REFERENCES

1. Wang, X. X.; Swihart, M. T.; Wu, G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat. Catal. 2019, 2, 578-89.

2. Xia, Q.; Zhai, Y.; Zhao, L.; et al. Carbon-supported single-atom catalysts for advanced rechargeable metal-air batteries. Energy. Mater. 2022, 2, 200015.

3. Staffell, I.; Scamman, D.; Velazquez, A. A.; et al. The role of hydrogen and fuel cells in the global energy system. Energy. Environ. Sci. 2019, 12, 463-91.

4. Yeager, E. Electrocatalysts for O2 reduction. Electrochim. Acta. 1984, 29, 1527-37.

5. Gong, X.; Song, P.; Han, C.; Xiao, Y.; Mei, X.; Xu, W. Heterogeneous single-atom catalysts for energy process: recent progress, applications and challenges. Energy. Mater. 2023, 3, 300016.

6. Li, Z.; Yang, C.; Xu, B.; Yao, L.; Zhu, W.; Cui, Y. Electrochemically nitrate remediation by single-atom catalysts: advances, mechanisms, and prospects. Energy. Mater. 2024, 4, 400046.

7. Zitolo, A.; Goellner, V.; Armel, V.; et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937-42.

8. Jia, Q.; Ramaswamy, N.; Hafiz, H.; et al. Experimental observation of redox-induced Fe-N switching behavior as a determinant role for oxygen reduction activity. ACS. Nano. 2015, 9, 12496-505.

9. Wu, F.; Pan, C.; He, C. T.; et al. Single-atom Co-N4 electrocatalyst enabling four-electron oxygen reduction with enhanced hydrogen peroxide tolerance for selective sensing. J. Am. Chem. Soc. 2020, 142, 16861-7.

10. Li, Z.; Ji, S.; Xu, C.; et al. Engineering the electronic structure of single-atom iron sites with boosted oxygen bifunctional activity for zinc-air batteries. Adv. Mater. 2023, 35, e2209644.

11. He, Y.; Wu, G. PGM-free oxygen-reduction catalyst development for proton-exchange membrane fuel cells: challenges, solutions, and promises. ACC. Mater. Res. 2022, 3, 224-36.

12. Ji, S.; Jiang, B.; Hao, H.; et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407-17.

13. Li, X.; Yang, X.; Liu, L.; et al. Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells. ACS. Catal. 2021, 11, 7450-9.

14. Zhou, S.; Chen, C.; Xia, J.; et al. FeN3S1-OH single-atom sites anchored on hollow porous carbon for highly efficient pH-universal oxygen reduction reaction. Small 2024, 20, e2310224.

15. Peng, L.; Yang, J.; Yang, Y.; et al. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, e2202544.

16. Zhao, K.; Liu, S.; Li, Y.; et al. Insight into the mechanism of axial ligands regulating the catalytic activity of Fe-N4 sites for oxygen reduction reaction. Adv. Energy. Mater. 2022, 12, 2103588.

17. Sarma, B. B.; Maurer, F.; Doronkin, D. E.; Grunwaldt, J. D. Design of single-atom catalysts and tracking their fate using operando and advanced X-ray spectroscopic tools. Chem. Rev. 2023, 123, 379-444.

18. Chen, Y.; Ji, S.; Zhao, S.; et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

19. Yin, H.; Yuan, P.; Lu, B.; et al. Phosphorus-driven electron delocalization on edge-type FeN4 active sites for oxygen reduction in acid medium. ACS. Catal. 2021, 11, 12754-62.

20. Wang, L.; Tian, W. W.; Zhang, W.; Yu, F.; Yuan, Z. Y. Boosting oxygen electrocatalytic performance of Cu atom by engineering the d-band center via secondary heteroatomic phosphorus modulation. Appl. Catal. B. Environ. 2023, 338, 123043.

21. Qin, J.; Liu, H.; Zou, P.; Zhang, R.; Wang, C.; Xin, H. L. Altering ligand fields in single-atom sites through second-shell anion modulation boosts the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 2197-207.

22. Liu, J.; Chen, W.; Yuan, S.; Liu, T.; Wang, Q. High-coordination Fe-N4SP single-atom catalysts via the multi-shell synergistic effect for the enhanced oxygen reduction reaction of rechargeable Zn-air battery cathodes. Energy. Environ. Sci. 2024, 17, 249-59.

