REFERENCES

1. Wu X, Ma J, Wang J, Zhang X, Zhou G, Liang Z. Progress, key issues, and future prospects for Li-ion battery recycling. Glob Chall 2022;6:2200067.

2. Cui Z, Hu W, Zhang G, Zhang Z, Chen Z. An extended kalman filter based SOC estimation method for Li-ion battery. Energy Rep 2022;8:81-7.

3. Bibin C, Vijayaram M, Suriya V, Sai Ganesh R, Soundarraj S. A review on thermal issues in Li-ion battery and recent advancements in battery thermal management system. Mater Today Proc 2020;33:116-28.

4. Singh S. Energy crisis and climate change. In: Energy: crises, challenges and solutions, Singh P, Singh S, Kumar G, Baweja P, editors; 2021. pp.1-17.

5. Blakers A, Stocks M, Lu B, Cheng C. A review of pumped hydro energy storage. Prog Energy 2021;3:022003.

6. Javed MS, Ma T, Jurasz J, Amin MY. Solar and wind power generation systems with pumped hydro storage: review and future perspectives. Renew Energy 2020;148:176-92.

7. Mitali J, Dhinakaran S, Mohamad A. Energy storage systems: a review. Energy Stor Sav 2022;1:166-216.

8. Poullikkas A. A comparative overview of large-scale battery systems for electricity storage. Renew Sustain Energy Rev 2013;27:778-88.

9. Roscher MA, Vetter J, Sauer DU. Cathode material influence on the power capability and utilizable capacity of next generation lithium-ion batteries. J Power Sources 2010;195:3922-7.

10. Gailani A, Mokidm R, El-Dalahmeh M, El-Dalahmeh M, Al-Greer M. Analysis of lithium-ion battery cells degradation based on different manufacturers. In: 55th international universities power engineering conference (UPEC), Turin, Italy, 1-4 Sep 2020.

11. Yan L, Zeng X, Li Z, et al. An innovation: dendrite free quinone paired with ZnMn2O4 for zinc ion storage. Mater Today Energy 2019;13:323-30.

12. Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S. Towards K-ion and Na-ion batteries as “beyond li-ion”. Chem Rec 2018;18:459-79.

13. Blomgren GE. The development and future of lithium ion batteries. J Electrochem Soc 2017;164:A5019-25.

14. Cao L, Li D, Soto FA, et al. Highly reversible aqueous zinc batteries enabled by zincophilic-zincophobic interfacial layers and interrupted hydrogen-bond electrolytes. Angew Chem Int Ed 2021;60:18845-51.

15. Goikolea E, Palomares V, Wang S, et al. Na-ion batteries - approaching old and new challenges. Adv Energy Mater 2020;10:2002055.

16. Kim J, Elabd A, Chung SY, Coskun A, Choi JW. Covalent triazine frameworks incorporating charged polypyrrole channels for high-performance lithium-sulfur batteries. Chem Mater 2020;32:4185-93.

17. Wang C, Wu X, Chen Y, et al. Recognition and application of catalysis in secondary rechargeable batteries. ACS Catal 2023;13:10641-50.

18. Fei Z, Xing Y, Dong P, Meng Q, Zhang Y. Efficient direct regeneration of spent LiCoO2 cathode materials by oxidative hydrothermal solution. JOM 2023;75:3632-42.

19. Wang Y, Liu K, Wang B. Coating strategies of Ni-rich layered cathode in LIBs. Chem J Chin Univ 2021;42:1514-29.

20. Tan A, Wen Y, Huang J, et al. Multiredox tripyridine-triazine molecular cathode for lithium-organic battery. J Power Sources 2023;567:232963.

21. Lei Z, Chen X, Sun W, Zhang Y, Wang Y. Exfoliated triazine-based covalent organic nanosheets with multielectron redox for high-performance lithium organic batteries. Adv Energy Mater 2019;9:1801010.

22. Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem 2020;4:127-42.

23. Jung MH, Ghorpade RV. Polyimide containing tricarbonyl moiety as an active cathode for rechargeable Li-ion batteries. J Electrochem Soc 2018;165:A2476.

24. Zhang H, Sun W, Chen X, Wang Y. Few-layered fluorinated triazine-based covalent organic nanosheets for high-performance alkali organic batteries. ACS Nano 2019;13:14252-61.

25. Xiong P, Zhang S, Wang R, et al. Covalent triazine frameworks for advanced energy storage: challenges and new opportunities. Energy Environ Sci 2023;16:3181-213.

26. Zhao-Karger Z, Gao P, Ebert T, et al. New organic electrode materials for ultrafast electrochemical energy storage. Adv Mater 2019;31:e1806599.

