REFERENCES

1. Sathish S, Kumaravelu TA, Yang C, et al. Enhancing supercapacitor performance with biomass-derived activated carbon interlinked CoS2 embedded graphitic carbon nitride. J Alloy Compd 2024;985:174076.

2. Wu W, Diwu J, Guo J, et al. Hierarchical architecture of ZIF-8@ZIF-67-derived N-doped carbon nanotube hollow polyhedron supported on 2D Ti3C2Tx nanosheets targeting enhanced lithium-ion capacitors. J Colloid Interface Sci 2024;663:609-23.

3. Yuan X, Jiang T, Tay CY, He Y, Wang H, Zhang G. Magnetization roasting combined with multi-stage extraction for selective recovery of lithium from spent lithium-ion batteries. Sep Purif Technol 2024;338:126349.

4. Yang L, Chen J, Park S, Wang H. Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries. Energy Mater 2023;3:300042.

5. Deng XG, Fan LQ, Fu XY, et al. Carbon-reinforced Ni3S2/Ti3C2Tx MXene composite as an anode for superior-performance lithium-ion capacitors. J Colloid Interface Sci 2024;661:237-48.

6. Sun PP, Deng SP, Li JQ, et al. A MOF-derived flower-shaped CeCo-oxide as a multifunctional material for high-performance lithium-ion batteries and supercapacitors. J Colloid Interface Sci 2024;661:564-73.

7. Ge Q, Ma Z, Yao M, et al. Carbon-coated tin-titanate derived SnO2/TiO2 nanowires as high-performance anode for lithium-ion batteries. J Colloid Interface Sci 2024;661:888-96.

8. Gao X, Zhang S, Guo J, Zhang H, Li S, Zhang Z. Surface structure regulation toward anionic redox activation of Li1.20Mn0.533Ni0.133Co0.133O2 cathodes with high initial coulombic efficiency. J Colloid Interface Sci 2024;663:601-8.

9. Yu H, Liu J, Wu X, Li R, Jin R, Zhou G. Construction of mesocrystal Cu2-xSe nanoplates with high infiltration for enhanced electrochemical performance in lithium ion batteries and electrochemical supercapacitors. Appl Surf Sci 2024;655:159530.

10. Yu H, Li Y, Liu F, Wang L, Song Y. Yolk shell structured YS-Si@N-doped carbon derived from covalent organic frameworks for enhanced lithium storage. J Colloid Interface Sci 2024;662:313-21.

11. Zhao L, Zhong Y, Cao C, Tang T, Shao Z. Enhanced high-temperature cycling stability of garnet-based all solid-state lithium battery using a multi-functional catholyte buffer layer. Nanomicro Lett 2024;16:124.

12. Sun G, Zhuang S, Jiang S, et al. Dual-modified surface encapsulation strategy for elevating rate performance and cycling stability of Ni-rich NCM811 cathode. J Energy Stor 2024;84:110821.

13. Tharani S, Prithiba A. Sustainable biomass conversion into activated carbon for supercapacitor devices: a promising approach toward renewable energy storage. Energy Sour Part A 2024;46:1165-76.

14. Lu C, Yu Z, Zhang X, Ma X. ZnCl2-KOH modulation of biomass-derived porous carbon for supercapacitors. Energy Sour Part A 2024;46:2212-22.

15. Yoshino A. The lithium-ion battery: two breakthroughs in development and two reasons for the Nobel prize. Bull Chem Soc Jpn 2022;95:195-7.

16. Wang D, Jiang H, Feng M, Wang L, Yin D, Cheng Y. A universal multifunctional rare earth oxide coating strategy to stabilize high-nickel lithium layered oxide cathode. J Alloy Compd 2024;976:173364.

17. Li Z, Han M, Yu P, Lin J, Yu J. Macroporous directed and interconnected carbon architectures endow amorphous silicon nanodots as low-strain and fast-charging anode for lithium-ion batteries. Nanomicro Lett 2024;16:98.

18. Kong Y, Yuan L, Liao Y, Shao Y, Hao S, Huang Y. Efficient separation and selective Li recycling of spent LiFePO4 cathode. Energy Mater 2023;3:300053.

19. Khan AU, Tahir K, Almarhoon ZM, et al. A new binder-free ZnS-CuO microsphere: a battery-type electrode material for asymmetric supercapacitor. J Energy Stor 2024;80:110308.

20. Mo B, Wang L, Li L, et al. Supercapacitor performances of coal tar pitch based spherical active carbons fabricated by the SiO2 template method. J Chem Eng Jpn 2023;56:2217863.

21. Zhou W, Liu Z, Chen W, et al. A review on thermal behaviors and thermal management systems for supercapacitors. Batteries 2023;9:128.

