REFERENCES

1. Zheng, J.; Qin, C.; Wu, T.; et al. High-performance LiMnPO4/C nanoplates synthesized by negative pressure immersion and a solid state reaction using nanoporous Mn2O3 precursors. J. Mater. Chem. A. 2015, 3, 15299-306.

2. Satou, Y.; Komine, S.; Takai, S.; Yao, T. Non-equilibrium Li insertion paths in LiMn0.75Fe0.25PO4 observed during the relaxation process. ECS. Electrochem. Lett. 2015, 4, A37-40.

3. Xi, X.; Li, P.; Zhan, Z. Process of preparing LiCoO2 as positive pole material for lithium ion cell. In: Changsha mining & metallurgy inst (Chmm-C). (ISBN No. CN1810655-A; CN1319865-C). 2007. Available from: https://webofscience.clarivate.cn/wos/alldb/full-record/DIIDW:2006800872 [Last accessed on 9 Jan 2024].

4. Ding, X.; Zhang, Q.; Jiang, Z.; Wu, Q.; Chang, H. Anode material LiCoO2 of lithium ion cell and its preparation method. In: Fujian Nanping Nanfu Battery Co Ltd (FUJI-Non-standard). (ISBN No. CN1808747-A). Available from: https://webofscience.clarivate.cn/wos/alldb/full-record/DIIDW:2007201144 [Last accessed on 9 Jan 2024].

5. Norberg, N. S.; Kostecki, R. The degradation mechanism of a composite LiMnPO4 cathode. J. Electrochem. Soc. 2012, 159, A1431-4.

6. Nedoseykina, T.; Kim, M. G.; Park, S. A.; et al. In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material. Electrochim. Acta. 2010, 55, 8876-82.

7. Delacourt, C.; Laffont, L.; Bouchet, R.; et al. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 2005, 152, A913.

8. Wi, S.; Park, J.; Lee, S.; et al. Insights on the delithiation/lithiation reactions of Li Mn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano. Energy. 2017, 39, 371-9.

9. Luo, C.; Jiang, Y.; Zhang, X.; Ouyang, C.; Niu, X.; Wang, L. Misfit strains inducing voltage decay in LiMnyFe1-yPO4/C. J. Energy. Chem. 2022, 68, 206-12.

10. Zhang, K.; Li, Z. X.; Li, X. Y.; et al. Perspective on cycling stability of lithium-iron manganese phosphate for lithium-ion batteries. Rare. Met. 2023, 42, 740-50.

11. Gardiner, G. R.; Islam, M. S. Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material. Chem. Mater. 2010, 22, 1242-8.

12. Zhang, B.; Xie, X.; Peng, Z.; et al. Synthesis of flexible LiMn0.8Fe0.2PO4/C microsphere and its synergetic effects with blended LiNi0.85Co0.10Al0.05O2 electrodes. J. Power. Sources. 2022, 541, 231671.

13. Stallard, J. C.; Wheatcroft, L.; Booth, S. G.; et al. Mechanical properties of cathode materials for lithium-ion batteries. Joule 2022, 6, 984-1007.

14. Chang, X. Y.; Wang, Z. X.; Li, X. H.; Zhang, L.; Guo, H. J.; Peng, W. J. Synthesis and performance of LiMn0.7Fe0.3PO4 cathode material for lithium ion batteries. Mater. Res. Bull. 2005, 40, 1513-20.

15. Li, Z.; Ren, X.; Tian, W.; et al. LiMn0.6Fe0.4PO4/CA cathode materials with carbon aerogel as additive synthesized by wet ball-milling combined with spray drying. J. Electrochem. Soc. 2020, 167, 090516.

16. Hou, Y. K.; Pan, G. L.; Sun, Y. Y.; Gao, X. P. LiMn0.8Fe0.2PO4/carbon nanospheres@graphene nanoribbons prepared by the biomineralization process as the cathode for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 16500-10.

17. Chen, W.; Xu, D.; Chen, Y.; et al. In situ electrospinning synthesis of N-doped C nanofibers with uniform embedding of Mn doped MFe1-xMnxPO4 (M = Li, Na) as a high performance cathode for lithium/sodium-ion batteries. Adv. Mater. Inter. 2020, 7, 2000684.

