photothermal therapy of tumor. Diam. Relat. Mater. 2022, 126, 109048.

72. Li, S.; Zhang, J.; Han, J.; et al. Preparation of High Specific Surface Area Activated Carbon from Semi-Coke for Carbon-Based Supercapacitor Applications. J. Phys. Conf. Ser. 2023, 2529, 012022.

73. Wei, X.; Yi, Y.; Yuan, X.; et al. Intrinsic carbon structure modification overcomes the challenge of potassium bond chemistry. Energy. Environ. Sci. 2024, 17, 2968-3003.

74. Wang, Y.; Zhang, C.; Li, X.; et al. Metal-free carbon-based nanomaterials for electrochemical nitrogen and carbon dioxide reductions. Mater. Res. Bull. 2021, 140, 111294.

75. Zhang, S.; Hao, A.; Nguyen, N.; et al. Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering. Carbon. N. Y. 2019, 144, 628-638.

76. Cui, L.; Ren, X.; Sun, M.; et al. Carbon Dots: Synthesis, Properties and Applications. Nanomaterials 2021, 11, 3419.

77. Khayal, A.; Dawane, V.; Amin, M. A.; et al. Advances in the Methods for the Synthesis of Carbon Dots and Their Emerging Applications. Polymers. (Basel). 2021, 13, 3190.

78. Moreno-Lanceta, A.; Medrano-Bosch, M.; Melgar-Lesmes, P. Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. Pharmaceutics 2020, 12, 850.

79. Jin, M.; Wu, Z.; Guan, F.; et al. Hierarchically Designed Three-Dimensional Composite Structure on a Cellulose-Based Solar Steam Generator. ACS. Appl. Mater. Interfaces. 2022, 14, 12284-12294.

80. Wang, Y.; Wang, C.; Song, X.; et al. A facile nanocomposite strategy to fabricate a rGO-MWCNT photothermal layer for efficient water evaporation. J. Mater. Chem. A. Mater. 2018, 6, 963-971.

81. Su, J.; Cai, P.; Yan, T.; et al. Enhancing the photothermal conversion of tetrathiafulvalene-based MOFs by redox doping and plasmon resonance. Chem. Sci. 2022, 13, 1657-1664.

82. Guo, C.; Ma, X.; Wang, B. Metal-organic Frameworks-based Composites and Their Photothermal Applications. Acta. Chimi. Sin. 2021, 79, 967.

83. Xiao, J. D.; Jiang, H. L. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis. Acc. Chem. Res. 2019, 52, 356-366.

84. Lin, Z. J.; Lü, J.; Hong, M.; et al. Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem. Soc. Rev. 2014, 43, 5867-5895.

85. Al, O. A.; Ben, S. H.; Al, M. M.; et al. Recent advancements in MOFs synthesis and their green applications. Int. J. Hydrogen. Energy. 2022, 47, 2561-2593.

86. Yusuf, V. F.; Malek, N. I.; Kailasa, S. K. Review on Metal-Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS. Omega. 2022, 7, 44507-44531.

87. Hayes, O. R.; Ibrahim, A. A.; Adly, M. S.; et al. Solar-driven seawater desalination via plasmonic hybrid MOF/polymer and its antibacterial activity. RSC. Adv. 2023, 13, 18525-18537.

88. Li, J.; Lou, M.; Huang, S.; et al. Recycling treatment of dyeing wastewater by metal organic framework/graphene composite membrane based on photothermal utilization. Fangzhi. Xuebao/Journal. Text. Res. 2023, 44, 116-123.

89. Lohse, M. S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater. 2018, 28, 1705553.

90. Liu, Y.; Wang, M.; Dong, C.; et al. A thienyl‐benzodithiophene‐based two‐dimensional conjugated covalent organic framework for fast photothermal conversion. J. Polym. Sci. 2023, 61, 1843-1848.

91. Kandambeth, S.; Shinde, D. B.; Panda, M. K.; et al. Enhancement of Chemical Stability and Crystallinity in Porphyrin‐Containing Covalent Organic Frameworks by Intramolecular Hydrogen Bonds. Angew. Chemie. Int. Ed. 2013, 52, 13052-13056.

92. Jin, L.; Wang, K.; Yang, L.; et al. Engineering two-dimensional nanocatalysts for boosting water splitting. Int. J. Hydrogen. Energy. 2024, 51, 865-883.

93. Li, G.; Yue, Q.; Fu, P.; et al. Ionic Dye Based Covalent Organic Frameworks for Photothermal Water Evaporation. Adv. Funct. Mater. 2023, 33, 2213810.