22. Li C, Zhang X, Lv Z, et al. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem Eng J 2021;414:128781.

23. Li C, Zhang X, Wang K, et al. Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. J Energy Chem 2021;54:352-67.

24. Pang L, Hoang MT, O’Mullane AP, Wang H. Revealing energy storage mechanism of CsPbBr3 perovskite for ultra-stable symmetric supercapacitors. Energy Mater 2023;3:300012.

25. Zhong C, Weng S, Wang Z, Zhan C, Wang X. Kinetic limits and enhancement of graphite anode for fast-charging lithium-ion batteries. Nano Energy 2023;117:108894.

26. Zheng S, Yu S, Ullah Z, et al. π-d conjugation regulates the cathode/electrolyte interface in all-solid-state lithium-ion batteries. J Mater Chem A 2024;12:3967-76.

27. Niu L, Wu T, Chen M, et al. Conductive metal-organic frameworks for supercapacitors. Adv Mater 2022;34:e2200999.

28. Amatucci GG, Badway F, Du Pasquier A, Zheng T. An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 2001;148:A930.

29. Jagadale A, Zhou X, Xiong R, Dubal DP, Xu J, Yang S. Lithium ion capacitors (LICs): development of the materials. Energy Stor Mater 2019;19:314-29.

30. Naoi K, Ishimoto S, Miyamoto J, Naoi W. Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy Environ Sci 2012;5:9363-73.

31. Zhang X, Sun X, An Y, et al. Design of a fast-charge lithium-ion capacitor pack for automated guided vehicle. J Energy Stor 2022;48:104045.

32. Zhou W, Liu Z, An Y, et al. Thermal behavior analysis of lithium-ion capacitors at transient high discharge rates. J Energy Stor 2022;53:105208.

33. An Y, Li C, Sun X, et al. Deoxygenated porous carbon with highly stable electrochemical reaction interface for practical high-performance lithium-ion capacitors. J Phys D Appl Phys 2022;55:045501.

34. Guo Z, Liu Z, Sun X, et al. Probing current contribution of lithium-ion battery/lithium-ion capacitor multi-structure hybrid systems. J Power Sources 2022;548:232016.

35. Wang P, Sun X, An Y, et al. Additives to propylene carbonate-based electrolytes for lithium-ion capacitors. Rare Met 2022;41:1304-13.

36. Li C, Zhang X, Wang K, Sun X, Ma Y. High-power lithium-ion hybrid supercapacitor enabled by holey carbon nanolayers with targeted porosity. J Power Sources 2018;400:468-77.

37. Jiao A, Gao J, He Z, Hou J, Kong L. Perovskite fluoride NaNiF3 with hollow micron sphere structure as anode for Li-ion hybrid capacitors. Rare Met 2022;41:3370-80.

38. Jiao A, Duan Y, Li Z, Zhang S, Su T, Fu Z. Nanostructured octahedral MnF2 as anode material for constructing ultra-high power Li-ion hybrid capacitors. Electrochim Acta 2024;475:143595.

39. Duan Y, Li Z, Zhang S, et al. Metal-organic frameworks (MOFs)-derived Mn2SnO4@C anode based on dual lithium storage mechanism for high-performance lithium-ion capacitors. Chem Eng J 2023;477:146914.

40. Zhao C, Niu D, Liu T, et al. Hierarchical electrode constructed by carbon-coated metal-organic framework derivatives supported on two-dimensional Ti3C2 nanosheets for hybrid Li-ion capacitors. J Taiwan Inst Chem Eng 2024;155:105290.

41. Yang F, Zhang Z, Li H, et al. Construction of anode materials for NiSe-based high energy density lithium-ion capacitors. Mater Today Commun 2024;38:107816.

42. Zhou W, Liu Z, Chen W, et al. Thermal characteristics of pouch lithium-ion battery capacitors based on activated carbon and LiNi1/3Co1/3Mn1/3O2. J Energy Stor 2023;66:107474.

43. Song S, Zhang X, An Y, et al. Floating aging mechanism of lithium-ion capacitors: impedance model and post-mortem analysis. J Power Sources 2023;557:232597.

44. Sun X, Zhang X, Wang K, et al. Determination strategy of stable electrochemical operating voltage window for practical lithium-ion capacitors. Electrochim Acta 2022;428:140972.

45. Song S, Zhang X, An Y, Ma Y. Advanced fractional-order lithium-ion capacitor model with time-domain parameter identification method. IEEE Trans Ind Electron 2022;69:13808-17.

46. Zhang J, Chen Z, Xu T, et al. Vanadium nitride nanoparticles embedded in carbon matrix with pseudocapacitive behavior for high performance lithium-ion capacitors. Rare Met 2022;41:2460-9.

47. Jin L, Yuan J, Shellikeri A, et al. An overview on design parameters of practical lithium-ion capacitors. Batteries Supercaps 2021;4:749-57.

