REFERENCES
1. Deng Y, Hussain A, Raza W, Cai X, Liu D, Shen J. Review on current development of polybenzimidazole membrane for lithium battery. J Energy Chem 2024;91:579-608.
2. Huang J, Cheng L, Zhang Z, et al. High-performance all-solid-state lithium metal batteries enabled by ionic covalent organic framework composites. Adv Energy Mater 2024;14:2400762.
3. Ye M, Chen J, Deng H, et al. In-situ electrochemical passivation for constructing high-voltage PEO-based solid-state lithium battery. Chem Eng J 2024;488:151108.
4. Zhang X, Xu P, Duan J, et al. A dicarbonate solvent electrolyte for high performance 5 V-Class lithium-based batteries. Nat Commun 2024;15:536.
5. Li X, Kim JT, Luo J, et al. Structural regulation of halide superionic conductors for all-solid-state lithium batteries. Nat Commun 2024;15:53.
6. Cheng H, Yan C, Chang L, Dirican M, Orenstein R, Zhang X. Garnet-type composite polymer electrolyte for room-temperature all-solid-state Li-S battery. ACS Appl Energy Mater 2024;7:3071-81.
7. Wei Y, Li Z, Chen Z, et al. Polymeric electronic shielding layer enabling superior dendrite suppression for all-solid-state lithium batteries. Acs Nano 2024;18:5965-80.
8. Mu Y, Chen Y, Wu B, Zhang Q, Lin M, Zeng L. Dual vertically aligned electrode-inspired high-capacity lithium batteries. Adv Sci 2022;9:2203321.
9. Dong S, Sheng L, Wang L, et al. Challenges and prospects of all-solid-state electrodes for solid-state lithium batteries. Adv Funct Mater 2023;33:2304371.
10. Zhang Y, Wang J, Xue Z. Electrode protection and electrolyte optimization via surface modification strategy for high-performance lithium batteries. Adv Funct Mater 2024;34:2311925.
11. Zhang T, He W, Zhang W, et al. Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chem Sci 2020;11:8686-707.
12. Castillo J, Qiao L, Santiago A, et al. Perspective of polymer-based solid-state Li-S batteries. Energy Mater 2022;2:200003.
13. Yang B, Li T, Pan Y, et al. Design strategy towards flame-retardant gel polymer electrolytes for safe lithium metal batteries. Energy Mater 2024;4:400061.
14. Orenstein R, Li Z, Dirican M, et al. A comparatively low cost, easy-to-fabricate, and environmentally friendly PVDF/garnet composite solid electrolyte for use in lithium metal cells paired with lithium iron phosphate and silicon. ACS Appl Mater Interfaces 2024;16:33428-38.
15. Cheng H, Yan C, Orenstein R, et al. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li-metal batteries. Adv Fiber Mater 2022;4:532-46.
16. Zhang T, Shao Y, Zhang X, et al. Fast lithium ionic conductivity in complex hydride-sulfide electrolytes by double anions substitution. Small Methods 2021;5:2100609.
17. Xu L, Li J, Shuai H, et al. Recent advances of composite electrolytes for solid-state Li batteries. J Energy Chem 2022;67:524-48.
18. Liu S, Liu W, Ba D, et al. Filler-integrated composite polymer electrolyte for solid-state lithium batteries. Adv Mater 2023;35:2110423.
19. Kim S, Lee H, Park J, Ku M, Kim M, Kim YB. Lithium-preserved sintering method for perovskite-based solid electrolyte thin films via flash light sintering for all-solid-state lithium-ion batteries. J Mater Chem A 2023;11:21586-94.
20. Xue S, Chen S, Fu Y, et al. Revealing the role of active fillers in Li-ion conduction of composite solid electrolytes. Small 2023;19:2305326.
21. Cui P, Sun C, Wei W. Polyurethane/Li10GeP2S12 composite electrolyte with high ions transfer number and ions capture for all-solid-state lithium batteries. Energy Mater 2023;3:300017.
22. Wang X, Jiang W, Zhu X, et al. A dynamically stable sulfide electrolyte architecture for high-performance all-solid-state lithium metal batteries. Small 2024;20:2306763.
23. Cai M, Jin J, Xiu T, Song Z, Badding ME, Wen Z. In situ constructed lithium-salt lithiophilic layer inducing bi-functional interphase for stable LLZO/Li interface. Energy Storage Mater 2022;47:61-9.
24. Luo L, Zheng F, Gao H, et al. Tuning the electron transport behavior at Li/LATP interface for enhanced cyclability of solid-state Li batteries. Nano Res 2023;16:1634-41.
25. Gu T, Chen L, Huang Y, et al. Engineering ferroelectric interlayer between Li1.3Al0.3Ti1.7(PO4)3 and lithium metal for stable solid-state batteries operating at room temperature. Energy Environ Mater 2023;6:e12531.
26. Wang L, Wang L, Shi Q, et al. In-situ constructed SnO2 gradient buffer layer as a tight and robust interphase toward Li metal anodes in LATP solid-state batteries. J Energy Chem 2023;80:89-98.
27. Li Z, Fu J, Zhou X, et al. Ionic conduction in polymer-based solid electrolytes. Adv Sci 2023;10:2201718.
28. Zhang N, Wu S, Zheng H, Li G, Liu H, Duan H. Recent progress of multilayer polymer electrolytes for lithium batteries. Energy Mater 2023;3:300009.
29. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019;5:2326-52.
30. Sun Y, Wang J, Fu D, et al. Flexible composite solid electrolyte with an active inorganic filler. ACS Sustain Chem Eng 2021;9:2237-45.
31. Bresser D, Hosoi K, Howell D, et al. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA. J Power Sources 2018;382:176-68.