94. Tang, X.; Chen, Z.; Xu, Q.; et al. Design of Photothermal Covalent Organic Frameworks by Radical Immobilization. CCS. Chem. 2022, 4, 2842-2853.

95. Zhu, Y.; Zhu, D.; Yan, Q.; et al. Metal Oxide Catalysts for the Synthesis of Covalent Organic Frameworks and One-Step Preparation of Covalent Organic Framework-Based Composites. Chem. Mater. 2021, 33, 6158-6165.

96. He, T.; Zhao, Y. Covalent Organic Frameworks for Energy Conversion in Photocatalysis. Angew. Chemie. Int. Ed. 2023, 62, e202303086.

97. Anjali, J.; Jose, V. K.; Lee, J. M. Carbon-based hydrogels: synthesis and their recent energy applications. J. Mater. Chem. A. Mater. 2019, 7, 15491-15518.

98. Hu, X.; Yang, J.; Tu, Y.; et al. Hydrogel-Based Interfacial Solar-Driven Evaporation: Essentials and Trails. Gels 2024, 10, 371.

99. Zheng, Z.; Liu, H.; Wang, X. Double-layered hydrogels based on phase change material and pen ink for continuous and efficient solar-driven seawater desalination. Desalination 2024, 574, 117276.

100. Xiao, C.; Liang, W.; Hasi, Q. M.; et al. Ag/polypyrrole co-modified poly(ionic liquid)s hydrogels as efficient solar generators for desalination. Mater. Today. Energy. 2020, 16, 100417.

101. He, H.; Song, X. M.; Huang, M.; et al. A photothermal and conductive composite hydrogel membrane for solar-driven synchronous desalination and salinity power generation. Green. Chem. 2023, 25, 9343-9350.

102. Li, L.; Xue, C.; Chang, Q.; et al. Polyelectrolyte Hydrogel-Functionalized Photothermal Sponge Enables Simultaneously Continuous Solar Desalination and Electricity Generation Without Salt Accumulation. Adv. Mater. 2024, 36, 2401171.

103. Zhu, H.; Du, R.; Zhao, H.; et al. Constructing a multivalent Co-confined N-doped C-Si hybrid hollow nanoreactor for synchronous pollutant mineralization and solar-driven interfacial water regeneration. J. Mater. Chem. A. Mater. 2024, 12, 8487-8501.

104. Ni, A.; Fu, D.; Lin, P.; et al. Eco-friendly photothermal hydrogel evaporator for efficient solar-driven water purification. J. Colloid. Interface. Sci. 2023, 647, 344-353.

105. Dong, Y.; Tan, Y.; Wang, K.; et al. Reviewing wood-based solar-driven interfacial evaporators for desalination. Water. Res. 2022, 223, 119011.

106. Hou, S. C.; Zhang, D. W.; Chen, J.; et al. Sulfonated PAM/PPy Cryogels with Lowered Evaporation Enthalpy for Highly Efficient Photothermal Water Evaporation. Polymers. (Basel). 2023, 15, 2108.

107. Shao, B.; Wu, X.; Wang, Y.; et al. A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. J. Mater. Chem. A. Mater. 2020, 8, 24703-24709.

108. Fan, D.; Lu, Y.; Zhang, H.; et al. Synergy of photocatalysis and photothermal effect in integrated 0D perovskite oxide/2D MXene heterostructures for simultaneous water purification and solar steam generation. Appl. Catal. B. 2021, 295, 120285.

109. Du, R.; Zhu, H.; Wang, S.; et al. Integration of bimetallic CuCo into N-doping SiC hollow nanoreactor for pollutant removal coupled solar-driven cleanwater regeneration. J. Environ. Chem. Eng. 2024, 12, 112119.

110. Li, H.; Aizudin, M.; Yang, S.; et al. Optimizing coupling effect of confined FeNi nanoalloys within graphitic carbon nanofibers to improve photothermal energy conversion efficiency for solar water purification. Sep. Purif. Technol. 2023, 326, 124802.

111. Reghunath, S.; Pinheiro, D.; KR, S. D. A review of hierarchical nanostructures of TiO2: Advances and applications. Appl. Surf. Sci. Adv. 2021, 3, 100063.

112. Sun, Y.; Zong, X.; Qu, D.; et al. Water management by hierarchical structures for highly efficient solar water evaporation. J. Mater. Chem. A. Mater. 2021, 9, 7122-7128.

113. Jia, G.; Wang, P.; Zhang, Y.; et al. Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers. Sci. Rep. 2016, 6, 25884.