18. Guo, L.; Ren, L.; Wan, L.; Li, J. Heterogeneous carbon/N-doped reduced graphene oxide wrapping LiMn0.8Fe0.2PO4 composite for higher performance of lithium ion batteries. Appl. Surf. Sci. 2019, 476, 513-20.

19. Damen, L.; De, G. F.; Monaco, S.; Veronesi, F.; Mastragostino, M. Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1-xFexPO4 (x = 0.2, 0.3) materials for lithium-ion batteries. J. Power. Sources. 2012, 218, 250-3.

20. Qiao, Y.; Zhao, H.; Shen, Y.; et al. Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives. EcoMat 2023, 5, e12321.

21. Su, P.; Zhang, H.; Yang, L.; et al. Effects of conductive additives on the percolation networks and rheological properties of LiMn0.7Fe0.3PO4 suspensions for lithium slurry battery. Chem. Eng. J. 2022, 433, 133203.

22. Pan, X. L.; Xu, C. Y.; Zhen, L. Synthesis of LiMnPO4 microspheres assembled by plates, wedges and prisms with different crystallographic orientations and their electrochemical performance. CrystEngComm 2012, 14, 6412.

23. Kosova, N. V.; Podgornova, O. A.; Gutakovskii, A. K. Different electrochemical responses of LiFe0.5Mn0.5PO4 prepared by mechanochemical and solvothermal methods. J. Alloys. Compd. 2018, 742, 454-65.

24. Kosa, M.; Aurbach, D.; Major, D. T. First-principles evaluation of the inherent stabilities of pure LixMPO4 (M = Mn, Fe, Co,) and mixed binary LixFeyM′1-yPO4 (M' = Mn, Co) olivine phosphates. Mater. Chem. Phys. 2016, 174, 54-8.

25. Jang, D.; Palanisamy, K.; Yoon, J.; Kim, Y.; Yoon, W. S. Crystal and local structure studies of LiFe0.48Mn0.48Mg0.04PO4 cathode material for lithium rechargeable batteries. J. Power. Sources. 2013, 244, 581-5.

26. Kope¢, M.; Yamada, A.; Kobayashi, G.; et al. Structural and magnetic properties of LixMnyFeyPO4 electrode materials for Li-ion batteries. J. Power. Sources. 2009, 189, 1154-63.

27. Chen, G.; Richardson, T. J. Thermal instability of olivine-type LiMnPO4 cathodes. J. Power. Sources. 2010, 195, 1221-4.

28. Hong, J.; Wang, F.; Wang, X.; Graetz, J. LiFexMn1-xPO4: a cathode for lithium-ion batteries. J. Power. Sources. 2011, 196, 3659-63.

29. Dompablo MAY, Amador U, Tarascon J. A computational investigation on fluorinated-polyanionic compounds as positive electrode for lithium batteries. J. Power. Sources. 2007, 174, 1251-7.

30. Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 2005, 17, 5085-92.

31. Fisher, C. A. J.; Hart, P. V. M.; Islam, M. S. Lithium battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem. Mater. 2008, 20, 5907-15.

32. Jensen, K. M. Ø.; Christensen, M.; Gunnlaugsson, H. P.; et al. Defects in hydrothermally synthesized LiFePO4 and LiFe1-xMnxPO4 cathode materials. Chem. Mater. 2013, 25, 2282-90.

33. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188-94.

34. Muraliganth, T.; Manthiram, A. Understanding the shifts in the redox potentials of olivine LiM1-yMyPO4 (M = Fe, Mn, Co, and Mg) solid solution cathodes. J. Phys. Chem. C. 2010, 114, 15530-40.

35. Wi, S.; Park, J.; Lee, S.; et al. Synchrotron-based X-ray absorption spectroscopy for the electronic structure of LixMn0.8Fe0.2PO4 mesocrystal in Li+ batteries. Nano. Energy. 2017, 31, 495-503.

36. Yu, H.; Cao, Y.; Chen, L.; et al. Surface enrichment and diffusion enabling gradient-doping and coating of Ni-rich cathode toward Li-ion batteries. Nat. Commun. 2021, 12, 4564.

37. Delmas, C.; Maccario, M.; Croguennec, L.; Le, C. F.; Weill, F. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 2008, 7, 665-71.

38. Ravnsbæk, D. B.; Xiang, K.; Xing, W.; et al. Engineering the transformation strain in LiMnyFe1-yPO4 olivines for ultrahigh rate battery cathodes. Nano. Lett. 2016, 16, 2375-80.