32. Li T, Panda PK, Hsieh CT, Gandomi YA, Yang PC. Lithium iron phosphate cathode supported solid lithium batteries with dual composite solid electrolytes enabling high energy density and stable cyclability. J Energy Storage 2024;81:110444.
33. Park S, Chaudhary R, Han SA, et al. Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries. Energy Mater 2023;3:300005.
34. Wang Y, Wang Q, Zhang D, et al. Enabling stable interface by constructing asymmetric organic-inorganic bi-functional composite electrolyte of high-voltage lithium metal batteries. J Energy Storage 2024;91:112099.
35. Wei L, Xu X, Xi K, et al. Ultralong cycling and interfacial regulation of bilayer heterogeneous composite solid-state electrolytes in lithium metal batteries. ACS Appl Mater Interfaces 2024;16:33578-89.
36. Liu Y, He P, Zhou H. Rechargeable solid-state Li-air and Li-S batteries: materials, construction, and challenges. Adv Energy Mater 2018;8:1701402.
37. Zhou J, Wang X, Fu J, et al. A 3D cross-linked metal-organic framework (MOF)-derived polymer electrolyte for dendrite-free solid-state lithium-ion batteries. Small 2024;20:2309317.
38. Zhou S, Han Z, Wang X, et al. Low-cost and high-safety montmorillonite-based solid electrolyte for lithium metal batteries. Appl Clay Sci 2024;251:107329.
39. Chang Z, Qiao Y, Yang H, et al. Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew Chem Int Ed 2021;60:15572-81.
40. Lin D, Liu W, Liu Y, et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett 2016;16:459-65.
41. Liu W, Lin D, Sun J, Zhou G, Cui Y. Improved lithium ionic conductivity in composite polymer electrolytes with oxide-ion conducting nanowires. ACS Nano 2016;10:11407-13.
42. Chen L, Li W, Fan LZ, Nan CW, Zhang Q. Intercalated electrolyte with high transference number for dendrite-free solid-state lithium batteries. Adv Funct Mater 2019;29:1901047.
43. Bae J, Li Y, Zhang J, et al. A 3D Nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew Chem Int Ed 2018;57:2096-100.
44. Zhu M, Wu J, Zhong WH, Lan J, Sui G, Yang X. A Biobased Composite gel polymer electrolyte with functions of lithium dendrites suppressing and manganese ions trapping. Adv Energy Mater 2018;8:1702561.
45. Xu H, Chien PH, Shi J, et al. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). P Natl Aca Sci USA 2019;116:11815-21.
46. Bae J, Li Y, Zhao F, Zhou X, Ding Y, Yu G. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Mater 2018;15:46-52.
47. Zhou Q, Ma J, Dong S, Li X, Cui G. Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries. Adv Mater 2019;31:1902029.
48. Shen Z, Cheng Y, Sun S, Ke X, Liu L, Shi Z. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation. Carbon Energy 2021;3:482-508.
49. Maitra A, Heuer A. Cation transport in polymer electrolytes: a microscopic approach. Phys Rev Lett 2007;98:227802.
50. Zhou S, Zhong S, Dong Y, et al. Composition and structure design of poly(vinylidene fluoride)-based solid polymer electrolytes for lithium batteries. Adv Funct Mater 2023;33:2214432.
51. Zhao Y, Li L, Zhou D, et al. Opening and constructing stable lithium-ion channels within polymer electrolytes. Angew Chem Int Ed 2024;63:202404728.
52. Zhang Q, Liu K, Ding F, Liu X. Recent advances in solid polymer electrolytes for lithium batteries. Nano Res 2017;10:4139-74.
53. Lin Q, Kundu D, Skyllas-Kazacos M, et al. Perspective on lewis acid-base interactions in emerging batteries. Adv Mater 2024;36:2406151.
54. Rajendran S, Uma T. Effect of ceramic oxide on PVC-PMMA hybrid polymer electrolytes. Ionics 2000;6:288-93.
55. Ma C, Dai K, Hou H, et al. High ion-conducting solid-state composite electrolytes with carbon quantum dot nanofillers. Adv Sci 2018;5:1700996.
56. Zhang J, Zhao N, Zhang M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 2016;28:447-54.
57. Zhang B, Tan R, Yang L, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater 2018;10:139-59.
58. Park M, Zhang X, Chung M, Less GB, Sastry AM. A review of conduction phenomena in Li-ion batteries. J Power Sources 2010;195:7904-29.
59. Islam MS, Driscoll DJ, Fisher CAJ, Slater PR. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater 2005;17:5085-92.
60. Chroneos A, Yildiz B, Tarancón A, Parfitt D, Kilner JA. Oxygen diffusion in solid oxidefuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ Sci 2011;4:2774-89.
61. Li Z, Huang HM, Zhu JK, et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl Mater Interfaces 2019;11:784-91.
62. Mohapatra SR, Thakur AK, Choudhary RNP. Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage applications. J Power Sources 2009;191:601-13.
63. Zheng J, Tang M, Hu YY. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed 2016;55:12538-42.
64. Yi E, Wang W, Kieffer J, Laine RM. Flame made nanoparticles permit processing of dense, flexible, Li+ conducting ceramic electrolyte thin films of cubic-Li7La3Zr2O12 (c-LLZO). J Mater Chem A 2016;4:12947-54.
65. Zheng Y, Yao Y, Ou J, et al. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem Soc Rev 2020;49:8790-839.
66. Chen L, Li Y, Li SP, Fan LZ, Nan CW, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018;46:176-84.
67. Quartarone E, Mustarelli P. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem Soc Rev 2011;40:2525-40.
68. Agrawal RC, Pandey GP. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 2008;41:223001.
70. Dirican M, Yan C, Zhu P, Zhang X. Composite solid electrolytes for all-solid-state lithium batteries. Mater Sci Eng R Rep 2019;136:27-46.