114. Lei, W.; Khan, S.; Chen, L.; et al. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano. Res. 2021, 14, 1135-1140.

115. Ren, H.; Tang, M.; Guan, B.; et al. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion. Adv. Mater. 2017, 29, 1702590.

116. Fan, P.; Wu, H.; Zhong, M.; et al. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion. Nanoscale 2016, 8, 14617-14624.

117. Zhao, X.; Wang, T.; Wang, R.; et al. Superwetting photothermal membranes enabled by polyphenol-mediated nanostructured coating with raspberry-like architectures for solar-driven interfacial evaporation. Desalination 2022, 542, 116046.

118. Hua, Z.; Li, B.; Li, L.; Yin, X.; Chen, K.; Wang, W. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. J. Phys. Chem. C. 2017, 121.

119. Xiong, X.; Arshad, N.; Tao, J.; et al. Hierarchical Ti3C2/BiVO4 microcapsules for enhanced solar-driven water evaporation and photocatalytic H2 evolution. J. Colloid. Interface. Sci. 2024, 668, 385-398.

120. Miao, J.; Lv, F.; Gulfam, R.; et al. Synergistic effect of superhydrophilic skeleton decorated with hierarchical micro/nanostructures and graphene oxide on solar evaporation. Appl. Energy. 2023, 350, 121779.

121. Shi, P.; Li, J.; Song, Y.; et al. Cogeneration of Clean Water and Valuable Energy/Resources via Interfacial Solar Evaporation. Nano. Lett. 2024, 24, 5673-5682.

122. Martin-Martinez, F. J.; Jin, K.; López, B. D.; et al. The Rise of Hierarchical Nanostructured Materials from Renewable Sources: Learning from Nature. ACS. Nano. 2018, 12, 7425-7433.

123. Saleque, A. M.; Ma, S.; Ahmed, S.; et al. Solar Driven Interfacial Steam Generation Derived from Biodegradable Luffa Sponge. Adv. Sustain. Syst. 2021, 5, 2000291.

124. Li, Z.; Yu, L.; Ma, H.; et al. An efficient interfacial solar evaporator featuring a hierarchical porous structure entirely derived from waste cotton. Sci. Total. Environ. 2023, 903, 166212.

125. Lu, Y.; Wang, X.; Fan, D.; et al. Biomass derived Janus solar evaporator for synergic water evaporation and purification. Sustain. Mater. Technol. 2020, 25, e00180.

126. Dhanalakota, P.; Abraham, S.; Mahapatra, P. S.; et al. Thermal performance of a two-phase flat thermosyphon with surface wettability modifications. Appl. Therm. Eng. 2022, 204, 117862.

127. Liang, X.; Wu, L.; Wei, Z. Experimental Investigation on Evaporator Surface Modification for Hydrophobicity and Frost Resistance. Mater. Sci. 2023, 29, 48-57.

128. Wang, Y.; Wu, X.; Gao, T.; et al. Same materials, bigger output: A reversibly transformable 2D-3D photothermal evaporator for highly efficient solar steam generation. Nano. Energy. 2021, 79, 105477.

129. Xie, M.; Zhang, P.; Cao, Y.; et al. A three-dimensional antifungal wooden cone evaporator for highly efficient solar steam generation. NPJ. Clean. Water. 2023, 6, 12.

130. Gao, T.; Li, Y.; Chen, C.; et al. Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement. Small. Methods. 2019, 3, 1800176.

131. Indhu, A. R.; Keerthana, L.; Dharmalingam, G. Plasmonic nanotechnology for photothermal applications - an evaluation. Beilstein. J. Nanotechnol. 2023, 14, 380-419.

132. Shi, S.; Wang, X.; Li, Z.; et al. Multifunctional Integrated Superhydrophobic Coatings with Unique Fluorescence and Micro/Micro/Nano-Hierarchical Structures Enabled by in situ Self-Assembly. ACS. Appl. Mater. Interfaces. 2023, 15, 7442-7453.

133. Sun, G.; Zu, F.; Koch, N.; et al. in situ Infrared Spectroscopic Monitoring and Characterization of the Growth of Polydopamine (PDA) Films. Phys. Status. Solidi. B. Basic. Res. 2019, 256, 1800308.

134. Zhu, S.; Lei, Z.; Dou, Y.; et al. Sputter-deposited nickel nanoparticles on Kevlar fabrics with laser-induced graphene for efficient solar evaporation. Chem. Eng. J. 2023, 452, 139403.