23. Chen, Z.; Niu, H.; Ding, J.; et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning. Angew. Chem. Int. Ed. 2021, 60, 25404-10.

24. Zhao, Y.; Shen, Z.; Huo, J.; et al. Epoxy-rich Fe single atom sites boost oxygen reduction electrocatalysis. Angew. Chem. Int. Ed. 2023, 62, e202308349.

25. Shen, G.; Zhang, R.; Pan, L.; et al. Regulating the spin state of FeIII by atomically anchoring on ultrathin titanium dioxide for efficient oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 2020, 59, 2313-7.

26. Zhang, J.; Zhao, Y.; Chen, C.; et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118-26.

27. Zhou, Y.; Lu, R.; Tao, X.; et al. Boosting oxygen electrocatalytic activity of Fe-N-C catalysts by phosphorus incorporation. J. Am. Chem. Soc. 2023, 145, 3647-55.

28. Chang, H.; Guo, Y. F.; Liu, X.; Wang, P. F.; Xie, Y.; Yi, T. F. Dual MOF-derived Fe/N/P-tridoped carbon nanotube as high-performance oxygen reduction catalysts for zinc-air batteries. Appl. Catal. B. Environ. 2023, 327, 122469.

29. Huang, Z. F.; Song, J.; Dou, S.; Li, X.; Wang, J.; Wang, X. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis. Matter 2019, 1, 1494-518.

30. Han, J.; Tan, H.; Guo, K.; et al. The “pull effect” of a hanging ZnII on improving the four-electron oxygen reduction selectivity with Co porphyrin. Angew. Chem. Int. Ed. 2024, 63, e202409793.

31. Wang, Z.; Cheng, M.; Liu, Y.; et al. Dual-atomic-site catalysts for molecular oxygen activation in heterogeneous thermo-/electro-catalysis. Angew. Chem. Int. Ed. 2023, 62, e202301483.

32. Wei, S.; Yang, R.; Wang, Z.; Zhang, J.; Bu, X. H. Planar chlorination engineering: a strategy of completely breaking the geometric symmetry of Fe-N4 site for boosting oxygen electroreduction. Adv. Mater. 2024, 36, e2404692.

33. Yin, L.; Zhang, S.; Sun, M.; Wang, S.; Huang, B.; Du, Y. Heteroatom-driven coordination fields altering single cerium atom sites for efficient oxygen reduction reaction. Adv. Mater. 2023, 35, 2302485.

34. Li, H.; Zhao, H.; Yan, G.; et al. Ternary heteroatomic doping induced microenvironment engineering of low Fe-N4-loaded carbon nanofibers for bifunctional oxygen electrocatalysis. Small 2024, 20, e2304844.

35. Sun, Z.; Zhang, H.; Cao, L.; et al. Understanding synergistic catalysis on Cu-Se dual atom sites via operando X-ray absorption spectroscopy in oxygen reduction reaction. Angew. Chem. Int. Ed. 2023, 62, e202217719.

36. Niu, Z.; Lu, Z.; Qiao, Z.; et al. Long-range regulation of Se doping for oxygen reduction of atomically dispersed Sb catalysts for ultralow-temperature solid-state Zn-air batteries. ACS. Catal. 2023, 13, 7122-31.

37. Wang, Q.; Kaushik, S.; Xiao, X.; Xu, Q. Sustainable zinc-air battery chemistry: advances, challenges and prospects. Chem. Soc. Rev. 2023, 52, 6139-90.

38. Liu, S.; Wang, Z.; Zhou, S.; et al. Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 2017, 29, 1700874.

39. Liu, M.; Li, N.; Cao, S.; et al. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 2022, 34, 2107421.

40. Chen, J.; Li, H.; Fan, C.; et al. Dual single-atomic Ni-N4 and Fe-N4 sites constructing janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003134.

41. Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-5.

42. Yu, W.; Huang, H.; Qin, Y.; et al. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal-support interaction to achieve high-performance alkaline hydrogen evolution. Adv. Energy. Mater. 2022, 12, 2200110.

43. Zitolo, A.; Ranjbar-Sahraie, N.; Mineva, T.; et al. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction. Nat. Commun. 2017, 8, 957.

44. Zhang, N.; Zhou, T.; Chen, M.; et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy. Environ. Sci. 2020, 13, 111-8.