48. Chaturvedi P, Lokhande A, Managutti P, Choi D. Free-standing TiNb6O17/rGO composites as a superior anode host for high-performance Li-ion capacitor. J Alloy Compd 2024;971:172739.

49. Huang X, Zhang C, Chen M, Yang Y. Li2C2O4 with 3D confinement as simultaneous sacrificial material and activation reagent of biomass-derived carbon for advanced lithium-ion capacitors. Mater Today Sustain 2023;24:100567.

50. Choi JW, Park DG, Kim KH, Choi WH, Park MG, Kang JK. 3D nitrogen-doped carbon frameworks with hierarchical pores and graphitic carbon channels for high-performance hybrid energy storages. Mater Horiz 2024;11:566-77.

51. Akshay M, Jyothilakshmi S, Lee YS, Aravindan V. High-performance Li-ion and Na-ion capacitors based on a spinel Li4Ti5O12 anode and carbonaceous cathodes. Small 2024;20:e2307248.

52. Li C, An Y, Wang L, et al. Balancing microcrystalline domains in hard carbon with robust kinetics for a 46.7 Wh kg-1 practical lithium-ion capacitor. Chem Eng J 2024;485:149880.

53. Sun X, An Y, Zhang X, et al. Unveil Overcharge performances of activated carbon cathode in various Li-ion electrolytes. Batteries 2023;9:11.

54. Liu F, Lu P, Zhang Y, et al. Sustainable lignin-derived carbon as capacity-kinetics matched cathode and anode towards 4.5 V high-performance lithium-ion capacitors. Energy Environ Mater 2023;6:e12550.

55. Ma Y, Li S, An Y, et al. A practical high-energy lithium-ion capacitor enabled by multiple conducting bridges triggered electrode current reallocation. Energy Stor Mater 2023;62:102946.

56. Peng Q, Wang K, Gong Y, et al. Tailoring lignin-derived porous carbon toward high-energy lithium-ion capacitor through varying Sp2- and Sp3-hybridized bonding. Adv Funct Mater 2023;33:2308284.

57. Sun C, Zhang X, Li C, et al. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. J Energy Chem 2022;64:442-50.

58. Jin L, Gong R, Zhang W, et al. Toward high energy-density and long cycling-lifespan lithium ion capacitors: a 3D carbon modified low-potential Li2TiSiO5 anode coupled with a lignin-derived activated carbon cathode. J Mater Chem A 2019;7:8234-44.

59. Guo Z, Liu Z, Chen W, et al. Battery-type lithium-ion hybrid capacitors: current status and future perspectives. Batteries 2023;9:74.

60. Li X, Hou Y, Yin Z, Xiang S, Yin C, Yin Z. High mass-loading N-rGO-T-Nb2O5/CuNW composite membrane for high-rate lithium-ion capacitor anodes. J Energy Stor 2023;73:109003.

61. Zhang X, Zhang K, Zhang W, et al. Carbon nano-onion-encapsulated Ni nanoparticles for high-performance lithium-ion capacitors. Batteries 2023;9:102.

62. Cheng C, Wu D, Gong T, et al. Internal and external cultivation design of zero-strain columbite-structured MNb2O6 toward lithium-ion capacitors as competitive anodes. Adv Energy Mater 2023;13:2302107.

63. Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science 2004;306:666-9.

64. Khan R, Andreescu S. Catalytic MXCeO2 for enzyme based electrochemical biosensors: fabrication, characterization and application towards a wearable sweat biosensor. Biosens Bioelectron 2024;248:115975.

65. Ali SR, Praveen C, Kang SG, Nair L, Bhamu K, Kumar P. Exploring the catalytic properties of Ti2CO2 MXene decorated with Cu-cluster for hydrogen evolution reaction. Appl Surf Sci 2023;641:158439.

66. Xu Z, Zhang K, Li Y, Zhang Y, Zhao X, Wang Y. Synthesis of SiC nanowires wrapped in trimetallic layered double hydroxide nanosheets with core-shell structure via self-assembly growth approach for effective electromagnetic wave absorption. J Alloy Compd 2024;976:173316.

67. Zeng L, Tang T, Liang Y, Jiang S, Xu X, Wang F. Molybdate-intercalated NiMn layered double hydroxide nanoarrays supercapacitor electrode with enhanced stability via a differentiated deposition strategy. J Power Sources 2024;594:233990.

68. Khan J, Ahmad RTM, Yu Q, Liu H, Khan U, Liu B. A La2O3/MXene composite electrode for supercapacitors with improved capacitance and cycling performance. Sci Technol Adv Mater 2023;24:2242262.

69. Chatterjee S, Gawas R, Snyder J. Top-down electrochemical synthesis of nanoporous metal nanosheets from nonlayered alloy precursors. Adv Eng Mater 2024;26:2301538.

