REFERENCES

1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012;488:294-303.

2. Zhao D, Zhuang Z, Cao X, et al. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem Soc Rev 2020;49:2215-64.

3. Zhang C, Luo Y, Tan J, et al. High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution. Nat Commun 2020;11:3724.

4. Zhou Y, Zhou Q, Liu H, et al. Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction. Nat Commun 2023;14:3776.

5. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science 2017;355:eaad4998.

6. Luo Y, Tang L, Khan U, et al. Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat Commun 2019;10:269.

7. Wang A, Li J, Zhang T. Heterogeneous single-atom catalysis. Nat Rev Chem 2018;2:65-81.

8. Yang H, Li G, Jiang G, Zhang Z, Hao Z. Heterogeneous selective oxidation over supported metal catalysts: from nanoparticles to single atoms. Appl Catal B Environ 2023;325:122384.

9. Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev 2018;118:4981-5079.

10. Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem 2011;3:634-41.

11. Choi CH, Kim M, Kwon HC, et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun 2016;7:10922.

12. Bruix A, Lykhach Y, Matolínová I, et al. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew Chem Int Ed 2014;53:10525-30.

13. Lin J, Wang A, Qiao B, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc 2013;135:15314-7.

14. Yang M, Allard LF, Flytzani-Stephanopoulos M. Atomically dispersed Au-(OH)x species bound on titania catalyze the low-temperature water-gas shift reaction. J Am Chem Soc 2013;135:3768-71.

15. Zong L, Fan K, Wu W, et al. Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction. Adv Funct Mater 2021;31:2104864.

16. Choi J, Im S, Choi J, et al. Recent advances in 2D structured materials with defect-exploiting design strategies for electrocatalysis of nitrate to ammonia. Energy Mater 2024;4:400020.

17. He J, Li N, Li Z, et al. Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of single-atom catalysts. Adv Funct Mater 2021;31:2103597.

18. Rong X, Wang HJ, Lu XL, Si R, Lu TB. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew Chem Int Ed 2020;59:1961-5.

19. Shi X, Huang Y, Bo Y, et al. Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride. Angew Chem Int Ed 2022;61:e202203063.

20. Liu Y, Liu X, Jadhav AR, et al. Unraveling the function of metal-amorphous support interactions in single-atom electrocatalytic hydrogen evolution. Angew Chem Int Ed 2022;134:e202114160.

21. Zhou Y, Fan HJ. Progress and challenge of amorphous catalysts for electrochemical water splitting. ACS Mater Lett 2021;3:136-47.

22. Chen D, Dong CL, Zou Y, et al. In situ evolution of highly dispersed amorphous CoOx clusters for oxygen evolution reaction. Nanoscale 2017;9:11969-75.

23. Wang J, Han L, Huang B, Shao Q, Xin HL, Huang X. Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat Commun 2019;10:5692.

24. Gebauer D, Cölfen H. Prenucleation clusters and non-classical nucleation. Nano Today 2011;6:564-84.

25. Chen G, Zhu Y, Chen HM, et al. An amorphous nickel-iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv Mater 2019;31:e1900883.

26. Zhu Y, Liu C, Cui S, et al. Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH)2 catalyst for UOR. Adv Mater 2023;35:e2301549.

27. Yang H, Chen Z, Guo P, Fei B, Wu R. B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction. Appl Catal B Environ 2020;261:118240.

28. Kang Y, Henzie J, Gu H, et al. Mesoporous metal-metalloid amorphous alloys: the first synthesis of open 3D mesoporous Ni-B amorphous alloy spheres via a dual chemical reduction method. Small 2020;16:e1906707.

29. Cheng H, Yang N, Liu G, et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv Mater 2020;32:e1902964.

30. Zhang X, Luo Z, Yu P, et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat Catal 2018;1:460-8.

31. Wu G, Zheng X, Cui P, et al. A general synthesis approach for amorphous noble metal nanosheets. Nat Commun 2019;10:4855.

32. Chen L, Jiang X, Wang N, Yue J, Qian Y, Yang J. Surface-amorphous and oxygen-deficient Li3VO4-δ as a promising anode material for lithium-ion batteries. Adv Sci 2015;2:1500090.

33. Yang J, Li J, Wang T, et al. Novel hybrid of amorphous Sb/N-doped layered carbon for high-performance sodium-ion batteries. Chem Eng J 2021;407:127169.

34. Serrapede M, Savino U, Castellino M, et al. Li+ Insertion in nanostructured TiO2 for energy storage. Materials 2019;13:21.

35. Zhang K, Su Q, Shi W, et al. Copious dislocations defect in amorphous/crystalline/amorphous sandwiched structure P-NiMoO4 electrocatalyst toward enhanced hydrogen evolution reaction. ACS Nano 2024;18:3791-800.