45. Yang, H.; Gao, S.; Rao, D.; Yan, X. Designing superior bifunctional electrocatalyst with high-purity pyrrole-type CoN4 and adjacent metallic cobalt sites for rechargeable Zn-air batteries. Energy. Storage. Mater. 2022, 46, 553-62.

46. Ha, Y.; Fei, B.; Yan, X.; et al. Atomically dispersed Co-pyridinic N-C for superior oxygen reduction reaction. Adv. Energy. Mater. 2020, 10, 2002592.

47. Li, L.; Wen, Y.; Han, G.; et al. Tailoring the stability of Fe-N-C via pyridinic nitrogen for acid oxygen reduction reaction. Chem. Eng. J. 2022, 437, 135320.

48. Ni, L.; Gallenkamp, C.; Wagner, S.; Bill, E.; Krewald, V.; Kramm, U. I. Identification of the catalytically dominant iron environment in iron- and nitrogen-doped carbon catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2022, 144, 16827-40.

49. Hu, X.; Chen, S.; Chen, L.; et al. What is the real origin of the activity of Fe-N-C electrocatalysts in the O2 reduction reaction? Critical roles of coordinating pyrrolic N and axially adsorbing species. J. Am. Chem. Soc. 2022, 144, 18144-52.

50. Gu, Y.; Nie, N.; Liu, J.; et al. Enriching H2O through boron nitride as a support to promote hydrogen evolution from non-filtered seawater. EcoEnergy 2023, 1, 405-13.

51. Liu, S.; Shi, Q.; Wu, G. Solving the activity-stability trade-off riddle. Nat. Catal. 2021, 4, 6-7.

52. Cui, L.; Zhao, X.; Xie, H.; Zhang, Z. Overcoming the activity-stability trade-off in heterogeneous electro-Fenton catalysis: encapsulating carbon cloth-supported iron oxychloride within graphitic layers. ACS. Catal. 2022, 12, 13334-48.

53. Li, J.; Sougrati, M. T.; Zitolo, A.; et al. Identification of durable and non-durable FeNx sites in Fe-N-C materials for proton exchange membrane fuel cells. Nat. Catal. 2021, 4, 10-9.

54. Liu, S.; Li, C.; Zachman, M. J.; et al. Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells. Nat. Energy. 2022, 7, 652-63.

55. Bai, J.; Zhao, T.; Xu, M.; et al. Monosymmetric Fe-N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification. Nat. Commun. 2024, 15, 4219.

56. Wang, W.; Jia, Q.; Mukerjee, S.; Chen, S. Recent insights into the oxygen-reduction electrocatalysis of Fe/N/C materials. ACS. Catal. 2019, 9, 10126-41.

57. Zhang, H.; Hwang, S.; Wang, M.; et al. Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 2017, 139, 14143-9.

58. Ni, B.; Shen, P.; Zhang, G.; et al. Second-shell N dopants regulate acidic O2 reduction pathways on isolated Pt sites. J. Am. Chem. Soc. 2024, 146, 11181-92.

59. Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.

60. Lu, J.; Lu, Q.; Guo, Y.; et al. Cobalt atom-cluster interactions synergistically enhance the activity of oxygen reduction reaction in seawater. Energy. Storage. Mater. 2024, 65, 103093.

61. Wang, Z.; Lu, Z.; Ye, Q.; et al. Construction of Fe nanoclusters/nanoparticles to engineer FeN4 sites on multichannel porous carbon fibers for boosting oxygen reduction reaction. Adv. Funct. Mater. 2024, 34, 2315150.

62. Liang, C.; Han, X.; Zhang, T.; et al. Cu nanoclusters accelerate the rate-determining step of oxygen reduction on Fe-N-C in all pH range. Adv. Energy. Mater. 2024, 14, 2303935.

63. Chen, Y.; Kong, X.; Wang, Y.; et al. A binary single atom Fe3C|Fe-N-C catalyst by an atomic fence evaporation strategy for high performance ORR/OER and flexible zinc-air battery. Chem. Eng. J. 2023, 454, 140512.

64. Chang, J.; Zhang, Q.; Yu, J.; et al. A Fe single atom seed-mediated strategy toward Fe3C/Fe-N-C catalysts with outstanding bifunctional ORR/OER activities. Adv. Sci. 2023, 10, e2301656.

65. Zhu, W.; Pei, Y.; Douglin, J. C.; et al. Multi-scale study on bifunctional Co/Fe-N-C cathode catalyst layers with high active site density for the oxygen reduction reaction. Appl. Catal. B. Environ. 2021, 299, 120656.