70. Zhao Z, Yang J, Wang C, et al. Template-free synthesis of highly porous silica-doped alumina with exceptional stability via intercalation-exfoliation of boehmite into two-dimensional nanosheets. Sci China Mater 2024;67:261-71.

71. Li X, Hajinur Hirad A, Alarfaj AA, Li H, Santhanam R. A convergent fabrication of graphene oxide/silk fibroin/hydroxyapatite nanocomposites delivery improved early osteoblast cell adhesion and bone regeneration. Arab J Chem 2024;17:105468.

72. Wazir N, Li Y, Ullah R, et al. Enhancing growth of high-quality two-dimensional CsPbBr3 flakes on sapphire substrate by direct chemical vapor deposition method. FlatChem 2024;43:100598.

73. Hu Y, Rogée L, Wang W, et al. Extendable piezo/ferroelectricity in nonstoichiometric 2D transition metal dichalcogenides. Nat Commun 2023;14:8470.

74. Wu Y, Yang J, Zheng M, et al. Two-dimensional cobalt ferrite through direct chemical vapor deposition for efficient oxygen evolution reaction. Chinese J Catal 2023;55:265-77.

75. Papavasileiou AV, Antonatos N, Luxa J, et al. Two-dimensional VSe2 nanoflakes as a promising sensing electrocatalyst for nitrobenzene determination in water samples. Electrochim Acta 2024;475:143653.

76. Xin X, Zhao B, Yue J, et al. A universal strategy for producing 2D functional carbon-rich materials from 2D porous organic polymers for dual-carbon lithium-ion capacitors. New Carbon Mater 2023;38:898-912.

77. Zhang S, Fang R, Zhang L, Huang S, Zhao Y, Wang Y. Fully coated WS2 antioxidant film with mesoporous structure for enhancing the structural stability and CDI performance of Mxene. Desalination 2024;574:117226.

78. T.E. S, Tran DT, Jena S, et al. Flexible 2D borophene-stacked MXene heterostructure for high-performance supercapacitors. Chem Eng J 2024;481:148266.

79. Qin J, Yang Z, Xing F, Zhang L, Zhang H, Wu Z. Two-dimensional mesoporous materials for energy storage and conversion: current status, chemical synthesis and challenging perspectives. Electrochem Energy Rev 2023;6:9.

80. Tian LL, Wei XY, Zhuang QC, et al. Bottom-up synthesis of nitrogen-doped graphene sheets for ultrafast lithium storage. Nanoscale 2014;6:6075-83.

81. Ma X, Yu Z, Zhao L, et al. N-doped mesoporous graphene with superior capacitive behaviors derived from chemical vapor deposition methodology in the fluidized bed reactor. Ind Eng Chem Res 2018;57:16327-34.

82. Moreno-Fernández G, Granados-moreno M, Gómez-urbano JL, Carriazo D. Phosphorus-functionalized graphene for lithium-ion capacitors with improved power and cyclability. Batteries Supercaps 2021;4:469-78.

83. Luan Y, Hu R, Fang Y, et al. Nitrogen and phosphorus dual-doped multilayer graphene as universal anode for full carbon-based lithium and potassium ion capacitors. Nanomicro Lett 2019;11:30.

84. Wang YK, Liu MC, Cao J, et al. 3D hierarchically structured CoS nanosheets: Li+ storage mechanism and application of the high-performance lithium-ion capacitors. ACS Appl Mater Interfaces 2020;12:3709-18.

85. Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 2008;8:2277-82.

86. Wang L, Zhang X, Xu Y, et al. Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors. Adv Funct Mater 2021;31:2104286.

87. Luo J, Zhang W, Yuan H, et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 2017;11:2459-69.

88. Bo Z, Zheng Z, Huang Y, et al. One-step MXene selenization-conversion into carbon-scaffold-anchored TiSe2 nanosheets enabling interlayer- and vacancy-mediated ion transport mechanisms for fast lithium-ion storage. Chem Eng J 2023;473:145183.

89. Wei W, Wang L, Liang C, et al. Interface engineering of CoSe2/N-doped graphene heterostructure with ultrafast pseudocapacitive kinetics for high-performance lithium-ion capacitors. Chem Eng J 2023;474:145788.

90. Liu W, Zhang X, Xu Y, et al. 2D graphene/MnO heterostructure with strongly stable interface enabling high-performance flexible solid-state lithium-ion capacitors. Adv Funct Mater 2022;32:2202342.

91. Tao S, Cai J, Cao Z, et al. Revealing the valence evolution of metal element in heterostructures for ultra-high power Li-ion capacitors. Adv Energy Mater 2023;13:2301653.