27. Zhang S, Han D, Ren S, Xiao M, Wang S, Meng Y. Immobilization strategies of organic electrode materials. Prog Chem 2020;32:103-18.

28. Lee S, Hong J, Kang K. Redox-active organic compounds for future sustainable energy storage system. Adv Energy Mater 2020;10:2001445.

29. Jia M, Mao C, Niu Y, et al. A selenium-confined porous carbon cathode from silk cocoons for Li-Se battery applications. RSC Adv 2015;5:96146-50.

30. Sakaushi K, Nickerl G, Wisser FM, et al. An energy storage principle using bipolar porous polymeric frameworks. Angew Chem Int Ed 2012;51:7850-4.

31. Wang B, Yuan F, Wang W, et al. A carbon microtube array with a multihole cross profile: releasing the stress and boosting long-cycling and high-rate potassium ion storage. J Mater Chem A 2019;7:25845-52.

32. Chu J, Cheng L, Chen L, Wang HG, Cui F, Zhu G. Integrating multiple redox-active sites and universal electrode-active features into covalent triazine frameworks for organic alkali metal-ion batteries. Chem Eng J 2023;451:139016.

33. Wu C, Hu M, Yan X, Shan G, Liu J, Yang J. Azo-linked covalent triazine-based framework as organic cathodes for ultrastable capacitor-type lithium-ion batteries. Energy Stor Mater 2021;36:347-54.

34. Yadav D, Subodh, Awasthi SK. Recent advances in the design, synthesis and catalytic applications of triazine-based covalent organic polymers. Mater Chem Front 2022;6:1574-605.

35. Srinivasan P, Dhingra K, Kailasam K. A critical insight into porous organic polymers (POPs) and its perspectives for next-generation chemiresistive exhaled breath sensing: a state-of-the-art review. J Mater Chem A 2023;11:17418-51.

36. Wang Z, Gu S, Cao L, et al. Redox of dual-radical intermediates in a methylene-linked covalent triazine framework for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 2021;13:514-21.

37. Jiang F, Wang Y, Qiu T, et al. Synthesis of biphenyl-linked covalent triazine frameworks with excellent lithium storage performance as anode in lithium ion battery. J Power Sources 2022;523:231041.

38. Lv S, He Q, Zhang Y, et al. High performance cathode materials for lithium-ion batteries based on a phenothiazine-based covalent triazine framework. New J Chem 2023;47:10911-5.

39. Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed 2008;47:3450-3.

40. Ren S, Bojdys MJ, Dawson R, et al. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv Mater 2012;24:2357-61.

41. Yu SY, Mahmood J, Noh HJ, et al. Direct synthesis of a covalent triazine-based framework from aromatic amides. Angew Chem Int Ed 2018;57:8438-42.

42. Zhang W, Li C, Yuan YP, et al. Highly energy- and time-efficient synthesis of porous triazine-based framework: microwave-enhanced ionothermal polymerization and hydrogen uptake. J Mater Chem 2010;20:6413-5.

43. Lan ZA, Wu M, Fang Z, et al. Ionothermal synthesis of covalent triazine frameworks in a NaCl-KCl-ZnCl2 eutectic salt for the hydrogen evolution reaction. Angew Chem Int Ed 2022;61:e202201482.

44. Sun T, Liang Y, Luo W, Zhang L, Cao X, Xu Y. A general strategy for kilogram-scale preparation of highly crystal-line covalent triazine frameworks. Angew Chem Int Ed 2022;61:e202203327.

45. Anderson DR, Holovka JM. Thermally resistant polymers containing the s-triazine ring. J Polym Sci A-1 Polym Chem 1966;4:1689-702.

46. Ren S, Zeng D, Zhong H, Wang Y, Qian S, Fang Q. Star-shaped donor-pi-acceptor conjugated oligomers with 1,3,5-triazine cores: convergent synthesis and multifunctional properties. J Phys Chem B 2010;114:10374-83.

47. Huang W, Wang ZJ, Ma BC, et al. Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity. J Mater Chem A 2016;4:7555-9.

48. Ma K, Li J, Liu J, et al. Covalent triazine framework featuring single electron Co2+ centered in intact porphyrin units for efficient CO2 photoreduction. Appl Surf Sci 2023;629:157453.

49. Liu J, Zan W, Li K, Yang Y, Bu F, Xu Y. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile. J Am Chem Soc 2017;139:11666-9.

50. Zhu X, Tian C, Mahurin SM, et al. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. J Am Chem Soc 2012;134:10478-84.

51. Zeng T, Li S, Shen Y, et al. Sodium doping and 3D honeycomb nanoarchitecture: key features of covalent triazine-based frameworks (CTF) organocatalyst for enhanced solar-driven advanced oxidation processes. Appl Catal B Environ 2019;257:117915.