71. Diederichsen KM, Mcshane EJ, Mccloskey BD. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. Acs Energy Lett 2017;2:2563-75.
72. Nag A, Ali MA, Singh A, Vedarajan R, Matsumi N, Kaneko T. N-Boronated polybenzimidazole for composite electrolyte design of highly ion conducting pseudo solid-state ion gel electrolytes with a high Li-transference number. J Mater Chem A 2019;7:4459-68.
73. Mindemark J, Lacey MJ, Bowden T, Brandell D. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 2018;81:114-43.
74. Jia M, Khurram Tufail M, Guo X. Insight into the key factors in high Li+ transference number composite electrolytes for solid lithium batteries. ChemSusChem 2022;16:e202201801.
75. Wang GX, Yang L, Wang JZ, Liu HK, Dou SX. Enhancement of ionic conductivity of PEO based polymer electrolyte by the addition of nanosize ceramic powders. J Nanosci Nanotechno 2005;5:1135-40.
76. Shin JH, Kim KW, Ahn HJ, Ahn JH. Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3-TinO2n-1 composite polymer electrolytes for lithium/sulfur battery. Mater Sci Eng 2002;95:148-56.
77. Tamilselvi P, Hema M, Asath Bahadur S. Investigation of nanocomposite polymer electrolytes for lithium ion batteries. Polym Sci Ser A 2018;60:102-9.
78. Lu G, Wei H, Shen C, et al. Bifunctional MOF doped PEO composite electrolyte for long-life cycle solid lithium ion battery. ACS Appl Mater Interfaces 2022;14:45476-83.
79. Ren D, Tang X, Wang Q, Du H, Ding L. Aluminum-lithium alloy fillers enhancing the room temperature performances of polymer electrolytes for all-solid-state lithium batteries. ACS Omega 2024;9:35920-8.
80. Masoud EM, El-bellihi AA, Bayoumy WA, Mousa MA. Effect of LiAlO2 nanoparticle filler concentration on the electrical properties of PEO-LiClO4 composite. Mater Res Bull 2013;48:1148-54.
81. Aravindan V, Vickraman P. Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVDF/PVC composite polymer electrolytes (CPE). J Phys D Appl Phys 2007;40:6754.
82. Zhang Y, Wang X, Feng W, et al. Effects of the shapes of BaTiO3 nanofillers on PEO-based electrolytes for all-solid-state lithium-ion batteries. Ionics 2018;25:1471-80.
83. Xi J, Qiu X, Zhu W, Tang X. Enhanced electrochemical properties of poly(ethylene oxide)-based composite polymer electrolyte with ordered mesoporous materials for lithium polymer battery. Micropor Mesopor Mater 2006;88:1-7.
84. Zhang Y, Zhao Y, Gosselink D, Chen P. Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 2014;21:381-5.
85. Ma Y, Li LB, Gao GX, Yang XY, You Y. Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries. Electrochim Acta 2015;187:535-42.
86. Milian Pila CR, Cappe EP, Mohallem NDS, et al. Effect of the LLTO nanoparticles on the conducting properties of PEO-based solid electrolyte. Solid State Sci 2019;88:41-7.
87. Zhou D, Zhang M, Sun F, et al. Performance and behavior of LLZO-based composite polymer electrolyte for lithium metal electrode with high capacity utilization. Nano Energy 2020;77:105196.
88. Yu X, Liu Y, Goodenough JB, Manthiram A. Rationally designed PEGDA-LLZTO composite electrolyte for solid-state lithium batteries. ACS Appl Mater Interfaces 2021;13:30703-11.
89. Li X, Wang D, Wang H, Yan H, Gong Z, Yang Y. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery. ACS Appl Mater Interfaces 2019;11:22745-53.
90. Li D, Chen L, Wang T, Fan LZ. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Appl Mater Interfaces 2018;10:7069-78.
91. Xu A, Wang R, Yao M, et al. Electrochemical properties of an Sn-doped LATP ceramic electrolyte and its derived sandwich-structured composite solid electrolyte. Nanomaterials 2022;12:2082.
92. Zhu L, Zhu P, Yao S, Shen X, Tu F. High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery. Int J Energy Res 2019;43:4854-66.
93. Xu H, Huang S, Qian J, et al. Safe solid-state PEO/TPU/LLZO nano network polymer composite gel electrolyte for solid state lithium batteries. Colloid Surface A 2022;653:130040.
94. Zhai H, Xu P, Ning M, Cheng Q, Mandal J, Yang Y. A flexible solid composite electrolyte with vertically aligned and connected ion-conducting nanoparticles for lithium batteries. Nano Lett 2017;17:3182-7.
95. Fu KK, Gong Y, Dai J, et al. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proc Natl Acad Sci USA 2016;113:7094-9.
96. Chen R, Li Q, Yu X, Chen L, Li H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem Rev 2020;120:6820-77.
97. Li Z, Xie HX, Zhang XY, Guo X. In situ thermally polymerized solid composite electrolytes with a broad electrochemical window for all-solid-state lithium metal batteries. J Mater Chem A 2020;8:3892-900.
98. Zhu Y, He X, Mo Y. First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A 2016;4:3253-66.
99. Li B, Wang C, Yu R, et al. Recent progress on metal-organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering. Energy Environ Sci 2024;17:1854-84.
100. Zhao W, Yi J, He P, Zhou H. Solid-state electrolytes for lithium-ion batteries: fundamentals, challenges and perspectives. Electrochem Energy Rev 2019;2:574-605.