39. Yang, G.; Ni, H.; Liu, H.; et al. The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4 (M = Mg, V, Fe, Co, Gd). J. Power. Sources. 2011, 196, 4747-55.

40. Xiang, K.; Xing, W.; Ravnsbæk, D. B.; et al. Accommodating high transformation strains in battery electrodes via the formation of nanoscale intermediate phases: operando investigation of olivine NaFePO4. Nano. Lett. 2017, 17, 1696-702.

41. Drezen, T.; Kwon, N. H.; Bowen, P.; Teerlinck, I.; Isono, M.; Exnar, I. Effect of particle size on LiMnPO4 cathodes. J. Power. Sources. 2007, 174, 949-53.

42. Delacourt, C.; Poizot, P.; Morcrette, M.; Tarascon, J. M.; Masquelier, C. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders. Chem. Mater. 2004, 16, 93-9.

43. Dong, Y.; Zhao, Y.; Duan, H.; Liang, Z. Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings. Electrochim. Acta. 2014, 132, 244-50.

44. Minnetti, L.; Marangon, V.; Hassoun, J. Synthesis and characterization of a LiFe0.6Mn0.4PO4 olivine cathode for application in a new lithium polymer battery. Adv. Sustain. Syst. 2022, 6, 2100464.

45. Lou, X.; Zhong, J.; Cheng, D.; et al. Solvent-free quasi-solid polymer electrolyte with a high dielectric constant for stable lithium metal anodes. Chem. Eng. J. 2023, 468, 143681.

46. Li, S.; Tang, R.; Hu, C.; Niu, X.; Wang, L. Potassium 2-thienyl tri-fluoroborate as a functional electrolyte additive enables stable interfaces for Li/LiFe0.3Mn0.7PO4 batteries. J. Colloid. Interface. Sci. 2023, 646, 150-8.

47. Ju, J.; Wang, Y.; Chen, B.; et al. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS. Appl. Mater. Interfaces. 2018, 10, 13588-97.

48. Liow, C. H.; Kang, H.; Kim, S.; et al. Machine learning assisted synthesis of lithium-ion batteries cathode materials. Nano. Energy. 2022, 98, 107214.

49. Li, Y.; Zhou, T.; Xiong, S.; Huang, D. Boosting manganese-based phosphate cathode performance via Fe or Ni solid solution for lithium-ion battery: a first-principles and experiment study. Energy. Fuels. 2023, 37, 19304-19.

50. Li, Y.; Xing, B.; Wang, Z.; et al. Constructing a hierarchical LiMn0.8Fe0.2PO4/C cathode via comodification of Li3PO4 and graphite for high-performance lithium-ion batteries. ACS. Appl. Energy. Mater. 2022, 5, 10983-93.

51. Li, J.; Wang, Y.; Wu, J.; Zhao, H.; Liu, H. CNT-embedded LiMn0.8Fe0.2PO4/C microsphere cathode with high rate capability and cycling stability for lithium ion batteries. J. Alloys. Compd. 2018, 731, 864-72.

52. Zhao, Z.; Sun, M.; Chen, W.; et al. Sandwich, vertical-channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 2019, 29, 1809196.

53. Zhang, G.; Zang, R.; Mo, M.; et al. 3D anchoring structured for LiFe0.5Mn0.5PO4@cornstalk-C cathode materials. Chin. Chem. Lett. 2023, 34, 108164.

54. Zeng, T.; Liu, D. H.; Fan, C.; et al. LiMn0.8Fe0.2PO4@C cathode prepared via a novel hydrated MnHPO4 intermediate for high performance lithium-ion batteries. Inorg. Chem. Front. 2023, 10, 1164-75.

55. Yang, Y.; Chen, X.; Gu, Y.; et al. The effect of using nano-bubble water as a solvent on the properties of lithium iron manganese phosphate prepared by solvothermal method. Mater. Lett. 2021, 299, 130053.

56. Wen, F.; Lv, T.; Gao, P.; et al. Graphene-embedded LiMn0.8Fe0.2PO4 composites with promoted electrochemical performance for lithium ion batteries. Electrochim. Acta. 2018, 276, 134-41.

57. Peng, Z.; Zhang, B.; Hu, G.; et al. Green and efficient synthesis of micro-nano LiMn0.8Fe0.2PO4/C composite with high-rate performance for Li-ion battery. Electrochim. Acta. 2021, 387, 138456.