52. Zhao W, Hu K, Hu C, Wang X, Yu A, Zhang S. Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography. J Chromatogr A 2017;1487:83-8.

53. Bhunia A, Esquivel D, Dey S, et al. A photoluminescent covalent triazine framework: CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. J Mater Chem A 2016;4:13450-7.

54. Liu J, Lyu P, Zhang Y, Nachtigall P, Xu Y. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Adv Mater 2018;30:1705401.

55. Wang K, Yang LM, Wang X, et al. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew Chem Int Ed 2017;56:14149-53.

56. Wang H, Qiu N, Kong X, et al. Novel carbazole-based porous organic polymer for efficient iodine capture and rhodamine B adsorption. ACS Appl Mater Interfaces 2023;15:14846-53.

57. Han X, Zhao F, Shang Q, Zhao J, Zhong X, Zhang J. Effect of nitrogen atom introduction on the photocatalytic hydrogen evolution activity of covalent triazine frameworks: experimental and theoretical study. ChemSusChem 2022;15:e202200828.

58. Asadi P, Taymouri S, Khodarahmi G, et al. Novel nanoscale vanillin based covalent triazine framework as a novel carrier for sustained release of imatinib. Polym Adv Technol 2023;34:1358-66.

59. Yildirim O, Derkus B. Triazine-based 2D covalent organic frameworks improve the electrochemical performance of enzymatic biosensors. J Mater Sci 2020;55:3034-44.

60. Sharma RK, Yadav P, Yadav M, et al. Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Mater Horiz 2020;7:411-54.

61. Wang D, Zheng Z, Hong C, Liu Y, Pan C. Michael addition polymerizations of difunctional amines (AA′) and triacrylamides (B3). J Polym Sci A Polym Chem 2006;44:6226-42.

62. Liu M, Huang Q, Wang S, et al. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angew Chem Int Ed 2018;57:11968-72.

63. You Q, Wang F, Wu C, et al. Synthesis of 1,3,5-triazines via Cu(OAc)2-catalyzed aerobic oxidative coupling of alcohols and amidine hydrochlorides. Org Biomol Chem 2015;13:6723-7.

64. Zha GF, Fang WY, Leng J, Qin HL. A simple, mild and general oxidation of alcohols to aldehydes or ketones by SO2F2/K2CO3 using DMSO as solvent and oxidant. Adv Synth Catal 2019;361:2262-7.

65. Puthiaraj P, Cho SM, Lee YR, Ahn WS. Microporous covalent triazine polymers: efficient friedel-crafts synthesis and adsorption/storage of CO2 and CH4. J Mater Chem A 2015;3:6792-7.

66. Dey S, Bhunia A, Esquivel D, Janiak C. Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO2 adsorption. J Mater Chem A 2016;4:6259-63.

67. Troschke E, Grätz S, Lübken T, Borchardt L. Mechanochemical friedel-crafts alkylation-A sustainable pathway towards porous organic polymers. Angew Chem Int Ed 2017;56:6859-63.

68. Fang XC, Geng TM, Wang FQ, Xu WH. The synthesis of conjugated microporous polymers via Friedel-Crafts reaction of 2,4,6-trichloro-1,3,5-triazine with thienyl derivatives for fluorescence sensing to 2,4-dinitrophenol and capturing iodine. J Solid State Chem 2022;307:122818.

69. Lim H, Cha MC, Chang JY. Preparation of microporous polymers based on 1,3,5-triazine units showing high CO2 adsorption capacity. Macro Chem Phys 2012;213:1385-90.

70. Artz J. Covalent triazine-based frameworks - tailor-made catalysts and catalyst supports for molecular and nanoparticulate species. ChemCatChem 2018;10:1753-71.

71. Ravi S, Kim J, Choi Y, et al. Metal-free amine-anchored triazine-based covalent organic polymers for selective CO2 adsorption and conversion to cyclic carbonates under mild conditions. ACS Sustain Chem Eng 2023;11:1190-9.

72. Feng G, Yang M, Chen H, Liu B, Liu Y, Li H. Triazine-containing polytriphenylimidazolium network for heterogeneous catalysis of CO2 conversion to cyclic carbonates. Sep Purif Technol 2023;323:124484.

73. Geng TM, Fang XC, Wang FQ, Zhu F. The synthesis of covalent triazine-based frameworks via friedel-crafts reactions of cyanuric chloride with thienyl and carbazolyl derivatives for fluorescence sensing to picric acid, iodine and capturing iodine. Macro Mater Eng 2021;306:2100461.