92. Tao S, Momen R, Luo Z, et al. Trapping lithium selenides with evolving heterogeneous interfaces for high-power lithium-ion capacitors. Small 2023;19:e2207975.

93. Huang H, Li Z, Gu S, et al. Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv Energy Mater 2021;11:2101864.

94. Wang Y, Zhang Q, Xue Z, et al. An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V high-voltage cycle performances. Adv Energy Mater 2020;10:2001413.

95. Su F, Hou X, Qin J, Wu Z. Recent advances and challenges of two-dimensional materials for high-energy and high-power lithium-ion capacitors. Batteries Supercaps 2020;3:10-29.

96. Tomy M, Ambika Rajappan A, Vm V, Thankappan Suryabai X. Emergence of novel 2D materials for high-performance supercapacitor electrode applications: a brief review. Energy Fuels 2021;35:19881-900.

97. Forouzandeh P, Pillai SC. Two-dimensional (2D) electrode materials for supercapacitors. Mater Today Proc 2021;41:498-505.

98. Billot N, Beyer M, Koch N, Ihle C, Reinhart G. Development of an adhesion model for graphite-based lithium-ion battery anodes. J Manuf Syst 2021;58:131-42.

99. Che Y, Lin X, Xing L, et al. Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive. J Energy Chem 2021;52:361-71.

100. Zhou H, Zhu S, Hibino M, Honma I, Ichihara M. Lithium storage in ordered mesoporous carbon (CMK-3) with high reversible specific energy capacity and good cycling performance. Adv Mater 2003;15:2107-11.

101. Suzuki T, Hasegawa T, Mukai SR, Tamon H. A theoretical study on storage states of Li ions in carbon anodes of Li ion batteries using molecular orbital calculations. Carbon 2003;41:1933-9.

102. Liang M, Luo B, Zhi L. Application of graphene and graphene-based materials in clean energy-related devices. Int J Energy Res 2009;33:1161-70.

103. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 2008;3:101-5.

104. Liu W, An Y, Wang L, et al. Mechanically flexible reduced graphene oxide/carbon composite films for high-performance quasi-solid-state lithium-ion capacitors. J Energy Chem 2023;80:68-76.

105. Ren J, Su L, Qin X, et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density. J Power Sources 2014;264:108-13.

106. Wang J, Yan Z, Yan G, et al. Spiral graphene coupling hierarchically porous carbon advances dual-carbon lithium ion capacitor. Energy Stor Mater 2021;38:528-34.

107. Li C, Zhang X, Wang K, et al. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv Mater 2017;29:1604690.

108. Li C, Zhang X, Wang K, Sun X, Ma Y. High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode. Carbon 2018;140:237-48.

109. Han S, Wu D, Li S, Zhang F, Feng X. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv Mater 2014;26:849-64.

110. Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nat Mater 2015;14:271-9.

111. Ma Y, Wang K, Xu Y, et al. Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors. Carbon 2023;202:175-85.

112. Jin L, Guo X, Gong R, et al. Target-oriented electrode constructions toward ultra-fast and ultra-stable all-graphene lithium ion capacitors. Energy Stor Mater 2019;23:409-17.

113. Ding J, Hu W, Paek E, Mitlin D. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev 2018;118:6457-98.

114. Li B, Zheng J, Zhang H, et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv Mater 2018;30:e1705670.

115. Sun C, Zhang X, An Y, et al. Molecularly chemical prelithiation of soft carbon towards high-performance lithium-ion capacitors. J Energy Stor 2022;56:106009.

116. Sun C, Zhang X, Li C, Wang K, Sun X, Ma Y. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Stor Mater 2020;24:160-6.

117. Sun C, Zhang X, Li C, Wang K, Sun X, Ma Y. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Stor Mater 2020;32:497-516.

118. Jiang J, Li Z, Zhang Z, et al. Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors. Rare Met 2022;41:3322-35.

119. Jin L, Shen C, Shellikeri A, et al. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy Environ Sci 2020;13:2341-62.

120. Li G, Yang Z, Yin Z, et al. Non-aqueous dual-carbon lithium-ion capacitors: a review. J Mater Chem A 2019;7:15541-63.

121. Kang HJ, Huh YS, Im WB, Jun YS. Molecular cooperative assembly-mediated synthesis of ultra-high-performance hard carbon anodes for dual-carbon sodium hybrid capacitors. ACS Nano 2019;13:11935-46.

122. Pollak E, Geng B, Jeon KJ, et al. The interaction of Li+ with single-layer and few-layer graphene. Nano Lett 2010;10:3386-8.

123. Ferre-Vilaplana A. Storage of hydrogen adsorbed on alkali metal doped single-layer all-carbon materials. J Phys Chem C 2008;112:3998-4004.