101. Chu Y, Shen Y, Guo F, et al. Advanced characterizations of solid electrolyte interphases in lithium-ion batteries. Electrochem Energy Rev 2020;3:187-219.
102. Zhang Q, Yue B, Shao C, et al. Suppression of lithium dendrites in all-solid-state lithium batteries by using a Janus-structured composite solid electrolyte. Chem Eng J 2022;443:136479.
103. Dong D, Zhou B, Sun Y, et al. Polymer electrolyte glue: a universal interfacial modification strategy for all-solid-state Li batteries. Nano Lett 2019;19:2343-9.
104. Su H, Li J, Zhong Y, et al. A scalable Li-Al-Cl stratified structure for stable all-solid-state lithium metal batteries. Nat Commun 2024;15:4202.
105. Jia L, Zhu J, Zhang X, Guo B, Du Y, Zhuang X. Li-solid electrolyte interfaces/interphases in all-solid-state Li batteries. Electrochem Energy Rev 2024;7:12.
106. Zhang J, Li S, Wang X, et al. Construction of stable Li2O-rich solid electrolyte interphase for practical PEO-based Li-metal batteries. Adv Energy Mater 2023;14:2302587.
107. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 2019;18:1278-91.
108. Yu S, Schmidt RD, Garcia-Mendez R, et al. Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem Mater 2016;28:197-206.
109. Du A, Lu H, Liu S, et al. Breaking the trade-off between ionic conductivity and mechanical strength in solid polymer electrolytes for high-performance solid lithium batteries. Adv Energy Mater 2024;14:2400808.
110. Weston JE, Steele BCH. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ion 1982;7:75-9.
111. Chen G, Lu J, Li L, Chen L, Jiang X. Microstructure control and properties of β"-Al2O3 solid electrolyte. J Alloy Compd 2016;673:295-301.
112. Zhao R, Wu Y, Liang Z, et al. Metal-organic frameworks for solid-state electrolytes. Energy Environ Sci 2020;13:2386-403.
113. Peta G, Bublil S, Alon-yehezkel H, et al. Toward high performance all solid-state Na batteries: investigation of electrolytes comprising NaPF6, Poly(ethylene oxide) and TiO2. J Electrochem Soc 2021;168:110553.
114. Pan J, Zhao P, Yao H, Hu L, Fan HJ. Inert filler selection strategies in Li-ion gel polymer electrolytes. ACS Appl Mater Interfaces 2024;16:48706-12.
115. Wang XL, Mei A, Li M, Lin YH, Nan CW. Polymer composite electrolytes containing ionically active mesoporous SiO2 particles. J Appl Phys 2007;102:054907.
116. Wang C, Yang T, Zhang W, et al. Hydrogen bonding enhanced SiO2/PEO composite electrolytes for solid-state lithium batteries. J Mater Chem A 2022;10:3400-8.
117. Tang S, Lan Q, Xu L, et al. A novel cross-linked nanocomposite solid-state electrolyte with super flexibility and performance for lithium metal battery. Nano Energy 2020;71:104600.
118. Zhang Z, Zhang S, Geng S, Zhou S, Hu Z, Luo J. Agglomeration-free composite solid electrolyte and enhanced cathode-electrolyte interphase kinetics for all-solid-state lithium metal batteries. Energy Storage Mater 2022;51:19-28.
119. Zhan H, Wu M, Wang R, et al. Excellent performances of composite polymer electrolytes with porous vinyl-functionalized SiO2 nanoparticles for lithium metal batteries. Polymers 2021;13:2468.
120. Bao W, Zhao L, Zhao H, et al. Vapor phase infiltration of ZnO quantum dots for all-solid-state PEO-based lithium batteries. Energy Storage Mater 2021;43:258-65.
121. Xia S, Zhao Y, Yan J, Yu J, Ding B. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films. ACS Nano 2021;15:3161-70.
122. Acosta M, Novak N, Rojas V, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl Phys Rev 2017;4:041305.
123. Singh PK, Chandra A. Role of the dielectric constant of ferroelectric ceramic in enhancing the ionic conductivity of a polymer electrolyte composite. J Phys D Appl Phys 2003;36:L93.
124. Mazurenko I, Etienne M, Francius G, Vakulko I, Walcarius A. Macroporous carbon nanotube-carbon composite electrodes. Carbon 2016;109:106-16.
125. Zhang E, Wang J, Wang B, Yu X, Yang H, Lu B. Unzipped carbon nanotubes for aluminum battery. Energy Storage Mater 2019;23:72-8.
126. Delgado-Rosero MI, Jurado-Meneses NM, Uribe-Kaffure R. Composite polymer electrolytes based on (PEO)4CF3COOLi and multi-walled carbon nanotube (MWCNT). Polymers 2023;15:49.
127. Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebili H. High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 2012;12:1152-6.
128. Wang A, Xu H, Liu X, et al. High electrochemical performances of solid nano-composite star polymer electrolytes enhanced by different carbon nanomaterials. Compos Sci Technol 2017;152:68-75.
129. Zhu Y, Zheng Y, Liu J, et al. Molecular coupling strategy achieving in situ synthesis of agglomeration-free solid composite electrolytes. J Phys Chem Lett 2024;15:733-43.
130. Zhao Y, Li L, Shan Y, et al. In situ construction channels of lithium-ion fast transport and uniform deposition to ensure safe high-performance solid batteries. Small 2023;19:2301572.
131. Jiang S, Lv T, Peng Y, Pang H. MOFs containing solid-state electrolytes for batteries. Adv Sci 2023;10:2206887.
132. Lei H, Tu J, Li S, et al. MOF-based quasi-solid-state electrolyte for long-life Al-Se battery. J Energy Chem 2023;86:237-45.