58. Xiong, J.; Wang, Y.; Wang, Y.; Li, Z.; Zhang, J. Three-dimensional (3D) LiMn0.8Fe0.2PO4 nanoflowers assembled from interconnected nanoflakes as cathode materials for lithium ion batteries. Ceram. Int. 2017, 43, 3190-5.

59. Yu, M.; Li, J.; Ning, X. Improving electrochemical performance of LiMn0.5Fe0.5PO4 cathode by hybrid coating of Li3VO4 and carbon. Electrochim. Acta. 2021, 368, 137597.

60. Leng, F.; Yan, X.; Jing, L.; et al. Electrospun polycrystalline LiFe0.2Mn0.8PO4/carbon composite fibers for lithium-ion battery. Colloid. Surface. A. 2016, 495, 54-61.

61. Xiong, J.; Wang, Y.; Wang, Y.; Zhang, J. PVP-assisted solvothermal synthesis of LiMn0.8Fe0.2PO4/C nanorods as cathode material for lithium ion batteries. Ceram. Int. 2016, 42, 9018-24.

62. Zoller, F.; Böhm, D.; Luxa, J.; et al. Freestanding LiFe0.2Mn0.8PO4/rGO nanocomposites as high energy density fast charging cathodes for lithium-ion batteries. Mater. Today. Energy. 2020, 16, 100416.

63. Zhang, L. S.; Gao, X. L.; Liu, X. H.; et al. CHAIN: unlocking informatics-aided design of Li metal anode from materials to applications. Rare. Met. 2022, 41, 1477-89.

64. Zhang, H.; Wei, Z.; Jiang, J.; et al. Three dimensional nano-LiMn0.6Fe0.4PO4@C/CNT as cathode materials for high-rate lithium-ion batteries. J. Energy. Chem. 2018, 27, 544-51.

65. Yu, X.; Li, Q.; Liu, Q.; et al. Rheological phase reaction method synthesis and characterizations of xLiMn0.5Fe0.5PO4-yLi3V2(PO4)3/C composites as cathode materials for lithium ion batteries. J. Mater. Res. 2020, 35, 2-11.

66. Ouyang, C. Y.; Shi, S. Q.; Wang, Z. X.; Li, H.; Huang, X. J.; Chen, L. Q. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. J. Phys. Condens. Matter. 2004, 16, 2265-72.

67. Liu, S.; Fang, H.; Dai, E.; et al. Effect of carbon content on properties of LiMn0.8Fe0.19Mg0.01PO4/C composite cathode for lithium ion batteries. Electrochim. Acta. 2014, 116, 97-102.

68. Huang, Q. Y.; Wu, Z.; Su, J.; Long, Y. F.; Lv, X. Y.; Wen, Y. X. Synthesis and electrochemical performance of Ti-Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ceram. Int. 2016, 42, 11348-54.

69. Ding, D.; Maeyoshi, Y.; Kubota, M.; Wakasugi, J.; Kanamura, K.; Abe, H. Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries. J. Power. Sources. 2020, 449, 227553.

70. Zhu, Y.; Casselman, M. D.; Li, Y.; Wei, A.; Abraham, D. P. Perfluoroalkyl-substituted ethylene carbonates: novel electrolyte additives for high-voltage lithium-ion batteries. J. Power. Sources. 2014, 246, 184-91.

71. Zhang, Y.; Ma, Q.; Wang, S.; Liu, X.; Li, L. Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes. ACS. Nano. 2018, 12, 4824-34.

72. Zhang, J.; Zhao, N.; Zhang, M.; et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano. Energy. 2016, 28, 447-54.

73. Lv, Z.; Li, M.; Lin, J.; et al. First-principles study on LiMn0.5Fe0.5PO4 doping to decrease the Jahn-Teller effect. J. Solid. State. Electrochem. 2024, 28, 577-87.

74. Hu, H.; Li, H.; Lei, Y.; et al. Mg-doped LiMn0.8Fe0.2PO4/C nano-plate as a high-performance cathode material for lithium-ion batteries. J. Energy. Stor. 2023, 73, 109006.

75. Liu, W.; Liu, X.; Hao, R.; et al. Contribution of calcium ion doping to the rate property for LiFe0.5Mn0.5PO4/C. J. Electroanal. . Chem. 2023, 929, 117117.