124. Yao F, Güneş F, Ta HQ, et al. Diffusion mechanism of lithium ion through basal plane of layered graphene. J Am Chem Soc 2012;134:8646-54.

125. Ma X, Gao D. High capacitive storage performance of sulfur and nitrogen codoped mesoporous graphene. ChemSusChem 2018;11:1048-55.

126. Wu ZS, Ren W, Xu L, Li F, Cheng HM. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011;5:5463-71.

127. Mao Y, Duan H, Xu B, et al. Lithium storage in nitrogen-rich mesoporous carbon materials. Energy Environ Sci 2012;5:7950-5.

128. Jin Z, Yao J, Kittrell C, Tour JM. Large-scale growth and characterizations of nitrogen-doped monolayer graphene sheets. ACS Nano 2011;5:4112-7.

129. Li X, Geng D, Zhang Y, Meng X, Li R, Sun X. Superior cycle stability of nitrogen-doped graphene nanosheets as anodes for lithium ion batteries. Electrochem Commun 2011;13:822-5.

130. Wang H, Zhang C, Liu Z, et al. Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 2011;21:5430.

131. Sun C, Zhang X, An Y, et al. Low-temperature carbonized nitrogen-doped hard carbon nanofiber toward high-performance sodium-ion capacitors. Energy Environ Mater 2023;6:e12603.

132. Wang L, Zhang X, Kong Y, et al. Metal-organic framework-derived CoSe2@N-doped carbon nanocubes for high-performance lithium-ion capacitors. Rare Met 2024;43:2150-60.

133. Li T, Huang X, Lei S, et al. Two-dimensional nitrogen and phosphorus co-doped mesoporous carbon-graphene nanosheets anode for high-performance potassium-ion capacitor. Energy Mater 2023;3:300018.

134. Yan T, Wen F, Duan J, et al. Fabricating tunable metal sulfides embedded with honeycomb-structured N-doped carbon matrices for high-performance lithium-ion capacitors. Chem Eng J 2023;474:145839.

135. Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 2012;22:8911-5.

136. Kong XK, Chen QW. Improved performance of graphene doped with pyridinic N for Li-ion battery: a density functional theory model. Phys Chem Chem Phys 2013;15:12982-7.

137. Xiao Z, Zhao L, Yu Z, et al. Multilayered graphene endowing superior dispersibility for excellent low temperature performance in lithium-ion capacitor as both anode and cathode. Chem Eng J 2022;429:132358.

138. Xia Q, Yang H, Wang M, et al. High energy and high power lithium-ion capacitors based on boron and nitrogen dual-doped 3D carbon nanofibers as both cathode and anode. Adv Energy Mater 2017;7:1701336.

139. Li Z, Bommier C, Chong ZS, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping. Adv Energy Mater 2017;7:1602894.

140. Zhang C, Mahmood N, Yin H, Liu F, Hou Y. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv Mater 2013;25:4932-7.

141. Ma C, Deng C, Liao X, He Y, Ma Z, Xiong H. Nitrogen and phosphorus codoped porous carbon framework as anode material for high rate lithium-ion batteries. ACS Appl Mater Interfaces 2018;10:36969-75.

142. Ghosh S, Barg S, Jeong SM, Ostrikov K. Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater 2020;10:2001239.

143. Chen Z, Cao R, Ge Y, Tu Y, Xia Y, Yang X. N- and O-doped hollow carbonaceous spheres with hierarchical porous structure for potential application in high-performance capacitance. J Power Sources 2017;363:356-64.

144. Olabi A, Abdelkareem MA, Wilberforce T, Sayed ET. Application of graphene in energy storage device - a review. Renew Sustain Energy Rev 2021;135:110026.

145. Liang H, Li X, Zheng W, et al. Rational design of heterostructured core-shell Co-Zn bimetallic selenides for improved sodium-ion storage. Rare Met 2022;41:3381-90.

146. Aghamohammadi H, Hassanzadeh N, Eslami-farsani R. A review study on titanium niobium oxide-based composite anodes for Li-ion batteries: synthesis, structure, and performance. Ceram Int 2021;47:26598-619.

147. Wang H, Qian R, Cheng Y, et al. Micro/nanostructured TiNb2O7 -related electrode materials for high-performance electrochemical energy storage: recent advances and future prospects. J Mater Chem A 2020;8:18425-63.

148. Lin C, Wang G, Lin S, Li J, Lu L. TiNb6O17: a new electrode material for lithium-ion batteries. Chem Commun 2015;51:8970-3.

149. Mao W, Bao K, Wang L, et al. Synthesis of TiNb6O17/C composite with enhanced rate capability for lithium ion batteries. Ceram Int 2016;42:16935-40.

150. Shang Y, Lu S, Zheng W, et al. Facile synthesis of carbon and oxygen vacancy co-modified TiNb6O17 as an anode material for lithium-ion batteries. RSC Adv 2022;12:13127-34.