66. Wu, Y.; Chen, L.; Geng, S.; et al. PtFe nanoalloys supported on Fe-based cubic framework as efficient oxygen reduction electrocatalysts for proton exchange membrane fuel cells. Adv. Funct. Mater. 2024, 34, 2307297.

67. Wang, F.; Yang, J.; Li, J.; et al. Which is best for ORR: single atoms, nanoclusters, or coexistence? ACS. Energy. Lett. 2024, 9, 93-101.

68. Liu, M.; Lee, J.; Yang, T. C.; et al. Synergies of Fe single atoms and clusters on N-doped carbon electrocatalyst for pH-universal oxygen reduction. Small. Methods. 2021, 5, e2001165.

69. Han, A.; Sun, W.; Wan, X.; et al. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem. Int. Ed. 2023, 62, e202303185.

70. Li, Y.; Li, Z.; Shi, K.; et al. Single-atom Mn catalysts via integration with Mn sub nano-clusters synergistically enhance oxygen reduction reaction. Small 2024, 20, e2309727.

71. Yuan, L. J.; Liu, B.; Shen, L. X.; et al. d-orbital electron delocalization realized by axial Fe4C atomic clusters delivers high-performance Fe-N-C catalysts for oxygen reduction reaction. Adv. Mater. 2023, 35, e2305945.

72. Jiang, W. J.; Gu, L.; Li, L.; et al. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570-8.

73. Chen, G.; Liu, Y.; Xue, S.; et al. Exceptionally bifunctional ORR/OER performance via synergistic atom-cluster interaction. Small 2024, 20, e2308192.

74. Cui, X.; Gao, L.; Lei, S.; et al. Simultaneously crafting single-atomic Fe sites and graphitic layer-wrapped Fe3C nanoparticles encapsulated within mesoporous carbon tubes for oxygen reduction. Adv. Funct. Mater. 2021, 31, 2009197.

75. Wei, X.; Song, S.; Wu, N.; et al. Synergistically enhanced single-atomic site Fe by Fe3C@C for boosted oxygen reduction in neutral electrolyte. Nano. Energy. 2021, 84, 105840.

76. Lee, Y.; Ahn, J. H.; Jang, H.; et al. Very strong interaction between FeN4 and titanium carbide for durable 4-electron oxygen reduction reaction suppressing catalyst deactivation by peroxide. J. Mater. Chem. A. 2022, 10, 24041-50.

77. Pan, Y.; Li, M.; Mi, W.; et al. Single-atomic Mn sites coupled with Fe3C nanoparticles encapsulated in carbon matrixes derived from bimetallic Mn/Fe polyphthalocyanine conjugated polymer networks for accelerating electrocatalytic oxygen reduction. Nano. Res. 2022, 15, 7976-85.

78. Xu, C.; Guo, C.; Liu, J.; et al. Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites. Energy. Storage. Mater. 2022, 51, 149-58.

79. Bae, G.; Han, S.; Oh, H. S.; Choi, C. H. Operando stability of single-atom electrocatalysts. Angew. Chem. Int. Ed. 2023, 62, e202219227.

80. Choi, C. H.; Lim, H. K.; Chung, M. W.; et al. The Achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy. Environ. Sci. 2018, 11, 3176-82.

81. Bae, G.; Chung, M. W.; Ji, S. G.; Jaouen, F.; Choi, C. H. pH effect on the H2O2-induced deactivation of Fe-N-C catalysts. ACS. Catal. 2020, 10, 8485-95.

82. Li, Y.; Chen, M. Y.; Lu, B. A.; Wu, H. R.; Zhang, J. N. Unravelling the role of hydrogen peroxide in pH-dependent ORR performance of Mn-N-C catalysts. Appl. Catal. B. Environ. 2024, 342, 123458.

83. Luo, E.; Zhang, H.; Wang, X.; et al. Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew. Chem. Int. Ed. 2019, 58, 12469-75.

84. Guo, Y.; Wang, C.; Xiao, Y.; et al. Stabilizing Fe single atom catalysts by implanting Cr atomic clusters to boost oxygen reduction reaction. Appl. Catal. B. Environ. Energy. 2024, 344, 123679.

85. Lawler, R.; Cho, J.; Ham, H. C.; et al. CeO2 (111) surface with oxygen vacancy for radical scavenging: a density functional theory approach. J. Phys. Chem. C. 2020, 124, 20950-9.