74. Puthiaraj P, Kim SS, Ahn WS. Covalent triazine polymers using a cyanuric chloride precursor via friedel-crafts reaction for CO2 adsorption/separation. Chem Eng J 2016;283:184-92.

75. Rightmire NR, Hanusa TP. Advances in organometallic synthesis with mechanochemical methods. Dalton Trans 2016;45:2352-62.

76. Xu C, De S, Balu AM, Ojeda M, Luque R. Mechanochemical synthesis of advanced nanomaterials for catalytic applications. Chem Commun 2015;51:6698-713.

77. Krusenbaum A, Kraus FJL, Hutsch S, et al. The rapid mechanochemical synthesis of microporous covalent triazine networks: elucidating the role of chlorinated linkers by a solvent-free approach. Adv Sustain Syst 2023;7:2200477.

78. Liang Y, Dong H, Aurbach D, Yao Y. Publisher correction: current status and future directions of multivalent metal-ion batteries. Nat Energy 2020;5:822.

79. Mishra A, Mehta A, Basu S, et al. Electrode materials for lithium-ion batteries. Mater Sci Energy Technol 2018;1:182-7.

80. Ohzuku T, Brodd RJ. An overview of positive-electrode materials for advanced lithium-ion batteries. J Power Sources 2007;174:449-56.

81. Wang KX, Li XH, Chen JS. Surface and interface engineering of electrode materials for lithium-ion batteries. Adv Mater 2015;27:527-45.

82. Esser B, Dolhem F, Becuwe M, Poizot P, Vlad A, Brandell D. A perspective on organic electrode materials and technologies for next generation batteries. J Power Sources 2021;482:228814.

83. Shen X, Zhang XQ, Ding F, et al. Advanced electrode materials in lithium batteries: retrospect and prospect. Energy Mater Adv 2021;2021:1205324.

84. Gong Z, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 2011;4:3223-42.

85. Xu B, Qian D, Wang Z, Meng YS. Recent progress in cathode materials research for advanced lithium ion batteries. Mater Sci Eng R Rep 2012;73:51-65.

86. He W, Guo W, Wu H, et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv Mater 2021;33:e2005937.

87. Lee W, Muhammad S, Sergey C, et al. Advances in the cathode materials for lithium rechargeable batteries. Angew Chem Int Ed 2020;59:2578-605.

88. Kraytsberg A, Ein-Eli Y. Higher, stronger, better... a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2012;2:922-39.

89. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:e1800561.

90. Wang R, Wang L, Fan Y, Yang W, Zhan C, Liu G. Controversy on necessity of cobalt in nickel-rich cathode materials for lithium-ion batteries. J Ind Eng Chem 2022;110:120-30.

91. Su Y, Liu Y, Liu P, et al. Compact coupled graphene and porous polyaryltriazine-derived frameworks as high performance cathodes for lithium-ion batteries. Angew Chem Int Ed 2015;54:1812-6.

92. See KA, Hug S, Schwinghammer K, et al. Lithium charge storage mechanisms of cross-linked triazine networks and their porous carbon derivatives. Chem Mater 2015;27:3821-9.

93. Woo SW, Dokko K, Nakano H, Kanamura K. Preparation of three dimensionally ordered macroporous carbon with mesoporous walls for electric double-layer capacitors. J Mater Chem 2008;18:1674-80.

94. Wang DW, Li F, Liu M, Lu GQ, Cheng HM. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 2008;47:373-6.

95. Liu HJ, Wang J, Wang CX, Xia YY. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor. Adv Energy Mater 2011;1:1101-8.

96. Liu HJ, Wang XM, Cui WJ, Dou YQ, Zhao DY, Xia YY. Highly ordered mesoporous carbon nanofiber arrays from a crab shell biological template and its application in supercapacitors and fuel cells. J Mater Chem 2010;20:4223-30.

97. Yuan R, Kang W, Zhang C. Rational design of porous covalent triazine-based framework composites as advanced organic lithium-ion battery cathodes. Materials 2018;11:937.

98. Yang DH, Yao ZQ, Wu D, Zhang YH, Zhou Z, Bu XH. Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. J Mater Chem A 2016;4:18621-7.

99. Wang S, Wang Q, Shao P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J Am Chem Soc 2017;139:4258-61.

100. Xu F, Jin S, Zhong H, et al. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci Rep 2015;5:8225.

101. Jiao L, Hu Y, Ju H, et al. From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: efficient electrocatalysts for oxygen reduction. J Mater Chem A 2017;5:23170-8.

102. Zhu J, Zhuang X, Yang J, Feng X, Hirano S. Graphene-coupled nitrogen-enriched porous carbon nanosheets for energy storage. J Mater Chem A 2017;5:16732-9.