151. Yuan Y, Yu H, Cheng X, et al. Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage. Chem Eng J 2019;374:937-46.

152. Zhu G, Wang L, Lin H, et al. Walnut-like multicore-shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries. Adv Funct Mater 2018;28:1800003.

153. Xiao Y, Xu C, Wang P, et al. Encapsulating MnO nanoparticles within foam-like carbon nanosheet matrix for fast and durable lithium storage. Nano Energy 2018;50:675-84.

154. An C, Li Y, Wu S, et al. Matched MnO@C anode and porous carbon cathode for Li-ion hybrid supercapacitors. Rare Met 2023;42:1959-68.

155. Lin J, Zeng C, Lin X, Xu C, Xu X, Luo Y. Metal-organic framework-derived hierarchical MnO/Co with oxygen vacancies toward elevated-temperature Li-ion battery. ACS Nano 2021;15:4594-607.

156. Chu Y, Guo L, Xi B, et al. Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv Mater 2018;30:1704244.

157. Cai Z, Xu L, Yan M, et al. Manganese oxide/carbon yolk-shell nanorod anodes for high capacity lithium batteries. Nano Lett 2015;15:738-44.

158. Yi S, Wang L, Zhang X, et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci Bull 2021;66:914-24.

159. Guo J, Wang R, Tjiu WW, Pan J, Liu T. Synthesis of Fe nanoparticles@graphene composites for environmental applications. J Hazard Mater 2012;225-6:63-73.

160. Liang S, Zhang S, Liu Z, et al. Approaching the theoretical sodium storage capacity and ultrahigh rate of layer-expanded MoS2 by interfacial engineering on N-doped graphene. Adv Energy Mater 2021;11:2002600.

161. Chen P, Zhou W, Xiao Z, et al. In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: a fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor. Energy Stor Mater 2020;33:298-308.

162. Li W, Wang F, Liu Y, et al. General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett 2015;15:2186-93.

163. Chen M, Lu Q, Jiang S, et al. MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium-sulfur batteries. Chem Eng J 2018;335:831-42.

164. Zhang C, Park S, O'brien SE, et al. Liquid exfoliation of interlayer spacing-tunable 2D vanadium oxide nanosheets: high capacity and rate handling Li-ion battery cathodes. Nano Energy 2017;39:151-61.

165. Mei J, Liao T, Kou L, Sun Z. Two-dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv Mater 2017;29:1700176.

166. Kou H, Li X, Shan H, Fan L, Yan B, Li D. An optimized Al2O3 layer for enhancing the anode performance of NiCo2O4 nanosheets for sodium-ion batteries. J Mater Chem A 2017;5:17881-8.

167. Ramkumar R, Minakshi M. Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans 2015;44:6158-68.

168. Zhu Y, Cao C, Zhang J, Xu X. Two-dimensional ultrathin ZnCo2O4 nanosheets: general formation and lithium storage application. J Mater Chem A 2015;3:9556-64.

169. Zhu J, Song D, Pu T, et al. Two-dimensional porous ZnCo2O4 thin sheets assembled by 3D nanoflake array with enhanced performance for aqueous asymmetric supercapacitor. Chem Eng J 2018;336:679-89.

170. Yadav AA, Chavan U. Electrochemical supercapacitive performance of spray deposited Co3O4 thin film nanostructures. Electrochim Acta 2017;232:370-6.

171. Jiang Y, Chen L, Zhang H, et al. Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chem Eng J 2016;292:1-12.

172. Lu Z, Ding J, Lin X, et al. Low-temperature synthesis of two-dimensional nanostructured Co3O4 and improved electrochemical properties for lithium-ion batteries. Powder Technol 2017;309:22-30.

173. Sennu P, Madhavi S, Aravindan V, Lee YS. Co3O4 nanosheets as battery-type electrode for high-energy Li-ion capacitors: a sustained Li-storage via conversion pathway. ACS Nano 2020;14:10648-54.

174. Li S, Zhang J, Chao H, et al. High energy density lithium-ion capacitor enabled by nitrogen-doped amorphous carbon linked hierarchically porous Co3O4 nanofibers anode and porous carbon polyhedron cathode. J Alloy Compd 2022;918:165726.

175. Xu Z, Yao K, Fu H, et al. Constructing MoO2 porous architectures using graphene oxide flexible supports for lithium ion battery anodes. Glob Chall 2017;1:1700050.

176. Duan L, Li X. Lithiated Mo4O11 to improve excellent cycle stability of MoO2 nanoparticles for lithium-ion battery. Synthetic Met 2021;272:116672.

177. Zhao X, Wang HE, Cao J, Cai W, Sui J. Amorphous/crystalline hybrid MoO2 nanosheets for high-energy lithium-ion capacitors. Chem Commun 2017;53:10723-6.