36. Apostolova T, Obreshkov B. Femtosecond optical breakdown in silicon. Appl Surf Sci 2022;572:151354.

37. Jiang L, Tsai H. Repeatable nanostructures in dielectrics by femtosecond laser pulse trains. Appl Phys Lett 2005;87:151104.

38. Jiang L, Wang AD, Li B, Cui TH, Lu YF. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci Appl 2018;7:17134.

39. Zhao L, Chang B, Dong T, et al. Laser synthesis of amorphous CoSx nanospheres for efficient hydrogen evolution and nitrogen reduction reactions. J Mater Chem A 2022;10:20071-9.

40. Liu Y, Liu C, Chen Z, et al. Fabrication of amorphous PdNiCuP nanoparticles as efficient bifunctional and highly durable electrocatalyst for methanol and formic acid oxidation. J Mater Sci Technol 2022;122:148-55.

41. McGee S, Lei Y, Goff J, et al. Single-step direct laser writing of multimetal oxygen evolution catalysts from liquid precursors. ACS Nano 2021;15:9796-807.

42. Zhang R, Zhao Y, Guo Z, Liu X, Zhu L, Jiang Y. Highly selective Pd nanosheet aerogel catalyst with hybrid strain induced by laser irradiation and P doping postprocess. Small 2023;19:e2205587.

43. Li B, Jiang L, Li X, et al. Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production. Adv Funct Mater 2019;29:1806229.

44. Budiyanto E, Zerebecki S, Weidenthaler C, et al. Impact of single-pulse, low-intensity laser post-processing on structure and activity of mesostructured cobalt oxide for the oxygen evolution reaction. ACS Appl Mater Interfaces 2021;13:51962-73.

45. Lv C, Yan C, Chen G, et al. An amorphous noble-metal-free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew Chem Int Ed 2018;57:6073-6.

46. Xi F, Bogdanoff P, Harbauer K, et al. Structural transformation identification of sputtered amorphous MoSx as an efficient hydrogen-evolving catalyst during electrochemical activation. ACS Catal 2019;9:2368-80.

47. Qiao A, Tao H, Yue Y. Enhancing ionic conductivity in Ag3PS4 via mechanical amorphization. J Non-Cryst Solids 2019;521:119476.

48. Poryvaev AS, Polyukhov DM, Fedin MV. Mitigation of pressure-induced amorphization in metal-organic framework ZIF-8 upon EPR control. ACS Appl Mater Interfaces 2020;12:16655-61.

49. Sabochick MJ, Lam NQ. Radiation-induced amorphization of ordered intermetallic compounds CuTi, CuTi2 and CuTi3: a molecular-dynamics study. Phys Rev B Condens Matter 1991;43:5243-52.

50. Widmer RN, Lampronti GI, Casati N, Farsang S, Bennett TD, Redfern SAT. X-ray radiation-induced amorphization of metal-organic frameworks. Phys Chem Chem Phys 2019;21:12389-95.

51. Edinger M, Knopp MM, Kerdoncuff H, Rantanen J, Rades T, Löbmann K. Quantification of microwave-induced amorphization of celecoxib in PVP tablets using transmission Raman spectroscopy. Eur J Pharm Sci 2018;117:62-7.

52. Fei H, Dong J, Chen D, et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem Soc Rev 2019;48:5207-41.

53. Li M, Lv Q, Si W, Hou Z, Huang C. Sp-hybridized nitrogen as new anchoring sites of iron single atoms to boost the oxygen reduction reaction. Angew Chem Int Ed 2022;61:e202208238.

54. Liu M, Wang X, Cao S, et al. Ferredoxin-inspired design of S-synergized Fe-Fe dual-metal center catalysts for enhanced electrocatalytic oxygen reduction reaction. Adv Mater 2024;36:e2309231.

55. Sun T, Zang W, Yan H, et al. Engineering the coordination environment of single cobalt atoms for efficient oxygen reduction and hydrogen evolution reactions. ACS Catal 2021;11:4498-509.

56. Zeng Z, Gan LY, Bin Yang H, et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat Commun 2021;12:4088.

57. Zhu Z, Yin H, Wang Y, et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv Mater 2020;32:e2004670.

58. Zhao X, Wang F, Kong XP, Fang R, Li Y. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J Am Chem Soc 2021;143:16068-77.

59. Ma X, Hu J, Zheng M, et al. N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising catalysts: a DFT study. Appl Surf Sci 2019;489:684-92.