86. Karakoti, A.; Singh, S.; Dowding, J. M.; Seal, S.; Self, W. T. Redox-active radical scavenging nanomaterials. Chem. Soc. Rev. 2010, 39, 4422-32.

87. Xie, H.; Xie, X.; Hu, G.; et al. Ta-TiOx nanoparticles as radical scavengers to improve the durability of Fe-N-C oxygen reduction catalysts. Nat. Energy. 2022, 7, 281-9.

88. Li, J.; Maurya, S.; Kim, Y. S.; et al. Stabilizing single-atom iron electrocatalysts for oxygen reduction via ceria confining and trapping. ACS. Catal. 2020, 10, 2452-8.

89. Cheng, X.; Jiang, X.; Yin, S.; et al. Instantaneous free radical scavenging by CeO2 nanoparticles adjacent to the Fe-N4 active sites for durable fuel cells. Angew. Chem. Int. Ed. 2023, 62, e202306166.

90. Gao, X. B.; Wang, Y.; Xu, W.; et al. Mechanism of particle-mediated inhibition of demetalation for single-atom catalytic sites in acidic electrochemical environments. J. Am. Chem. Soc. 2023, 145, 15528-37.

91. Bae, G.; Kim, M. M.; Han, M. H.; et al. Unravelling the complex causality behind Fe-N-C degradation in fuel cells. Nat. Catal. 2023, 6, 1140-50.

92. Mechler, A. K.; Sahraie, N. R.; Armel, V.; et al. Stabilization of iron-based fuel cell catalysts by non-catalytic platinum. J. Electrochem. Soc. 2018, 165, F1084-91.

93. Xiao, F.; Wang, Q.; Xu, G. L.; et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 503-12.

94. Zhou, H.; Yang, T.; Kou, Z.; et al. Negative pressure pyrolysis induced highly accessible single sites dispersed on 3D graphene frameworks for enhanced oxygen reduction. Angew. Chem. Int. Ed. 2020, 59, 20465-9.

95. Yu, Y.; Lv, Z.; Liu, Z.; et al. Activation of Ga liquid catalyst with continuously exposed active sites for electrocatalytic C-N coupling. Angew. Chem. Int. Ed. 2024, 63, e202402236.

96. Yuan, S.; Peng, J.; Zhang, Y.; et al. Tuning the catalytic activity of Fe-phthalocyanine-based catalysts for the oxygen reduction reaction by ligand functionalization. ACS. Catal. 2022, 12, 7278-87.

97. Fei, H.; Dong, J.; Chen, D.; et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207-41.

98. Zhao, Z.; Xiong, Y.; Yu, S.; et al. Single-atom Zn with nitrogen defects on biomimetic 3D carbon nanotubes for bifunctional oxygen electrocatalysis. J. Colloid. Interface. Sci. 2023, 650, 934-42.

99. Li, L.; Liu, X.; Wang, J.; et al. Atomically dispersed Co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn-air batteries. J. Mater. Chem. A. 2022, 10, 18723-9.

100. Tian, H.; Song, A.; Zhang, P.; et al. High durability of Fe-N-C single atom catalysts with carbon vacancies towards oxygen reduction reaction in alkaline media. Adv. Mater. 2023, 35, 2210714.

101. Liu, K.; Fu, J.; Lin, Y.; et al. Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nat. Commun. 2022, 13, 2075.

102. Wang, X.; Jia, Y.; Mao, X.; et al. Edge-rich Fe-N4 active sites in defective carbon for oxygen reduction catalysis. Adv. Mater. 2020, 32, e2000966.

103. Fu, X.; Li, N.; Ren, B.; et al. Tailoring FeN4 sites with edge enrichment for boosted oxygen reduction performance in proton exchange membrane fuel cell. Adv. Energy. Mater. 2019, 9, 1803737.

104. Kong, F.; Huang, Y.; Chen, M.; et al. Creation of densely exposed and cavity-edged single Fe active sites for enhanced oxygen electroreduction. Appl. Catal. B. Environ. 2022, 317, 121768.

105. Zhang, R.; Xue, B.; Tao, Y.; et al. Edge-site engineering of defective Fe-N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv. Mater. 2022, 34, e2205324.