76. Yi, H.; Hu, C.; Fang, H.; et al. Optimized electrochemical performance of LiMn0.9Fe0.1-xMgxPO4/C for lithium ion batteries. Electrochim. Acta. 2011, 56, 4052-7.

77. Li, R.; Fan, C.; Zhang, W.; Tan, M.; Zeng, T.; Han, S. Structure and performance of Na+ and Fe2+ co-doped Li1-xNaxMn0.8Fe0.2PO4/C nanocapsule synthesized by a simple solvothermal method for lithium ion batteries. Ceram. Int. 2019, 45, 10501-10.

78. Duan, J.; Hu, G.; Cao, Y.; Du, K.; Peng, Z. Synthesis of high-performance Fe-Mg-co-doped LiMnPO4/C via a mechano-chemical liquid-phase activation technique. Ionics 2016, 22, 609-19.

79. Kim, D.; Lee, S.; Choi, W. Boosting both electronic and ionic conductivities via incorporation of molybdenum for LiFe0.5Mn0.5PO4 cathode in lithium-ion batteries. J. Alloys. Compd. 2024, 989, 174396.

80. Yi, H.; Hu, C.; He, X.; Xu, H. Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries. Ionics 2015, 21, 667-71.

81. Du, K.; Zhang, L. H.; Cao, Y. B.; Guo, H. W.; Peng, Z. D.; Hu, G. R. Synthesis of LiFe0.4Mn0.6-xNixPO4/C by co-precipitation method and its electrochemical performances. J. Appl. Electrochem. 2011, 41, 1349-55.

82. Fang, H.; Dai, E.; Yang, B.; Yao, Y.; Ma, W. LiMn0.8Fe0.19Mg0.01PO4/C as a high performance cathode material for lithium ion batteries. J. Power. Sources. 2012, 204, 193-6.

83. Thaheem, I.; Kim, K. J.; Lee, J. J.; Joh, D. W.; Jeong, I.; Lee, K. T. High performance Mn1.3Co1.3Cu0.4O4 spinel based composite cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A. 2019, 7, 19696-703.

84. Podgornova, O. A.; Volfkovich, Y. M.; Sosenkin, V. E.; Kosova, N. V. Increasing the efficiency of carbon coating on olivine-structured cathodes by choosing a carbon precursor. J. Electroanal. Chem. 2022, 907, 116059.

85. Li, Y.; Fan, Z.; Peng, Z.; et al. Metal-organic framework-derived LiFePO4/C composites for lithium storage: in situ construction, effective exploitation, and targeted restoration. EcoMat 2023, 5, e12415.

86. Cui, X.; Tuo, K.; Dong, H.; et al. Modification of phosphorus-doped carbon coating enhances the electrochemical performance of LiFe0.8Mn0.2PO4 cathode material. J. Alloys. Compd. 2021, 885, 160946.

87. Fan, R. Z.; Fan, C. L.; Hu, Z.; et al. Construction of high performance N-doped carbon coated LiMn0.8Fe0.2PO4 nanocrystal cathode for lithium-ion batteries. J. Alloys. Compd. 2021, 876, 160090.

88. Tuo, K.; Mao, L.; Ding, H.; et al. Boron and phosphorus dual-doped carbon coating improves electrochemical performances of LiFe0.8Mn0.2PO4 cathode materials. ACS. Appl. Energy. Mater. 2021, 4, 8003-15.

89. Zhao, Q.; Li, X.; Tang, F.; et al. Compatibility between lithium bis(oxalate)borate-based electrolytes and a LiFe0.6Mn0.4PO4/C cathode for lithium-ion batteries. Energy. Technol. 2017, 5, 406-13.

90. Yu, H.; Han, J. S.; Hwang, G. C.; Cho, J. S.; Kang, D. W.; Kim, J. K. Optimization of high potential cathode materials and lithium conducting hybrid solid electrolyte for high-voltage all-solid-state batteries. Electrochim. Acta. 2021, 365, 137349.

91. Ye, F.; Wang, L.; He, X.; et al. Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: reaction mechanism and electrochemical properties. J. Power. Sources. 2014, 253, 143-9.

92. Yang, H.; Fu, C.; Sun, Y.; Wang, L.; Liu, T. Fe-doped LiMnPO4@C nanofibers with high Li-ion diffusion coefficient. Carbon 2020, 158, 102-9.