133. Lu C, Wu Y, Rong Y, et al. Dual-functional application of a metal-organic framework in high-performance all-solid-state lithium metal batteries. Chem Eng J 2023;475:146152.
134. Wang Z, Zhou H, Meng C, et al. Enhancing ion transport: function of ionic liquid decorated MOFs in polymer electrolytes for all-solid-state lithium batteries. ACS Appl Energy Mater 2020;3:4265-74.
135. Miao Z, Zhang F, Zhao H, et al. Tailoring local electrolyte solvation structure via a mesoporous molecular sieve for dendrite-free zinc batteries. Adv Funct Mater 2022;32:2111635.
136. Jiang YX, Chen ZF, Zhuang QC, et al. A novel composite microporous polymer electrolyte prepared with molecule sieves for Li-ion batteries. J Power Sources 2006;160:1320-8.
137. Ding Z, Tang Q, Zhang Q, Yao P, Liu X, Wu J. A flexible solid polymer electrolyte enabled with lithiated zeolite for high performance lithium battery. Nano Res 2023;16:9443-52.
138. Lu J, Li Y. Perovskite-type Li-ion solid electrolytes: a review. J Mater Sci Mater Electron 2021;32:9736-54.
139. Lu J, Li Y, Ding Y. Structure and conductivity of Li3/8Sr7/16xAxZr1/4 Nb3/4O3 (A = Ca, Ba) Li-ion solid electrolytes. JOM 2020;72:3256-61.
140. Mitsuishi K, Ohnishi T, Tanaka Y, et al. Nazca lines by La ordering in La2/3-xLi3xTiO3 ion-conductive perovskite. Appl Phys Lett 2012;101:073903.
141. Lu J, Li Y, Ding Y. Li-ion conductivity and electrochemical stability of A-site deficient perovskite-structured Li3x-yLa1-xAl1-yTiyO3 electrolytes. Mater Res Bull 2020;133:111019.
142. Hua C, Fang X, Wang Z, Chen L. Lithium storage in perovskite lithium lanthanum titanate. Electrochem Commun 2013;32:5-8.
143. Lu J, Li Y, Ding Y. Structure, stability, and ionic conductivity of perovskite Li2x-ySr1-x-yLayTiO3 solid electrolytes. Ceram Int 2020;46:7741-7.
144. Yu K, Jin L, Li Y, Liu G, Wei X, Yan Y. Structure and conductivity of perovskite Li0.355La0.35Sr0.3Ti0.995M0.005O3 (M = Al, Co and In) ceramics. Ceram Int 2019;45:23941-7.
145. Lee SJ, Bae JJ, Son JT. Structural and electrical effects of Y-doped Li0.33La0.56-xYxTiO3 solid electrolytes on all-solid-state lithium ion batteries. J Korean Phys Soc 2019;74:73-7.
146. Dixit M, Muralidharan N, Bisht A, et al. Tailoring of the anti-perovskite solid electrolytes at the grain-scale. ACS Energy Lett 2023;8:2356-64.
147. Gao L, Zhang X, Zhu J, et al. Boosting lithium ion conductivity of antiperovskite solid electrolyte by potassium ions substitution for cation clusters. Nat Commun 2023;14:6807.
148. Yoshikawa K, Yamamoto T, Sugumar MK, Motoyama M, Iriyama Y. Room temperature operation and high cycle stability of an all-solid-state lithium battery fabricated by cold pressing using soft Li2OHBr solid electrolyte. Energy Fuels 2021;35:12581-7.
149. Lü X, Howard JW, Chen A, et al. Antiperovskite Li3OCl superionic conductor films for solid-state Li-ion batteries. Adv Sci 2016;3:1500359.
150. Ou J, Tatagari V, Senevirathna I, et al. On the formation and properties of amorphous and crystalline Li3-yBay/2OCl electrolytes. J Power Sources 2024;609:234685.
151. Zhang Y, Meng Z, Wang Y. Sr doped amorphous LLTO as solid electrolyte material. J Electrochem Soc 2020;167:080516.
152. Romero M, Faccio R, Vázquez S, Mombrú ÁW. Enhancement of lithium conductivity and evidence of lithium dissociation for LLTO-PMMA nanocomposite electrolyte. Mater Lett 2016;172:1-5.
153. Xia W, Zhao Y, Zhao F, et al. Antiperovskite electrolytes for solid-state batteries. Chem Rev 2022;122:3763-819.
154. Dawson JA, Attari TS, Chen H, Emge SP, Johnston KE, Islam MS. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes. Energy Environ Sci 2018;11:2993-3002.
155. Wang Y, Richards WD, Ong SP, et al. Design principles for solid-state lithium superionic conductors. Nat Mater 2015;14:1026-31.
156. Ye Y, Deng Z, Gao L, et al. Lithium-rich anti-perovskite Li2OHBr-based polymer electrolytes enabling an improved interfacial stability with a three-dimensional-structured lithium metal anode in all-solid-state batteries. ACS Appl Mater Interfaces 2021;13:28108-17.
157. Wang C, Fu K, Kammampata SP, et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem Rev 2020;120:4257-300.
158. Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 2014;43:4714-27.
159. O’callaghan MP, Powell AS, Titman JJ, Chen GZ, Cussen EJ. Switching on fast lithium ion conductivity in Garnets: the structure and transport properties of Li3+xNd3Te2-xSbxO12. Chem Mater 2008;20:2360-9.
160. Xie H, Alonso JA, Li Y, Fernández-Díaz MT, Goodenough JB. Lithium distribution in aluminum-Free cubic Li7La3Zr2O12. Chem Mater 2011;23:3587-9.