135. Ge, Y.; Su, Z.; Wang, L.; et al. Self-Rotating Spherical Evaporator Based on Hydrogel and Black Titanium Oxide for Continuous Desalination of Seawater. ACS. Mater. Lett. 2023, 5, 2576-2583.

136. Wang, X.; Yang, D.; An, X.; et al. Phytic Acid Doped Polypyrrole as a Mediating Layer Promoting Growth of Prussian Blue on Cotton Fibers for Solar-Driven Interfacial Water Evaporation. Polymers. (Basel). 2021, 14, 6.

137. Du, R.; Zhu, H.; Zhao, H.; et al. Coupling ultrafine plasmonic Co3O4 with thin-layer carbon over SiO2 nanosphere for dual-functional PMS activation and solar interfacial water evaporation. J. Alloys. Compd. 2023, 940, 168816.

138. Du, R.; Zhu, H.; Zhao, H.; et al. . Modulating photothermal properties by integration of fined Fe-Co in confined carbon layer of SiO2 nanosphere for pollutant degradation and solar water evaporation. Environ. Res. 2023, 222, 115365.

139. Bae, S. R.; Heo, D. Y.; Kim, S. Y. Recent progress of perovskite devices fabricated using thermal evaporation method: Perspective and outlook. Mater. Today. Adv. 2022, 14, 100232.

140. Wei, C.; Zhang, X.; Zhang, Q.; et al. Easily scaled-up and portable 3D polysulfone hollow fiber membrane tree for high-efficient solar-driven clean water production. Sol. Energy. Mater. Sol. Cells. 2023, 257, 112340.

141. Wang, Z.; Gao, J.; Zhou, J.; et al. Engineering Metal-Phenolic Networks for Solar Desalination with Directional Salt Crystallization. Adv. Mater. 2023, 35, 2209015.

142. Yu, Q.; Wang, Q.; Feng, T.; et al. A Novel Functionalized MoS2-Based Coating for Efficient Solar Desalination. Materials 2023, 16, 3105.

143. Li, D.; Cheng, Y.; Luo, Y.; et al. Electrospun Nanofiber Materials for Photothermal Interfacial Evaporation. Materials 2023, 16, 5676.

144. Lin, Y.; Xu, H.; Shan, X.; et al. Solar steam generation based on the photothermal effect: from designs to applications, and beyond. J. Mater. Chem. A. Mater. 2019, 7, 19203-19227.

145. Iqbal, M. A.; Anwar, N.; Malik, M.; et al. Nanostructures/Graphene/Silicon Junction-Based High-Performance Photodetection Systems: Progress, Challenges, and Future Trends. Adv. Mater. Interfaces. 2023, 10, 2202208.

146. Wang, L.; Yang, G.; Jiang, L.; et al. Improved Photo-Excited Carriers Transportation of WS2-O-Doped-Graphene Heterostructures for Solar Steam Generation. Small 2023, 19, 2370138.

147. Chen, H.; Wu, S. L.; Wang, H. L.; et al. Photothermal Devices for Sustainable Uses Beyond Desalination. Adv. Energy. Sustain. Res. 2021, 2, 2000056.

148. Liu, M.; Zhu, H.; Du, R.; et al. Constructing functional thermal-insulation-layer on Co3O4 nanosphere for reinforced local-microenvironment photothermal PMS activation in pollutant degradation. J. Environ. Chem. Eng. 2023, 11, 109939.

149. Quintanilla, M.; García, I.; De, L. I.; et al. Thermal monitoring during photothermia: Hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry. Theranostics 2019, 9, 7298-7312.

150. Meng, X.; Wang, X.; Yin, K.; et al. Integration of photothermal water evaporation with photocatalytic microplastics upcycling via nanofluidic thermal management. Proc. Natl. Acad. Sci. U. S. A. 2024, 121, e2317192121.

151. Zhang, Q.; Mo, D.; Moon, S.; et al. Bubble nucleation and growth on microstructured surfaces under microgravity. NPJ. Microgravity. 2024, 10, 13.

152. Wu, X.; Wu, Z.; Wang, Y.; et al. All-Cold Evaporation under One Sun with Zero Energy Loss by Using a Heatsink Inspired Solar Evaporator. Adv. Sci. 2021, 8, 2002501.

153. Tian, C.; Li, C.; Chen, D.; et al. Sandwich hydrogel with confined plasmonic Cu/carbon cells for efficient solar water purification. J. Mater. Chem. A. Mater. 2021, 9, 15462-15471.

154. Zeng, X.; Yuan, J.; Fang, W.; et al. Bi-functional carbon foam/TiO2 composite absorber for solar steam generation and photocatalytic purification. Surfaces. Interfaces. 2023, 43, 103570.