93. Xie, X.; Zhang, B.; Hu, G.; et al. A new route for green synthesis of LiFe0.25Mn0.75PO4/C@rGO material for lithium ion batteries. J. Alloys. Compd. 2021, 853, 157106.

94. Xiao, P.; Cai, Y.; Chen, X.; Sheng, Z.; Chang, C. Improved electrochemical performance of LiFe0.4Mn0.6PO4/C with Cr3+ doping. RSC. Adv. 2017, 7, 31558-66.

95. Wang, H.; He, J.; Liu, J.; et al. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2002578.

96. Chang, H.; Li, Y.; Fang, Z. K.; Qu, J. P.; Zhu, Y. R.; Yi, T. F. Construction of carbon-coated LiMn0.5Fe0.5PO4@Li0.33La0.56TiO3 nanorod composites for high-performance Li-ion batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 33102-11.

97. Choi, J. Samsung SDI unveils high-performance LMFP battery. 2023. Available from: https://www.businesskorea.co.kr/news/articleView.html?idxno=200970 [Last accessed on 13 Sep 2024].

98. IEA. Global EV outlook 2019. Available from: https://www.iea.org/reports/global-ev-outlook-2019 [Last accessed on 13 Sep 2024].

99. Bennett, S.; Munuera, L. Who wants to be in charge? Available from: https://www.iea.org/commentaries/who-wants-to-be-in-charge [Last accessed on 13 Sep 2024].

100. IEA. Batteries and hydrogen technology: keys for a clean energy future. Available from: https://www.iea.org/articles/batteries-and-hydrogen-technology-keys-for-a-clean-energy-future# [Last accessed on 13 Sep 2024].

101. Zhang, P. Gotion unveils new battery based on LMFP chemistry with range up to 1,000 km; 2023. Available from: https://cnevpost.com/2023/05/19/gotion-unveils-new-battery-lmfp-chemistry-range-1000-km/ [Last accessed on 13 Sep 2024].

102. GGII. 2023 China lithium battery cathode material market analysis report. Available from: https://www.gg-ii.com/art-2767.html [Last accessed on 13 Sep 2024].

103. IEA. Global EV outlook 2023. Available from: https://www.iea.org/reports/global-ev-outlook-2023 [Last accessed on 13 Sep 2024].

104. CTS. Industry analysis report on lithium iron manganese phosphate: dual advantages in cost and performance, industrialization of lithium iron manganese phosphate is imminent. 2024. Available from: https://www.vzkoo.com/document/2024020234a5f532a513a40e1692633d.html [Last accessed on 13 Sep 2024].

105. Yang, C. C.; Hung, Y. W.; Lue, S. J. Improved electrochemical properties of LiFe0.5Mn0.5PO4/C composite materials via a surface coating process. J. Power. Sources. 2016, 325, 565-74.

106. Starke, B.; Seidlmayer, S.; Schulz, M.; et al. Gas evolution and capacity fading in LiFexMn1-xPO4/graphite cells studied by neutron imaging and neutron induced prompt gamma activation analysis. J. Electrochem. Soc. 2017, 164, A3943-8.

107. Jalkanen, K.; Vuorilehto, K. Entropy change characteristics of LiMn0.67Fe0.33PO4 and Li4Ti5O12 electrode materials. J. Power. Sources. 2015, 273, 351-9.

108. Liu, Y.; Sun, Y.; Wen, X.; Huang, T.; Yu, A. Li2ZrO3 coated LiFe0.4Mn0.6PO4/C with enhanced cycling performance at elevated temperature for lithium-ion batteries. J. Power. Sources. 2024, 613, 234938.

109. Leslie, K.; Harlow, J.; Rathore, D.; Tuul, K.; Metzger, M. Correlating Mn dissolution and capacity fade in LiMn0.8Fe0.2PO4/graphite cells during cycling and storage at elevated temperature. J. Electrochem. Soc. 2024, 171, 040520.

110. Oh, S. M.; Myung, S. T.; Park, J. B.; Scrosati, B.; Amine, K.; Sun, Y. K. Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2012, 51, 1853-6.

111. Oh, S. M.; Myung, S. T.; Choi, Y. S.; Oh, K. H.; Sun, Y. K. Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries. J. Mater. Chem. 2011, 21, 19368-74.

112. Rui, X. H.; Jin, Y.; Feng, X. Y.; Zhang, L. C.; Chen, C. H. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. J. Power. Sources. 2011, 196, 2109-14.