161. Li Y, Han JT, Wang CA, Xie H, Goodenough JB. Optimizing Li+ conductivity in a garnet framework. J Mater Chem 2012;22:15357-61.
162. Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 2007;46:7778-81.
163. Kodgire P, Tripathi B, Chandra P. Review of garnet-based solid electrolytes for Li-ion batteries (LIBs). J Electron Mater 2024;53:2203-28.
164. Kotobuki M, Koishi M. Preparation of Li7La3Zr2O12 solid electrolyte via a sol-gel method. Ceram Int 2014;40:5043-7.
165. Wang C, Lin PP, Gong Y, Liu ZG, Lin TS, He P. Co-doping effects of Ba2+ and Ta5+ on the microstructure and ionic conductivity of garnet-type solid state electrolytes. J Alloy Compd 2021;854:157143.
166. Wang D, Zhong G, Dolotko O, et al. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J Mater Chem A 2014;2:20271-9.
167. Dhivya L, Janani N, Palanivel B, Murugan R. Li+ transport properties of W substituted Li7La3Zr2O12 cubic lithium Garnets. Appl Phys Lett 2013;3:089902.
168. Luo Y, Li X, Zhang Y, Ge L, Chen H, Guo L. Electrochemical properties and structural stability of Ga- and Y- co-doping in
169. Ramakumar S, Satyanarayana L, Manorama SV, Murugan R. Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys Chem Chem Phys 2013;15:11327-38.
170. Il’ina EA, Lyalin ED, Antonov BD, Pankratov AA, Vovkotrub EG. Sol-gel synthesis of Al- and Nb-co-doped Li7La3Zr2O12 solid electrolytes. Ionics 2020;26:3239-47.
171. Bai L, Xue W, Xue Y, et al. Interfacial Ion-transport mechanism of Li7(Al0.1)La3Zr2O12 solid electrolyte modified by using a spark plasma sintering method. ChemElectroChem 2018;5:3918-25.
172. Zhang Y, Deng J, Hu D, et al. Synergistic regulation of garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte by Li+ concentration and Li+ transport channel size. Electrochim Acta 2019;296:823-9.
173. Chen F, Yang D, Zha W, et al. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim Acta 2017;258:1106-14.
174. Karthik K, Murugan R. Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. J Solid State Electrochem 2018;22:2989-98.
175. Nguyen HL, Luu VT, Nguyen MC, et al. Nb/Al co-doped Li7La3Zr2O12 composite solid electrolyte for high-performance all-solid-state batteries. Adv Funct Mater 2022;32:2207874.
176. Lu Z, Peng L, Rong Y, et al. Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination. Energy Environ Mater 2023;7:12498.
177. Huo H, Chen Y, Luo J, Yang X, Guo X, Sun X. Rational design of hierarchical “ceramic-in-polymer” and “polymer-in-ceramic” electrolytes for dendrite-free solid-state batteries. Adv Energy Mater 2019;9:1804004.
178. Danusso F, Tieghi G. Strength versus composition of rigid matrix particulate composites. Polymer 1986;27:1385-90.
179. Yang K, Chen L, Ma J, He YB, Kang F. Progress and perspective of Li1 + xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries. InfoMat 2021;3:1195-217.
180. Boaretto N, Ghorbanzade P, Perez-Furundarena H, et al. Transport properties and local ions dynamics in LATP-based hybrid solid electrolytes. Small 2023;20:2305769.
181. Arbi K, Bucheli W, Jiménez R, Sanz J. High lithium ion conducting solid electrolytes based on NASICON Li1+xAlxM2-x(PO4)3 materials (M=Ti, Ge and 0≤x≤ 0.5). J Eur Ceram Soc 2015;35:1477-84.
182. Key B, Schroeder DJ, Ingram BJ, Vaughey JT. Solution-based synthesis and characterization of lithium-ion conducting phosphate ceramics for lithium metal batteries. Chem Mater 2012;24:287-93.
183. Huang L, Wen Z, Wu M, Wu X, Liu Y, Wang X. Electrochemical properties of Li1.4Al0.4Ti1.6(PO4)3 synthesized by a co-precipitation method. J Power Sources 2011;196:6943-6.
184. Wu XM, Li XH, Zhang YH, Xu MF, He ZQ. Synthesis of Li1.3Al0.3Ti1.7(PO4)3 by sol-gel technique. Mater Lett 2004;58:1227-30.
185. Kosova NV, Devyatkina ET, Stepanov AP, Buzlukov AL. Lithium conductivity and lithium diffusion in NASICON-type Li1+xTi2-xAlx(PO4)3 (x = 0; 0.3) prepared by mechanical activation. Ionics 2008;14:303-11.
186. Siller V, Morata A, Eroles MN, et al. High performance LATP thin film electrolytes for all-solid-state microbattery applications. J Mater Chem A 2021;9:17760-9.
187. Kotobuki M, Koishi M. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources. Ceram Int 2013;39:4645-9.
188. Berbano SS, Guo J, Guo H, Lanagan MT, Randall CA. Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte. J Am Ceram Soc 2017;100:2123-35.
189. Kotobuki M, Yan B, Pan F, Lu L, Savilov S, Aldoshin S. Low temperature sintering of crystallized Li1.5Al0.5Ge1.5(PO4)3 using hot-press technique. Mater Today Pro 2019;17:408-15.
190. Liu Y, Chen J, Gao J. Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte. Solid State Ion 2018;318:27-34.
191. Kubanska A, Castro L, Tortet L, Schäf O, Dollé M, Bouchet R. Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics. Solid State Ion 2014;266:44-50.
192. Yan B, Kang L, Kotobuki M, He L, Liu B, Jiang K. Boron group element doping of Li1.5Al0.5Ge1.5(PO4)3 based on microwave sintering. J Solid State Electrochem 2020;25:527-34.