155. Xing, J.; Tong, J.; Liu, Y.; et al. A high-efficiency ammonia-responsive solar evaporator. Nanoscale 2020, 12, 9680-9687.

156. Wang, A.; Liang, H.; Chen, F.; et al. Facile synthesis of C3N4/NiIn2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance. Appl. Catal. B. 2022, 310, 121336.

157. Buckerfield, S. J.; Quilliam, R. S.; Bussiere, L.; et al. Chronic urban hotspots and agricultural drainage drive microbial pollution of karst water resources in rural developing regions. Sci. Total. Environ. 2020, 744, 140898.

158. Allaq, A. A. A.; Mahid, H. H.; Yahya, E. B.; et al. Emerging Drinking Water Borne Diseases: A Review on Types, Sources and Health Precaution. J. Pharm. Res. Int. 2023, 35, 1-17.

159. Kim, B. C.; Jeong, E.; Kim, E.; et al. Bio-organic-inorganic hybrid photocatalyst, TiO2 and glucose oxidase composite for enhancing antibacterial performance in aqueous environments. Appl. Catal. B. 2019, 242, 194-201.

160. Amarnath, M.; Basu, H.; Basu, R.; et al. Self-assembled Cu doped NiO loaded reduced graphene oxide: Multifunctional photothermal framework for interfacial water evaporation, disinfection and power generation. Mater. Today. Sustain. 2024, 26, 100725.

161. Li, Y.; Liu, P.; Gao, Y.; et al. Scattered Co-anchored MoS2 synergistically boosting photothermal capture and storage of phase change materials. J. Energy. Chem. 2024, 95, 208-215.

162. Yang, F.; Chen, J.; Ye, Z.; et al. Ni-based Plasmonic/Magnetic Nanostructures as Efficient Light Absorbers for Steam Generation. Adv. Funct. Mater. 2021, 31, 2006294.

163. Chen, Y.; Mao, Z.; Yin, J.; et al. Plasmonic metal/doped-semiconductor nanocomposites for high-efficiency solar-driven clean water production. Sep. Purif. Technol. 2023, 325, 124637.

164. Elmozughi, A. F.; Solomon, L.; Oztekin, A.; Neti, S. Encapsulated phase change material for high temperature thermal energy storage - Heat transfer analysis. Int. J. Heat. Mass. Transf. 2014, 78, 1135-1144.

165. Luo, X.; Hao, B.; Xiang, H.; et al. A novel phase change materials used for direct photothermal conversion and efficient thermal storage. Sol. Energy. Mater. Sol. Cells. 2023, 251, 112142.

166. Teffah, K.; Zhang, Y.; Mou, X. Modeling and Experimentation of New Thermoelectric Cooler-Thermoelectric Generator Module. Energies. (Basel). 2018, 11, 576.

167. Saleque, A. M.; Thakur, A. K.; Saidur, R.; et al. rGO coated cotton fabric and thermoelectric module arrays for efficient solar desalination and electricity generation. J. Mater. Chem. A. Mater. 2024, 12, 405-418.

168. Huo, Y.; Yan, T.; Chang, X.; et al. Expanded graphite@octadecanol composite phase change material with photothermal conversion interface. Sol. Energy. 2023, 263, 111922.

169. Li, A.; Huang, M.; Hu, D.; et al. Polydopamine-coated metal-organic framework-based composite phase change materials for photothermal conversion and storage. Chinese. Chem. Lett. 2023, 34, 107916.

170. Ristanto, W.; Dan, M.; Adi, T. S.; et al. The Impact of Wind Speed on the Rate of Water Evaporation in a Desalination Chamber. J. Adv. Res. Fluid. Mech. Therm. Sci. 2023, 106, 39-50.

171. Meng, F. L.; Gao, M.; Ding, T.; et al. Modular Deformable Steam Electricity Cogeneration System with Photothermal, Water, and Electrochemical Tunable Multilayers. Adv. Funct. Mater. 2020, 30, 2002867.

172. Mehrkhah, R.; Goharshadi, E. K.; Mohammadi, M. Highly efficient solar desalination and wastewater treatment by economical wood-based double-layer photoabsorbers. J. Ind. Eng. Chem. 2021, 101, 334-347.

173. Saleque, A. M.; Saha, S.; Ivan, M. N. A. S.; et al. Reduced graphene oxide/TiTe2 quantum dot coated waste face mask recycled for highly efficient solar steam generation. Sol. Energy. Mater. Sol. Cells. 2023, 253, 112232.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/