113. Wang, F.; Chen, J.; Tan, Z.; et al. Low-temperature electrochemical performances of LiFePO4 cathode materials for lithium ion batteries. J. Taiwan. Inst. Chem. Eng. 2014, 45, 1321-30.

114. Wu, Z.; Zhu, H.; Bi, H.; He, P.; Gao, S. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments. Waste. Manag. Res. 2021, 39, 607-19.

115. Boesenberg, U.; Henriksen, C.; Rasmussen, K. L.; Chiang, Y. M.; Garrevoet, J.; Ravnsbæk, D. B. State of LiFePO4 Li-ion battery electrodes after 6533 deep-discharge cycles characterized by combined micro-XRF and micro-XRD. ACS. Appl. Energy. Mater. 2022, 5, 4358-68.

116. Yang, C.; Zhang, J. L.; Jing, Q. K.; Liu, Y. B.; Chen, Y. Q.; Wang, C. Y. Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process. Int. J. Miner. Metall. Mater. 2021, 28, 1478-87.

117. Zeng, S.; Xu, Q.; Jin, H.; et al. A green strategy towards fabricating FePO4-graphene oxide for high-performance cathode of lithium/sodium-ion batteries recovered from spent batteries. J. Electroanal. Chem. 2022, 913, 116287.

118. Hu, Z.; Liu, J.; Gan, T.; Lu, D.; Wang, Y.; Zheng, X. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries. Sep. Purif. Technol. 2022, 297, 121486.

119. Zhang, B.; Qu, X.; Chen, X.; et al. A sodium salt-assisted roasting approach followed by leaching for recovering spent LiFePO4 batteries. J. Hazard. Mater. 2022, 424, 127586.

120. Jiang, Y.; Chen, X.; Yan, S.; Ou, Y.; Zhou, T. Mechanochemistry-induced recycling of spent lithium-ion batteries for synergistic treatment of mixed cathode powders. Green. Chem. 2022, 24, 5987-97.

121. Peng, D.; Wang, X.; Wang, S.; et al. Efficient regeneration of retired LiFePO4 cathode by combining spontaneous and electrically driven processes. Green. Chem. 2022, 24, 4544-56.

122. Qiu, X.; Zhang, B.; Xu, Y.; et al. Enabling the sustainable recycling of LiFePO4 from spent lithium-ion batteries. Green. Chem. 2022, 24, 2506-15.

123. Zhou, S.; Du, J.; Xiong, X.; et al. Direct recovery of scrapped LiFePO4 by a green and low-cost electrochemical re-lithiation method. Green. Chem. 2022, 24, 6278-86.

124. Gou, Y.; Qi, C.; Li, R.; et al. Direct regeneration of high-value LiFePO4 cathode materials with nitrogen doped carbon coating. Electrochim. Acta. 2024, 488, 144180.

125. Sun, J.; Jiang, Z.; Jia, P.; et al. A sustainable revival process for defective LiFePO4 cathodes through the synergy of defect-targeted healing and in-situ construction of 3D-interconnected porous carbon networks. Waste. Manag. 2023, 158, 125-35.

126. Li, X.; Wang, M.; Zhou, Q.; et al. The prilling and cocoating collaborative strategy to construct high performance of regeneration LiFePO4 materials. ACS. Mater. Lett. 2024, 6, 640-7.

127. Jia, K.; Ma, J.; Wang, J.; et al. Long-life regenerated LiFePO4 from spent cathode by elevating the d-band center of Fe (Adv. Mater. 5/2023). Adv. Mater. 2023, 35, 2370034.

128. Ji, G.; Wang, J.; Liang, Z.; et al. Direct regeneration of degraded lithium-ion battery cathodes with a multifunctional organic lithium salt. Nat. Commun. 2023, 14, 584.

129. Wang, W.; Wang, R.; Zhan, R.; et al. Probing hybrid LiFePO4/FePO4 phases in a single olive LiFePO4 particle and their recovering from degraded electric vehicle batteries. Nano. Lett. 2023, 23, 7485-92.

130. Chen, B.; Liu, M.; Cao, S.; et al. Direct regeneration and performance of spent LiFePO4 via a green efficient hydrothermal technique. J. Alloys. Compd. 2022, 924, 166487.