193. Liu Y, Li C, Li B, et al. Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries. Adv Energy Mater 2018;8:1702374.
194. Yu J, Liu Q, Hu X, et al. Smart construction of multifunctional Li1.5Al0.5Ge1.5(PO4)3|Li intermediate interfaces for solid-state batteries. Energy Storage Mater 2022;46:68-75.
195. Sun Z, Liu L, Lu Y, et al. Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor. J Eur Ceram Soc 2019;39:402-8.
196. Huang ZH, Li J, Li LX, et al. Boosting lithium-ion transport capability of LAGP/PPO composite solid electrolyte via component regulation from ‘Ceramics-in-Polymer’ to ‘Polymer-in-Ceramics’. Ceram Int 2022;48:25949-57.
197. Panda PK, Cho TS, Hsieh CT, Yang PC. Cobalt- and copper-doped NASICON-type LATP polymer composite electrolytes enabling lithium titania electrode for solid-state lithium batteries with high-rate capability and excellent cyclic performance. J Energy Storage 2024;95:112559.
198. Lu X, Hai J, Zhang F, Li X, Li J. Preparation and infiltration of NASICON-type solid electrolytes with microporous channels. Ceram Int 2022;48:2203-11.
199. Zhang Z, Wang X, Li X, et al. Review on composite solid electrolytes for solid-state lithium-ion batteries. Mater Today Sustain 2023;21:100316.
200. Zheng F, Li C, Li Z, et al. Advanced composite solid electrolytes for lithium batteries: filler dimensional design and ion path optimization. Small 2023;19:220655.
201. Liu W, Lee SW, Lin D, et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat Energy 2017;2:17035.
202. Hua S, Jing MX, Han C, et al. A novel titania nanorods-filled composite solid electrolyte with improved room temperature performance for solid-state Li-ion battery. Int J Energy Res 2019;43.
203. Luo B, Wang W, Wang Q, et al. Facilitating ionic conductivity and interfacial stability via oxygen vacancies-enriched TiO2 micro rods for composite polymer electrolytes. Chem Eng J 2023;460:141329.
204. Xu J, Ma G, Wang N, Zhao S, Zhou J. Borderline metal centers on nonporous metal-organic framework nanowire boost fast Li-ion interfacial transport of composite polymer electrolyte. Small 2022;18:2204163.
205. Wu Z, Xie Z, Yoshida A, et al. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. J Colloid Interface Sci 2020;565:110-8.
206. Yu W, Deng N, Shi D, et al. One-dimensional oxide nanostructures possessing reactive surface defects enabled a lithium-rich region and high-voltage stability for all-solid-state composite electrolytes. ACS Nano 2023;17:22872-84.
207. Wang L, Yi S, Liu Q, et al. Bifunctional lithium-montmorillonite enabling solid electrolyte with superhigh ionic conductivity for high-performanced lithium metal batteries. Energy Storage Mater 2023;63:102961.
208. Xiao Z, Long T, Song L, Zheng Y, Wang C. Research progress of polymer-inorganic filler solid composite electrolyte for lithium-ion batteries. Ionics 2021;28:15-26.
209. Zhu L, Zhu P, Fang Q, Jing M, Shen X, Yang L. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim Acta 2018;292:718-26.
210. Bi J, Mu D, Wu B, et al. A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. J Mater Chem A 2020;8:706-13.
211. Li Y, Zhang W, Dou Q, Wong KW, Ng KM. Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. J Mater Chem A 2019;7:3391-8.
212. Sun J, Li Y, Zhang Q, Hou C, Shi Q, Wang H. A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chem Eng J 2019;375:121922.
213. Ding J, Wang W, Zhang Y, et al. Improving the ionic conductivity of polymer electrolytes induced by ceramic nanowire fillers with abundant lithium vacancies. Phys Chem Chem Phys 2024;26:6316-24.
214. Pei X, Mu J, Hong J, Wei W, Luo W, He G. Solution-processed 2D hectorite nanolayers for high-efficient composite solid-state electrolyte. Appl Clay Sci 2022;216:106363.
215. Xu M, Xin Z, Wang J, et al. Emerging application of 2D materials for dendrite-free metal batteries. Energy Mater 2024;4:400066.
216. Vijayakumar V, Ghosh M, Asokan K, et al. 2D layered nanomaterials as fillers in polymer composite electrolytes for lithium batteries. Adv Energy Mater 2023;13:2203326.
217. Liang J, Luo J, Sun Q, Yang X, Li R, Sun X. Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries. Energy Storage Mater 2019;21:308-34.
218. Sun Z, Li Y, Zhang S, et al. g-C3N4 nanosheets enhanced solid polymer electrolytes with excellent electrochemical performance, mechanical properties, and thermal stability. J Mater Chem A 2019;7:11069-76.
219. Wu Q, Fang M, Jiao S, et al. Phase regulation enabling dense polymer-based composite electrolytes for solid-state lithium metal batteries. Nat Commun 2023;14:6296.
220. Xu L, Xiao X, Tu H, et al. Engineering functionalized 2D metal-organic frameworks nanosheets with fast Li+ conduction for advanced solid Li batteries. Adv Mater 2023;35:2303193.
221. Saleem A, Iqbal R, Majeed MK, et al. Boosting lithium-ion conductivity of polymer electrolyte by selective introduction of covalent organic frameworks for safe lithium metal batteries. Nano Energy 2024;128:109848.
222. Zhao Y, Li L, Yang H, Fan S, Li S, Tong H. MXene and silk fibroin peptide team up to build a 1+1>2 in situ SEI film. Energy Storage Mater 2024;65:103126.