103. Guan R, Zhong L, Wang S, et al. Synergetic covalent and spatial confinement of sulfur species by phthalazinone-containing covalent triazine frameworks for ultrahigh performance of Li-S batteries. ACS Appl Mater Interfaces 2020;12:8296-305.

104. Haldar S, Roy K, Kushwaha R, Ogale S, Vaidhyanathan R. Chemical exfoliation as a controlled route to enhance the anodic performance of COF in LIB. Adv Energy Mater 2019;9:1902428.

105. Wang Z, Li Y, Liu P, et al. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Nanoscale 2019;11:5330-5.

106. Zhao G, Li H, Gao Z, et al. Dual-active-center of polyimide and triazine modified atomic-layer covalent organic frameworks for high-performance Li storage. Adv Funct Mater 2021;31:2101019.

107. Ma T, Zhao Q, Wang J, Pan Z, Chen J. A sulfur heterocyclic quinone cathode and a multifunctional binder for a high-performance rechargeable lithium-ion battery. Angew Chem Int Ed 2016;55:6428-32.

108. Peng C, Ning GH, Su J, et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat Energy 2017;2:1-9.

109. Luo C, Ji X, Hou S, et al. Azo compounds derived from electrochemical reduction of nitro compounds for high performance Li-ion batteries. Adv Mater 2018;30:e1706498.

110. Chen X, Zhang H, Yan P, et al. Bipolar fluorinated covalent triazine framework cathode with high lithium storage and long cycling capability. RSC Adv 2022;12:11484-91.

111. Li Y, Zheng S, Liu X, et al. Conductive microporous covalent triazine-based framework for high-performance electrochemical capacitive energy storage. Angew Chem Int Ed 2018;57:7992-6.

112. Liu W, Wang K, Zhan X, et al. Highly connected three-dimensional covalent organic framework with flu topology for high-performance Li-S batteries. J Am Chem Soc 2023;145:8141-9.

113. Xu J, Zhu C, Song S, Fang Q, Zhao J, Shen Y. A nanocubicle-like 3D adsorbent fabricated by in situ growth of 2D heterostructures for removal of aromatic contaminants in water. J Hazard Mater 2022;423:127004.

114. Ren L, Lian L, Zhang X, et al. Boosting lithium storage in covalent triazine framework for symmetric all-organic lithium-ion batteries by regulating the degree of spatial distortion. J Colloid Interface Sci 2024;660:1039-47.

115. Sakaushi K, Hosono E, Nickerl G, et al. Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat Commun 2013;4:1485.

116. Xu H, Yan Q, Yao W, Lee CS, Tang Y. Mainstream optimization strategies for cathode materials of sodium-ion batteries. Small Struct 2022;3:2100217.

117. Liu Q, Hu Z, Li W, et al. Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries? Energy Environ Sci 2021;14:158-79.

118. Perveen T, Siddiq M, Shahzad N, Ihsan R, Ahmad A, Shahzad MI. Prospects in anode materials for sodium ion batteries - a review. Renew Sustain Energy Rev 2020;119:109549.

119. Yang C, Xin S, Mai L, You Y. Materials Design for high-safety sodium-ion battery. Adv Energy Mater 2021;11:2000974.

120. Li K, Wang Y, Gao B, Lv X, Si Z, Wang HG. Conjugated microporous polyarylimides immobilization on carbon nanotubes with improved utilization of carbonyls as cathode materials for lithium/sodium-ion batteries. J Colloid Interface Sci 2021;601:446-53.

121. Shi J, Tang W, Xiong B, Gao F, Lu Q. Molecular design and post-synthetic vulcanization on two-dimensional covalent organic framework@rGO hybrids towards high-performance sodium-ion battery cathode. Chem Eng J 2023;453:139607.

122. Sun R, Hou S, Luo C, et al. A covalent organic framework for fast-charge and durable rechargeable Mg storage. Nano Lett 2020;20:3880-8.

123. Pan B, Huang J, Feng Z, et al. Polyanthraquinone-based organic cathode for high-performance rechargeable magnesium-ion batteries. Adv Energy Mater 2016;6:1600140.

124. Dong H, Liang Y, Tutusaus O, et al. Directing Mg-storage chemistry in organic polymers toward high-energy Mg batteries. Joule 2019;3:782-93.

125. Leisegang T, Meutzner F, Zschornak M, et al. The aluminum-ion battery: a sustainable and seminal concept? Front Chem 2019;7:268.

126. Yuan D, Zhao J, Manalastas Jr. W, Kumar S, Srinivasan M. Emerging rechargeable aqueous aluminum ion battery: status, challenges, and outlooks. Nano Mater Sci 2020;2:248-63.