60. Zhang Z, Feng C, Wang D, et al. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution. Nat Commun 2022;13:2473.

61. He Q, Tian D, Jiang H, et al. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv Mater 2020;32:e1906972.

62. Dong Q, Ma S, Zhu J, et al. Ultrahigh mass activity for the hydrogen evolution reaction by anchoring platinum single atoms on active {100} facets of TiC via cation defect engineering. Adv Funct Mater 2023;33:2210665.

63. Gong F, Liu Y, Zhao Y, et al. Universal sub-nanoreactor strategy for synthesis of yolk-shell MoS2 supported single atom electrocatalysts toward robust hydrogen evolution reaction. Angew Chem Int Ed 2023;62:e202308091.

64. Elbakkay MH, El-Dek S, Farghali AA, El Rouby WM. Highly active atomic Cu catalyst anchored on superlattice CoFe layered double hydroxide for efficient oxygen evolution electrocatalysis. Int J Hydrogen Energy 2022;47:9876-94.

65. Zhang C, Cui Y, Yang Y, et al. Highly conductive amorphous pentlandite anchored with ultrafine platinum nanoparticles for efficient pH-universal hydrogen evolution reaction. Adv Funct Mater 2021;31:2105372.

66. Wang H, Bootharaju MS, Kim JH, et al. Synergistic interactions of neighboring platinum and iron atoms enhance reverse water-gas shift reaction performance. J Am Chem Soc 2023;145:2264-70.

67. Zhou Y, Song E, Chen W, et al. Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv Mater 2020;32:e2003484.

68. Zhou Y, Hao W, Zhao X, et al. Electronegativity-induced charge balancing to boost stability and activity of amorphous electrocatalysts. Adv Mater 2022;34:e2100537.

69. Hannagan RT, Giannakakis G, Réocreux R, et al. First-principles design of a single-atom–alloy propane dehydrogenation catalyst. Science 2021;372:1444-7.

70. Zheng T, Liu C, Guo C, et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat Nanotechnol 2021;16:1386-93.

71. Ji K, Xu M, Xu SM, et al. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1 Cu single-atom alloy catalyst. Angew Chem Int Ed 2022;61:e202209849.

72. Li X, Shen P, Luo Y, et al. PdFe single-atom alloy metallene for N2 electroreduction. Angew Chem Int Ed 2022;61:e202205923.

73. Han L, Ou P, Liu W, et al. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci Adv 2022;8:eabm3779.

74. Li P, Wang M, Duan X, et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat Commun 2019;10:1711.

75. Hou M, Zheng L, Zhao D, et al. Microenvironment reconstitution of highly active Ni single atoms on oxygen-incorporated Mo2C for water splitting. Nat Commun 2024;15:1342.

76. Wu Y, Ye C, Yu L, et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Stor Mater 2022;45:805-13.

77. Jiang Z, Zhou W, Hu C, et al. Interlayer-confined NiFe dual atoms within MoS2 electrocatalyst for ultra-efficient acidic overall water splitting. Adv Mater 2023;35:e2300505.

78. Xi J, Sun H, Wang D, et al. Confined-interface-directed synthesis of palladium single-atom catalysts on graphene/amorphous carbon. Appl Catal B Environ 2018;225:291-7.

79. Loy ACM, Ng WL, Bhattacharya S. Advanced characterization techniques for the development of subatomic scale catalysts: one step closer to industrial scale fabrication. Mater Today Catal 2024;4:100033.

80. Ajayi TM, Shirato N, Rojas T, et al. Characterization of just one atom using synchrotron X-rays. Nature 2023;618:69-73.

81. Qi P, Wang J, Djitcheu X, He D, Liu H, Zhang Q. Techniques for the characterization of single atom catalysts. RSC Adv 2021;12:1216-27.

82. Terban MW, Billinge SJL. Structural analysis of molecular materials using the pair distribution function. Chem Rev 2022;122:1208-72.

83. Klingan K, Ringleb F, Zaharieva I, et al. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases. ChemSusChem 2014;7:1301-10.

84. Tian H, Ma Y, Li Z, et al. Disorder-tuned conductivity in amorphous monolayer carbon. Nature 2023;615:56-61.

85. Su X, Wang Y, Zhou J, Gu S, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J Am Chem Soc 2018;140:11286-92.

86. Duan Y, Yu ZY, Hu SJ, et al. Scaled-up synthesis of amorphous NiFeMo oxides and their rapid surface reconstruction for superior oxygen evolution catalysis. Angew Chem Int Ed 2019;58:15772-7.

87. Zhang J, Yin R, Shao Q, Zhu T, Huang X. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew Chem Int Ed 2019;58:5609-13.

