REFERENCES
1. Eid K, Gamal A, Abdullah AM. Graphitic carbon nitride-based nanostructures as emergent catalysts for carbon monoxide (CO) oxidation. Green Chem 2023;25:1276-310.
2. Yu Y, Lv Z, Liu Z, et al. Activation of Ga liquid catalyst with continuously exposed active sites for electrocatalytic C-N coupling. Angew Chem Int Ed 2024;136:e202402236.
3. Lu Q, Zhao X, Luque R, Eid K. Structure-activity relationship of tri-metallic Pt-based nanocatalysts for methanol oxidation reaction. Coordin Chem Rev 2023;493:215280.
4. Abdelgawad A, Salah B, Lu Q, et al. Template-free synthesis of M/g-C3N4 (M = Cu, Mn, and Fe) porous one-dimensional nanostructures for green hydrogen production. J Electroanal Chem 2023;938:117426.
5. Gu Y, Nie N, Liu J, et al. Enriching H2O through boron nitride as a support to promote hydrogen evolution from non-filtered seawater. EcoEnergy 2023;1:405-13.
6. Liu H, Li J, Arbiol J, Yang B, Tang P. Catalytic reactivity descriptors of metal-nitrogen-doped carbon catalysts for electrocatalysis. EcoEnergy 2023;1:154-85.
7. Yu W, Huang H, Qin Y, et al. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal-support interaction to achieve high-performance alkaline hydrogen evolution. Adv Energy Mater 2022;12:2200110.
8. Lu Q, Li J, Eid K, et al. Facile one-step aqueous-phase synthesis of porous PtBi nanosponges for efficient electrochemical methanol oxidation with a high CO tolerance. J Electroanal Chem 2022;916:116361.
9. Ganesan V, Kim DH, Park CM. Robust CoP2-C hollow nanoboxes: superior anodes for Li- and Na-ion batteries. J Energy Stor 2024;79:110197.
10. Nam KH, Ganesan V, Kim DH, Jeong S, Jeon KJ, Park CM. SiSe2 for superior sulfide solid electrolytes and Li-ion batteries. ACS Appl Mater Interfaces 2024;16:643-54.
11. Tian H, Song A, Tian H, et al. Single-atom catalysts for high-energy rechargeable batteries. Chem Sci 2021;12:7656-76.
12. Peng Q, Rehman J, Eid K, et al. Vanadium Carbide (V4C3) MXene as an efficient anode for Li-ion and Na-ion batteries. Nanomaterials 2022;12:2825.
13. Ma F, Liu Y, Huang T, Du X, Lu Q, Kid K. Facile in situ polymerization synthesis of poly(ionic liquid)-based polymer electrolyte for high-performance solid-state batteries. Energy Convers Manag X 2024;22:100570.
14. Wu J, Chen X, Fan W, Li X, Mai Y, Chen Y. Rationally designed alloy phases for highly reversible alkali metal batteries. Energy Stor Mater 2022;48:223-43.
15. Ganesan V, Lee Y, Jung H, Park C. Porous polyhedral carbon matrix for high-performance Li/Na/K-ion battery anodes. Carbon Lett 2023;33:2189-98.
16. Kim Y, Kim K, Seo H, Lee S, Park C, Kim J. Surfactant-derived porous Sn2Nb2O7-graphene oxide composite as Li- and Na-ion storage materials. J Alloys Compd 2022;910:164943.
17. Kim T, Jeon K, Park C. Black P@MO (M = Mg, Al, or Ti) composites as superior Li-ion battery anodes. Chem Eng J 2021;424:130366.
18. Glushenkov A. Recent commentaries on the expected performance, advantages and applications of sodium-ion batteries. Energy Mater 2023;3:300010.
19. Tian H, Tian H, Yang W, et al. Stable hollow-structured silicon suboxide-based anodes toward high-performance lithium-ion batteries. Adv Funct Mater 2021;31:2101796.
20. Ma Z, Song A, Liu Z, et al. Nanoconfined expansion behavior of hollow MnS@Carbon anode with extended lithiation cyclic stability. Adv Funct Mater 2023;33:2301112.