127. Jayaprakash N, Das SK, Archer LA. The rechargeable aluminum-ion battery. Chem Commun 2011;47:12610-2.

128. Meng J, Zhu L, Haruna AB, Ozoemena KI, Pang Q. Charge storage mechanisms of cathode materials in rechargeable aluminum batteries. Sci China Chem 2021;64:1888-907.

129. Liu Y, Lu Y, Hossain Khan A, et al. Redox-bipolar polyimide two-dimensional covalent organic framework cathodes for durable aluminium batteries. Angew Chem Int Ed 2023;62:e202306091.

130. Tang B, Shan L, Liang S, Zhou J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ Sci 2019;12:3288-304.

131. Fang G, Zhou J, Pan A, Liang S. Recent advances in aqueous zinc-ion batteries. ACS Energy Lett 2018;3:2480-501.

132. Jia X, Liu C, Neale ZG, Yang J, Cao G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev 2020;120:7795-866.

133. Wang Y, Wang X, Tang J, Tang W. A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries. J Mater Chem A 2022;10:13868-75.

134. Gao X, Sha Y, Lin Q, Cai R, Tade MO, Shao Z. Combustion-derived nanocrystalline LiMn2O4 as a promising cathode material for lithium-ion batteries. J Power Sources 2015;275:38-44.

135. Mikhaylik YV, Akridge JR. Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 2004;151:A1969.

136. Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium-sulfur batteries. ACS Cent Sci 2020;6:1095-104.

137. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium-sulfur batteries. ACC Chem Res 2013;46:1125-34.

138. Manthiram A, Chung SH, Zu C. Lithium-sulfur batteries: progress and prospects. Adv Mater 2015;27:1980-2006.

139. Seh ZW, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries. Chem Soc Rev 2016;45:5605-34.

140. Ma L, Zhuang HL, Wei S, et al. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 2016;10:1050-9.

141. Zhang T, Zhang L, Zhao L, Huang X, Hou Y. Catalytic effects in the cathode of Li-S batteries: accelerating polysulfides redox conversion. EnergyChem 2020;2:100036.

142. Khazraji MR, Wang J, Wei S. Recent progress of anode protection in Li-S batteries. Energy Technol 2023;11:2200944.

143. Jeong YC, Kim JH, Nam S, Park CR, Yang SJ. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv Funct Mater 2018;28:1707411.

144. Pathak D, Mandal BP, Tyagi AK. A new strategic approach to modify electrode and electrolyte for high performance Li-S battery. J Power Sources 2021;488:229456.

145. Li J, Chen C, Chen Y, et al. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries. Adv Energy Mater 2019;9:1901935.

146. Pei F, An T, Zang J, et al. From hollow carbon spheres to N-doped hollow porous carbon bowls: rational design of hollow carbon host for Li-S batteries. Adv Energy Mater 2016;6:1502539.

147. Chen M, Su Z, Jiang K, Pan Y, Zhang Y, Long D. Promoting sulfur immobilization by a hierarchical morphology of hollow carbon nanosphere clusters for high-stability Li-S battery. J Mater Chem A 2019;7:6250-8.

148. Luo D, Li M, Ma Q, et al. Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chem Soc Rev 2022;51:2917-38.

149. Liao H, Ding H, Li B, Ai X, Wang C. Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium-sulfur batteries. J Mater Chem A 2014;2:8854-8.

150. Talapaneni SN, Hwang TH, Je SH, Buyukcakir O, Choi JW, Coskun A. Elemental-sulfur-mediated facile synthesis of a covalent triazine framework for high-performance lithium-sulfur batteries. Angew Chem Int Ed 2016;55:3106-11.

151. Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 2016;1:1-16.

152. Je SH, Kim HJ, Kim J, Choi JW, Coskun A. Perfluoroaryl-elemental sulfur SNAr chemistry in covalent triazine frameworks with high sulfur contents for lithium-sulfur batteries. Adv Funct Mater 2017;27:1703947.

153. Wang DG, Tan L, Wang H, Song M, Wang J, Kuang GC. Multiple covalent triazine frameworks with strong polysulfide chemisorption for enhanced lithium-sulfur batteries. ChemElectroChem 2019;6:2777-81.

154. Hou TZ, Xu WT, Chen X, Peng HJ, Huang JQ, Zhang Q. Lithium bond chemistry in lithium-sulfur batteries. Angew Chem Int Ed 2017;56:8178-82.

155. Ren X, Liu Z, Zhang M, Li D, Yuan S, Lu C. Review of cathode in advanced Li-S batteries: the effect of doping atoms at micro levels. ChemElectroChem 2021;8:3457-71.