223. Zhao Y, Li L, Zhou D, Shan Y, Chen X, Cui W. A charge equalizer in accordion-MXene-modified layer leading to spherical lithium deposition. Energy Environ Mater 2023;6:12463.
224. Shan Y, Li L, Chen X, Fan S, Yang H, Jiang Y. Gentle haulers of lithium-ion-nanomolybdenum carbide fillers in solid polymer electrolyte. ACS Energy Lett 2022;7:2289-96.
225. Liu K, Zhang R, Sun J, Wu M, Zhao T. Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte for all-solid-state lithium metal batteries. ACS Appl Mater Interfaces 2019;11:46930-37.
226. Hamao N, Yamaguchi Y, Hamamoto K. Densification of a NASICON-type LATP electrolyte sheet by a cold-sintering process. Materials 2021;14:4737.
227. Gu B, Zhan C, Liu BH, et al. Two-dimensional layered lithium lanthanum titanium oxide/graphene-like composites as electrodes for lithium-ion batteries. Dalton Trans 2022;51:7076-83.
228. Cheng EJ, Liu M, Li Y, Abe T, Kanamura K. Effects of porosity and ionic liquid impregnation on ionic conductivity of garnet-based flexible sheet electrolytes. J Power Sources 2022;517:230705.
229. Huang C, Huang S, Wang A, et al. Stabilizing the Li1.4Al0.4Ti1.6(PO4)3/Li interface with an in situ constructed multifunctional interlayer for high energy density batteries. J Mater Chem A 2022;10:25500-8.
230. Liu Z, Borodin A, Endres F. Ionic liquid and polymer coated garnet solid electrolytes for high-energy solid-state lithium metal batteries. Energy Technol 2021;10:2100907.
231. Xu K, Xu C, Jiang Y, Cai J, Ni J, Lai C. Sandwich structured PVDF-HFP-based composite solid electrolytes for solid-state lithium metal batteries. Ionics 2022;28:3243-53.
232. Fu Y, Gu Z, Gan Q, Mai YW. A review on the ionic conductivity and mechanical properties of composite polymer electrolytes (CPEs) for lithium batteries: insights from the perspective of polymer/filler composites. Mat Sci Eng R 2024;160:100815.
233. Jiang T, He P, Liang Y, Fan LZ. All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chem Eng J 2021;421:129965.
234. Zou S, Yang Y, Wang J, et al. In situ polymerization of solid-state polymer electrolytes for lithium metal batteries: a review. Energy Environ Sci 2024;17:4426-60.
235. Chen J, Wang C, Wang G, Zhou D, Fan LZ. An interpenetrating network polycarbonate-based composite electrolyte for high-voltage all-solid-state lithium-metal batteries. Energy Mater 2022;2:200023.
236. Guo J, Zheng J, Zhang W, Lu Y. Recent advances of composite solid-state electrolytes for lithium-based batteries. Energy Fuels 2021;35:11118-40.
237. Xie H, Bao Y, Cheng J, et al. Flexible garnet solid-state electrolyte membranes enabled by Tile-and-Grout design. ACS Energy Lett 2019;4:2668-74.
238. Zekoll S, Marriner-Edwards C, Hekselman AKO, et al. Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries. Energy Environ Sci 2018;11:185-201.
239. Yang H, Mu D, Wu B, Bi J, Zhang L, Rao S. Improving cathode/Li6.4La3Zr1.4Ta0.6O12 electrolyte interface with a hybrid PVDF-HFP-based buffer layer for solid lithium battery. J Mater Sci 2020;55:11451-61.
240. Shen C, Huang Y, Yang J, Chen M, Liu Z. Unraveling the mechanism of ion and electron migration in composite solid-state electrolyte using conductive atomic force microscopy. Energy Storage Mater 2021;39:271-7.
241. Sun M, Liu T, Yuan Y, et al. Visualizing lithium dendrite formation within solid-state electrolytes. ACS Energy Lett 2021;6:451-8.
242. Biao J, Han B, Cao Y, et al. Inhibiting formation and reduction of Li2CO3 to LiCx at grain boundaries in garnet electrolytes to prevent Li penetration. Adv Mater 2023;35:2208951.
243. Ye Q, Liang H, Wang S, et al. Fabricating a PVDF skin for PEO-based SPE to stabilize the interface both at cathode and anode for Li-ion batteries. J Energy Chem 2022;70:356-62.
244. Kozdra S, Wójcik A, Możdżonek M, Florczak Ł, Opaliński I, Michałowski PP. Poly (vinylidene fluoride) solid polymer electrolyte structure revealed by secondary ion mass spectrometry. Polymer 2022;259:125364.
245. Li J, Cai Y, Zhang F, et al. Exceptional interfacial conduction and LiF interphase for ultralong life PEO-based all-solid-state batteries. Nano Energy 2023;118:108985.
246. Pang P, Bai Y, Wang H, et al. Ga/Ta co-doped LLZO enhanced voltage tolerance and lithium dendrite resistance of composite solid electrolytes. J Energy Storage 2024;84:110809.
247. Yang K, Ma J, Li Y, et al. Weak-interaction environment in a composite electrolyte enabling ultralong-cycling high-voltage solid-state lithium batteries. J Am Chem Soc 2024;146:11371-81.
248. Li Y, Wang H. Composite solid electrolytes with NASICON-type LATP and PVDF-HFP for solid-state lithium batteries. Ind Eng Chem Res 2021;60:1494-500.
249. Wang Z, Chen J, Fu J, Li Z, Guo X. Polymer-based electrolytes for high-voltage solid-state lithium batteries. Energy Mater 2024;4:400050.
250. Wang Y, Wu L, Lin Z, et al. Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy 2022;96:107105.