178. Liu Y, Ding C, Xie P, et al. Surface-reconstructed formation of hierarchical TiO2 mesoporous nanosheets with fast lithium-storage capability. Mater Chem Front 2021;5:3216-25.

179. Liu C, He Z, Niu J, et al. Two-dimensional SnO2 anchored biomass-derived carbon nanosheet anode for high-performance Li-ion capacitors. RSC Adv 2021;11:10018-26.

180. Wang D, Zhang G, Shan Z, Zhang T, Tian J. Hierarchically micro-/nanostructured TiO2/micron carbon fibers composites for long-life and fast-charging lithium-ion batteries. ChemElectroChem 2018;5:540-5.

181. Ma Y. Sol-gel synthesis of ZnO/TiO2 core-shell nanocomposites and their structural and electrochemical characterization as anode for lithium ion battery. Int J Electrochem Sci 2020;15:12559-68.

182. Ji Y, Lu X, Luo F, Zhang W, Tian Q, Sui Z. Improved SnO2/C composite anode enabled by well-designed heterogeneous nanospheres decoration. Chem Phys Lett 2021;763:138242.

183. Wu M, Zheng W, Hu X, et al. Exploring 2D energy storage materials: advances in structure, synthesis, optimization strategies, and applications for monovalent and multivalent metal-ion hybrid capacitors. Small 2022;18:e2205101.

184. Wang H, Feng H, Li J. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage. Small 2014;10:2165-81.

185. Wang R, Wang S, Jin D, et al. Engineering layer structure of MoS2-graphene composites with robust and fast lithium storage for high-performance Li-ion capacitors. Energy Stor Mater 2017;9:195-205.

186. Wang L, Zhang X, Li C, et al. Recent advances in transition metal chalcogenides for lithium-ion capacitors. Rare Met 2022;41:2971-84.

187. Chen K, Balla I, Luu NS, Hersam MC. Emerging opportunities for two-dimensional materials in lithium-ion batteries. ACS Energy Lett 2017;2:2026-34.

188. Zhao Z, Chao Y, Wang F, et al. Intimately coupled WS2 nanosheets in hierarchical hollow carbon nanospheres as the high-performance anode material for lithium-ion storage. Rare Met 2022;41:1245-54.

189. Chaturvedi A, Hu P, Aravindan V, Kloc C, Madhavi S. Unveiling two-dimensional TiS2 as an insertion host for the construction of high energy Li-ion capacitors. J Mater Chem A 2017;5:9177-81.

190. Liu S, Jia K, Yang J, et al. Encapsulating flower-like MoS2 nanosheets into interlayer of nitrogen-doped graphene for high-performance lithium-ion storage. Chem Eng J 2023;475:146181.

191. Zheng L, Xing T, Ouyang Y, Wang Y, Wang X. Core-shell structured MoS2@Mesoporous hollow carbon spheres nanocomposite for supercapacitors applications with enhanced capacitance and energy density. Electrochim Acta 2019;298:630-9.

192. Jiang J, Zhang Y, An Y, et al. Engineering ultrathin MoS2 nanosheets anchored on N-doped carbon microspheres with pseudocapacitive properties for high-performance lithium-ion capacitors. Small Methods 2019;3:1900081.

193. Ju J, Zhang L, Shi H, Li Z, Kang W, Cheng B. Three-dimensional porous carbon nanofiber loading MoS2 nanoflake-flowerballs as a high-performance anode material for Li-ion capacitor. Appl Surf Sci 2019;484:392-402.

194. Yi S, Wang L, Zhang X, et al. Recent advances in MXene-based nanocomposites for supercapacitors. Nanotechnology 2023;34:432001.

195. Yu P, Cao G, Yi S, et al. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors. Nanoscale 2018;10:5906-13.

196. Brady A, Liang K, Vuong VQ, et al. Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors. ACS Nano 2021;15:2994-3003.

197. Wang L, Zhang X, Li C, et al. Cation-deficient T-Nb2O5/graphene Hybrids synthesized via chemical oxidative etching of MXene for advanced lithium-ion capacitors. Chem Eng J 2023;468:143507.

198. Huang J, Lu X, Sun T, et al. Boosting high-voltage dynamics towards high-energy-density lithium-ion capacitors. Energy Environ Mater 2023;6:e12505.

199. Naguib M, Come J, Dyatkin B, et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 2012;16:61-4.

200. Come J, Naguib M, Rozier P, et al. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J Electrochem Soc 2012;159:A1368-73.

201. Guo Z, Wang Z, Wang D, Gao Y, Liu J. A free-standing VN/MXene composite anode for high-performance Li-ion hybrid capacitors. RSC Adv 2022;12:13653-9.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/