156. Li M, Wang Y, Sun S, Yang Y, Gu G, Zhang Z. Rational design of an Allyl-rich Triazine-based covalent organic framework host used as efficient cathode materials for Li-S batteries. Chem Eng J 2022;429:132254.

157. Jiang Q, Li Y, Zhao X, et al. Inverse-vulcanization of vinyl functionalized covalent organic frameworks as efficient cathode materials for Li-S batteries. J Mater Chem A 2018;6:17977-81.

158. Xu J, An S, Song X, et al. Towards high performance Li-S batteries via sulfonate-rich COF-modified separator. Adv Mater 2021;33:e2105178.

159. Zhang Y, Guo C, Zhou J, et al. Anisotropically hybridized porous crystalline Li-S battery separators. Small 2023;19:e2206616.

160. Hu X, Jian J, Fang Z, et al. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: fully-exposed porphyrin matters. Energy Stor Mater 2019;22:40-7.

161. Xiao Z, Li L, Tang Y, et al. Covalent organic frameworks with lithiophilic and sulfiphilic dual linkages for cooperative affinity to polysulfides in lithium-sulfur batteries. Energy Stor Mater 2018;12:252-9.

162. Liang Y, Xia T, Chang Z, et al. Boric acid functionalized triazine-based covalent organic frameworks with dual-function for selective adsorption and lithium-sulfur battery cathode. Chem Eng J 2022;437:135314.

163. Mullangi D, Chakraborty D, Pradeep A, et al. Highly stable COF-supported Co/Co(OH)2 nanoparticles heterogeneous catalyst for reduction of nitrile/nitro compounds under mild conditions. Small 2018;14:e1801233.

164. Zhang T, Hu F, Song C, et al. Constructing covalent triazine-based frameworks to explore the effect of heteroatoms and pore structure on electrochemical performance in Li-S batteries. Chem Eng J 2021;407:127141.

165. Gomes R, Bhattacharyya AJ. Carbon nanotube-templated covalent organic framework nanosheets as an efficient sulfur host for room-temperature metal-sulfur batteries. ACS Sustain Chem Eng 2020;8:5946-53.

166. Li W, Zhang Q, Zheng G, Seh ZW, Yao H, Cui Y. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett 2013;13:5534-40.

167. Cao Y, Qi X, Hu K, et al. Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 2018;10:18270-80.

168. Wu F, Zhang K, Liu Y, et al. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy Stor Mater 2020;33:26-54.

169. Shoji M, Cheng EJ, Kimura T, Kanamura K. Recent progress for all solid state battery using sulfide and oxide solid electrolytes. J Phys D Appl Phys 2019;52:103001.

170. Wu J, Liu S, Han F, Yao X, Wang C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv Mater 2021;33:e2000751.

171. Liu H, Liang Y, Wang C, et al. Priority and prospect of sulfide-based solid-electrolyte membrane. Adv Mater 2023;35:e2206013.

172. Guan L, Guo Z, Zhou Q, et al. A highly proton conductive perfluorinated covalent triazine framework via low-temperature synthesis. Nat Commun 2023;14:8114.

173. Hou Z, Xia S, Niu C, et al. Tailoring the interaction of covalent organic framework with the polyether matrix toward high-performance solid-state lithium metal batteries. Carbon Energy 2022;4:506-16.

174. Shi QX, Guan X, Pei HJ, et al. Functional covalent triazine frameworks-based quasi-solid-state electrolyte used to enhance lithium metal battery safety. Batteries Supercaps 2020;3:936-45.

175. Cheng Z, Lu L, Zhang S, et al. Amphoteric covalent organic framework as single Li+ superionic conductor in all-solid-state. Nano Res 2023;16:528-35.

176. Aili D, Kraglund MR, Rajappan SC, et al. Electrode separators for the next-generation alkaline water electrolyzers. ACS Energy Lett 2023;8:1900-10.

177. Henkensmeier D, Cho WC, Jannasch P, et al. Separators and membranes for advanced alkaline water electrolysis. Chem Rev 2024;124:6393-443.

178. Palanisamy G, Thangarasu S, Dharman RK, et al. The growth of biopolymers and natural earthen sources as membrane/separator materials for microbial fuel cells: a comprehensive review. J Energy Chem 2023;80:402-31.

179. Zhu J, Yanilmaz M, Fu K, et al. Understanding glass fiber membrane used as a novel separator for lithium-sulfur batteries. J Membr Sci 2016;504:89-96.

180. Shi QX, Pei HJ, You N, et al. Large-scaled covalent triazine framework modified separator as efficient inhibit polysulfide shuttling in Li-S batteries. Chem Eng J 2019;375:121977.