88. Yan J, Kong L, Ji Y, et al. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat Commun 2019;10:2149.

89. Zhang R, Li Y, Zhou X, et al. Single-atomic platinum on fullerene C60 surfaces for accelerated alkaline hydrogen evolution. Nat Commun 2023;14:2460.

90. Back S, Lim J, Kim NY, Kim YH, Jung Y. Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements. Chem Sci 2017;8:1090-6.

91. Cheng N, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 2016;7:13638.

92. Zhang M, Xu W, Ma CL, Yu J, Liu YT, Ding B. Highly active and selective electroreduction of N2 by the catalysis of Ga single atoms stabilized on amorphous TiO2 nanofibers. ACS Nano 2022;16:4186-96.

93. Chen W, Ma Y, Li F, et al. Strong electronic interaction of amorphous Fe2O3 nanosheets with single-atom Pt toward enhanced carbon monoxide oxidation. Adv Funct Mater 2019;29:1904278.

94. Ma P, Feng C, Chen H, et al. Directing in-situ self-optimization of single-atom catalysts for improved oxygen evolution. J Energy Chem 2023;80:284-90.

95. Chen K, Zhang N, Wang F, Kang J, Chu K. Main-group indium single-atom catalysts for electrocatalytic NO reduction to NH3. J Mater Chem A 2023;11:6814-9.

96. Liu W, Xu Q, Yan P, et al. Fabrication of a single-atom platinum catalyst for the hydrogen evolution reaction: a new protocol by utilization of HxMoO3-x with plasmon resonance. ChemCatChem 2018;10:946-50.

97. Shen R, Chen W, Peng Q, et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019;5:2099-110.

98. Feng D, Wang P, Qin R, et al. Flower-like amorphous MoO3-x stabilized Ru single atoms for efficient overall water/seawater splitting. Adv Sci 2023;10:e2300342.

99. Liu C, Pan G, Liang N, Hong S, Ma J, Liu Y. Ir single atom catalyst loaded on amorphous carbon materials with high HER activity. Adv Sci 2022;9:e2105392.

100. Zhang Q, Qin XX, Duan-Mu FP, et al. Isolated platinum atoms stabilized by amorphous tungstenic acid: metal-support interaction for synergistic oxygen activation. Angew Chem Int Ed 2018;57:9351-6.

101. Yang J, Chen B, Liu X, et al. Efficient and robust hydrogen evolution: phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew Chem Int Ed 2018;57:9495-500.

102. Hu Y, Chen C, Shen T, et al. Hollow carbon nanorod confined single atom Rh for direct formic acid electrooxidation. Adv Sci 2022;9:e2205299.

103. Cai C, Wang M, Han S, et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal 2021;11:123-30.

104. Luo X, Wei X, Zhong H, et al. Single-atom Ir-anchored 3D amorphous NiFe nanowire@nanosheets for boosted oxygen evolution reaction. ACS Appl Mater Interfaces 2020;12:3539-46.

105. Li D, Chen X, Lv Y, et al. An effective hybrid electrocatalyst for the alkaline HER: highly dispersed Pt sites immobilized by a functionalized NiRu-hydroxide. Appl Catal B Environ 2020;269:118824.

106. Lyu F, Zeng S, Jia Z, et al. Two-dimensional mineral hydrogel-derived single atoms-anchored heterostructures for ultrastable hydrogen evolution. Nat Commun 2022;13:6249.

107. Chen S, Zhang N, Narváez Villarrubia CW, et al. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy 2019;66:104164.

108. Wang J, Zhao L, Zou Y, et al. Engineering the coordination environment of Ir single atoms with surface titanium oxide amorphization for superior chlorine evolution reaction. J Am Chem Soc 2024;146:11152-63.

109. Cheng X, Xiao B, Chen Y, et al. Ligand charge donation-acquisition balance: a unique strategy to boost single Pt atom catalyst mass activity toward the hydrogen evolution reaction. ACS Catal 2022;12:5970-8.

110. Xu J, Zhang C, Liu H, et al. Amorphous MoOX-stabilized single platinum atoms with ultrahigh mass activity for acidic hydrogen evolution. Nano Energy 2020;70:104529.

111. Hu Y, Luo G, Wang L, et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv Energy Mater 2021;11:2002816.

112. Wang R, Li Y, Tan X, et al. Amorphous doping promotes utilization of Fe-doped amorphous Zr(HPO4)2 for superb water oxidation electrocatalysis. Adv Mater Inter 2022;9:2200387.

113. Chen K, Zhang Y, Xiang J, Zhao X, Li X, Chu K. p-Block antimony single-atom catalysts for nitric oxide electroreduction to ammonia. ACS Energy Lett 2023;8:1281-8.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/