106. Cui, L.; Zhao, J.; Liu, G.; Wang, Z.; Li, B.; Zong, L. Rich edge-hosted single-atomic Cu-N4 sites for highly efficient oxygen reduction reaction performance. J. Colloid. Interface. Sci. 2022, 622, 209-17.

107. Mun, Y.; Lee, S.; Kim, K.; et al. Versatile strategy for tuning ORR activity of a single Fe-N4 site by controlling electron-withdrawing/donating properties of a carbon plane. J. Am. Chem. Soc. 2019, 141, 6254-62.

108. Gu, Y.; Xi, B. J.; Zhang, H.; Ma, Y. C.; Xiong, S. L. Activation of main-group antimony atomic sites for oxygen reduction catalysis. Angew. Chem. Int. Ed. 2022, 61, e202202200.

109. Chang, X.; Xu, S.; Wang, D.; Zhang, Z.; Guo, Y.; Kang, S. Flash dual-engineering of surface carboxyl defects and single Cu atoms of g-C3N4 via unique CO2 plasma immersion approach for boosted photocatalytic activity. Mater. Today. Adv. 2022, 15, 100274.

110. Lv, M.; Cui, C. X.; Huang, N.; et al. Precisely engineering asymmetric atomic CoN4 by electron donating and extracting for oxygen reduction reaction. Angew. Chem. Int. Ed. 2024, 63, e202315802.

111. Wei, X.; Jiang, C.; Xu, H.; et al. Synergistic effect of organic ligands on metal site spin states in 2D metal-organic frameworks for enhanced ORR performance. ACS. Catal. 2023, 13, 15663-72.

112. Liu, M.; Sun, T.; Peng, T.; et al. Fe-NC single-atom catalyst with hierarchical porous structure and P-O bond coordination for oxygen reduction. ACS. Energy. Lett. 2023, 8, 4531-9.

113. Tang, C.; Chen, L.; Li, H.; et al. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819-27.

114. Qiao, Y.; Yuan, P.; Hu, Y.; et al. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 2018, 30, e1804504.

115. Chi, B.; Zhang, L.; Yang, X.; et al. Promoting ZIF-8-derived Fe-N-C oxygen reduction catalysts via Zr doping in proton exchange membrane fuel cells: durability and activity enhancements. ACS. Catal. 2023, 13, 4221-30.

116. Zhu, P.; Xiong, X.; Wang, X.; et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano. Lett. 2022, 22, 9507-15.

117. Zhang, M.; Li, H.; Chen, J.; et al. High-loading Co single atoms and clusters active sites toward enhanced electrocatalysis of oxygen reduction reaction for high-performance Zn-air battery. Adv. Funct. Mater. 2023, 33, 2209726.

118. Liu, H.; Jiang, L.; Khan, J.; et al. Decorating single-atomic Mn sites with FeMn clusters to boost oxygen reduction reaction. Angew. Chem. Int. Ed. 2023, 62, e202214988.

119. Wei, X.; Song, S.; Cai, W.; et al. Pt nanoparticle-Mn single-atom pairs for enhanced oxygen reduction. ACS. Nano. 2024, 18, 4308-19.

120. Xu, X.; Li, X.; Lu, W.; et al. Collective effect in a multicomponent ensemble combining single atoms and nanoparticles for efficient and durable oxygen reduction. Angew. Chem. Int. Ed. Engl. 2024, 63, e202400765.

121. Zhang, Y.; Chen, Z. W.; Liu, X.; et al. Vacancy-enhanced Sb-N4 sites for the oxygen reduction reaction and Zn-air battery. Nano. Lett. 2024, 24, 4291-9.

122. Lyu, L.; Hu, X.; Lee, S.; et al. Oxygen reduction kinetics of Fe-N-C single atom catalysts boosted by pyridinic N vacancy for temperature-adaptive Zn-air batteries. J. Am. Chem. Soc. 2024, 146, 4803-13.

123. Liu, H.; Jiang, L.; Sun, Y.; et al. Revisiting the role of sulfur functionality in regulating the electron distribution of single-atomic Fe sites toward enhanced oxygen reduction. Adv. Funct. Mater. 2023, 33, 2304074.

124. Qu, Y.; Li, Z.; Chen, W.; et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781-6.

125. Liu, H.; Li, J.; Arbiol, J.; Yang, B.; Tang, P. Catalytic reactivity descriptors of metal-nitrogen-doped carbon catalysts for electrocatalysis. EcoEnergy 2023, 1, 154-85.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/