181. Shi QX, Yang CY, Pei HJ, et al. Layer-by-layer self-assembled covalent triazine framework/electrical conductive polymer functional separator for Li-S battery. Chem Eng J 2021;404:127044.

182. Zuo P, Ye C, Jiao Z, et al. Near-frictionless ion transport within triazine framework membranes. Nature 2023;617:299-305.

183. Yang Z, Wang T, Chen H, et al. Surpassing the organic cathode performance for lithium-ion batteries with robust fluorinated covalent quinazoline networks. ACS Energy Lett 2021;6:41-51.

184. Jiang K, Peng P, Tranca D, et al. Covalent triazine frameworks and porous carbons: perspective from an azulene-based case. Macromol Rapid Commun 2022;43:e2200392.

185. Geng Q, Xu Z, Wang J, Song C, Wu Y, Wang Y. Tailoring covalent triazine frameworks anode for superior Lithium-ion storage via thioether engineering. Chem Eng J 2023;469:143941.

186. Shan J, Liu Y, Su Y, et al. Graphene-directed two-dimensional porous carbon frameworks for high-performance lithium-sulfur battery cathodes. J Mater Chem A 2016;4:314-20.

187. Xu F, Yang S, Jiang G, Ye Q, Wei B, Wang H. Fluorinated, sulfur-rich, covalent triazine frameworks for enhanced confinement of polysulfides in lithium-sulfur batteries. ACS Appl Mater Interfaces 2017;9:37731-8.

188. Yang S, Liu Q, Lu Q, et al. A facile strategy to improve the electrochemical performance of porous organic polymer-based lithium-sulfur batteries. Energy Technol 2019;7:1900583.

189. Feng X, Huang X, Ma Y, Song G, Li H. New structural carbons via industrial gas explosion for hybrid cathodes in Li-S batteries. ACS Sustain Chem Eng 2019;7:12948-54.

190. Troschke E, Kensy C, Haase F, et al. Mechanistic insights into the role of covalent triazine frameworks as cathodes in lithium-sulfur batteries. Batteries Supercaps 2020;3:1069-79.

191. Yan Y, Chen Z, Yang J, et al. Controllable substitution of S radicals on triazine covalent framework to expedite degradation of polysulfides. Small 2020;16:e2004631.

192. Liu XF, Chen H, Wang R, Zang SQ, Mak TCW. Cationic covalent-organic framework as efficient redox motor for high-performance lithium-sulfur batteries. Small 2020;16:e2002932.

193. Meng R, Deng Q, Peng C, et al. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium-sulfur batteries. Nano Today 2020;35:100991.

194. Liang Y, Xia M, Zhao Y, et al. Functionalized triazine-based covalent organic frameworks containing quinoline via aza-Diels-Alder reaction for enhanced lithium-sulfur batteries performance. J Colloid Interface Sci 2022;608:652-61.

195. Gao G, Jia Y, Gao H, et al. New covalent triazine framework rich in nitrogen and oxygen as a host material for lithium-sulfur batteries. ACS Appl Mater Interfaces 2021;13:50258-69.

196. Fan X, Chen S, Gong W, et al. A conjugated porous polymer complexed with a single-atom cobalt catalyst as an electrocatalytic sulfur host for enhancing cathode reaction kinetics. Energy Stor Mater 2021;41:14-23.

197. Wu C, Yan X, Yu H, et al. Engineering strong electronegative nitrogen-rich porous organic polymer for practical durable lithium-sulfur battery. J Power Sources 2022;551:232212.

198. Senthil C, Jung HY. Molecular polysulfide-scavenging sulfurized-triazine polymer enable high energy density Li-S battery under lean electrolyte. Energy Stor Mater 2023;55:225-35.

199. Yang Z, Hu Z, Yan G, et al. Multi-function hollow nanorod as an efficient sulfur host accelerates sulfur redox reactions for high-performance Li-S batteries. J Colloid Interface Sci 2023;629:65-75.

200. Cao Y, Jia Y, Meng X, et al. Covalently grafting conjugated porous polymers to MXene offers a two-dimensional sandwich-structured electrocatalytic sulfur host for lithium-sulfur batteries. Chem Eng J 2022;446:137365.

201. Yan R, Mishra B, Traxler M, et al. A thiazole-linked covalent organic framework for lithium-sulphur batteries. Angew Chem Int Ed 2023;62:e202302276.

202. Mahato M, Nam S, Lee MJ, Koratkar N, Oh IK. Physicochemically interlocked sulfur covalent triazine framework for lithium-sulfur batteries with exceptional longevity. Small 2023;19:e2301847.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/