131. Wang, Z.; Wu, D.; Wang, X.; Huang, Y.; Wu, X. Green phosphate route of regeneration of LiFePO4 composite materials from spent lithium-ion batteries. Ind. Eng. Chem. Res. 2023, 62, 1181-94.

132. Du, M.; Guo, J. Z.; Zheng, S. H.; et al. Direct reuse of LiFePO4 cathode materials from spent lithium-ion batteries: extracting Li from brine. Chin. Chem. Lett. 2023, 34, 107706.

133. Yue, X. H.; Zhang, F. S. Recycling spent LiFePO4 battery for fabricating visible-light photocatalyst with adsorption-photocatalytic synergistic performance and simultaneous recovery of lithium and phosphorus. Chem. Eng. J. 2022, 450, 138388.

134. Yang, L.; Feng, Y.; Wang, C.; et al. Closed-loop regeneration of battery-grade FePO4 from lithium extraction slag of spent Li-ion batteries via phosphoric acid mixture selective leaching. Chem. Eng. J. 2022, 431, 133232.

135. Shan, M.; Dang, C.; Meng, K.; et al. Recycling of LiFePO4 cathode materials: from laboratory scale to industrial production. Mater. Today. 2024, 73, 130-50.

136. Zhang, X.; Xie, W.; Zhou, X.; et al. Study on metal recovery process and kinetics of oxidative leaching from spent LiFePO4 Li-batteries. Chin. J. Chem. Eng. 2024, 68, 94-102.

137. Durmus, Y. E.; Zhang, H.; Baakes, F.; et al. Side by side battery technologies with lithium-ion based batteries. Adv. Energy. Mater. 2020, 10, 2000089.

138. Li, Y.; Lv, W.; Huang, H.; et al. Recycling of spent lithium-ion batteries in view of green chemistry. Green. Chem. 2021, 23, 6139-71.

139. Yue, X. H.; Zhang, C. C.; Zhang, W. B.; Wang, Y.; Zhang, F. S. Recycling phosphorus from spent LiFePO4 battery for multifunctional slow-release fertilizer preparation and simultaneous recovery of Lithium. Chem. Eng. J. 2021, 426, 131311.

140. Jin, H.; Zhang, J.; Wang, D.; Jing, Q.; Chen, Y.; Wang, C. Facile and efficient recovery of lithium from spent LiFePO4 batteries via air oxidation-water leaching at room temperature. Green. Chem. 2022, 24, 152-62.

141. Deng, Y.; Yang, C.; Zou, K.; Qin, X.; Zhao, Z.; Chen, G. Recent advances of Mn-rich LiFe1-yMnyPO4 (0.5 < y < 1.0) cathode materials for high energy density lithium ion batteries. Adv. Energy. Mater. 2017, 7, 1601958.

142. Ding, J.; Su, Z.; Tian, H. Synthesis of high rate performance LiFe1-xMnxPO4/C composites for lithium-ion batteries. Ceram. Int. 2016, 42, 12435-40.

143. Nwachukwu, I. M.; Nwanya, A. C.; Ekwealor, A. B. C.; Ezema, F. I. Recent progress in Mn and Fe-rich cathode materials used in Li-ion batteries. J. Energy. Stor. 2022, 54, 105248.

144. He, L.; Li, H.; Ge, X.; et al. Iron-phosphate-based cathode materials for cost-effective sodium-ion batteries: development, challenges, and prospects. Adv. Mater. Inter. 2022, 9, 2200515.

145. Meng, J.; Xu, L.; Ma, Q.; et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv. Funct. Mater. 2022, 32, 2113013.

146. Zhou, J.; Xing, C.; Huang, J.; et al. Direct upcycling of leached FePO4 from spent lithium-ion batteries toward gradient-doped LiMnxFe1-xPO4 cathode material. Adv. Energy. Mater. 2024, 14, 2302761.

147. Ji, G.; Tang, D.; Wang, J.; et al. Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material. Nat. Commun. 2024, 15, 4086.

148. Xu, C.; Hu, X.; Yang, Y.; et al. Integrated process of CO2 sequestration and recycling spent LiFePO4 batteries. Energy. Stor. Mater. 2023, 60, 102819.

149. Luo, K.; Zhou, M.; Liu, T.; et al. A high-performance zinc-air battery cathode catalyst from recycling of spent lithium iron phosphate batteries. Small. Struct. 2023, 4, 2300107.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/