21. Qi S, Deng J, Zhang W, Feng Y, Ma J. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met 2020;39:970-88.
22. Wang J, Wang Y, Zhang P, Zhang D, Ren X. Preparation and electrochemical properties of binary SixSb immiscible alloy for lithium ion batteries. J Alloy Compd 2014;610:308-14.
23. Li G, Guo S, Xiang B, et al. Recent advances and perspectives of microsized alloying-type porous anode materials in high-performance Li- and Na-ion batteries. Energy Mater 2022;2:200020.
24. Shao Y, Jin Z, Li J, Meng Y, Huang X. Evaluation of the electrochemical and expansion performances of the Sn-Si/graphite composite electrode for the industrial use. Energy Mater 2022;2:200004.
25. Pathak AD, Chanda UK, Samanta K, Mandal A, Sahu KK, Pati S. Selective leaching of Al from hypereutectic Al-Si alloy to produce nano-porous silicon (NPS) anodes for lithium ion batteries. Electrochim Acta 2019;317:654-62.
26. Zhang M, Mou X, Zhou X, Wang J, Li H, Wang C. Metal compound-based heterostructures in anodes promote high capacity and fast reaction kinetic for lithium/sodium-ion storage: a review. ChemElectroChem 2024;11:e202300573.
27. Wang X, Tang S, Guo W, Fu Y, Manthiram A. Advances in multimetallic alloy-based anodes for alkali-ion and alkali-metal batteries. Materi Today 2021;50:259-75.
28. Pirayesh P, Tantratian K, Amirmaleki M, et al. From nanoalloy to nano-laminated interfaces for highly stable alkali-metal anodes. Adv Mater 2023;35:e2301414.
29. Liu J, Wang J, Xu C, et al. Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv Sci 2018;5:1700322.
30. Ipadeola AK, Eid K, Abdullah AM. Porous transition metal-based nanostructures as efficient cathodes for aluminium-air batteries. Curr Opin Electroche 2023;37:101198.
31. Ipadeola AK, Haruna AB, Gaolatlhe L, et al. Efforts at enhancing bifunctional electrocatalysis and related events for rechargeable zinc-air batteries. ChemElectroChem 2021;8:3998-4018.
32. Sun C, Yang J, Rui X, et al. MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. J Mater Chem A 2015;3:8483-8.
33. Su Z, Chen T. Porous Noble metal electrocatalysts: synthesis, performance, and development. Small 2021;17:e2005354.
34. Tang J, Xu J, Ye Z, et al. Synthesis of flower-like cobalt, nickel phosphates grown on the surface of porous high entropy alloy for efficient oxygen evolution. J Alloy Compd 2021;885:160995.
35. Adegoke KA, Maxakato NW. Porous metal oxide electrocatalytic nanomaterials for energy conversion: oxygen defects and selection techniques. Coord Chem Rev 2022;457:214389.
36. Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: a review with insights on synthesis. Coord Chem Rev 2022;469:214666.
37. Mofokeng TP, Ipadeola AK, Tetana ZN, Ozoemena KI. Defect-engineered nanostructured Ni/MOF-derived carbons for an efficient aqueous battery-type energy storage device. ACS Omega 2020;5:20461-72.
38. Salah B, Ipadeola AK, Khan A, et al. Unveiling the electrochemical CO oxidation activity on support-free porous PdM (M = Fe, Co, Ni) foam-like nanocrystals over a wide pH range. Energy Convers Manag 2023;20:100449.
39. Ipadeola AK, Abdelgawad A, Salah B, et al. Self-standing foam-like Pd-based alloys nanostructures for efficient electrocatalytic ethanol oxidation. Int J Hydrogen Energy 2023;48:30354-64.
40. Salah B, Ipadeola AK, Abdullah AM, Ghanem A, Eid K. Self-standing Pd-based nanostructures for electrocatalytic CO oxidation: do nanocatalyst shape and electrolyte pH matter? Int J Mol Sci 2023;24:11832.
41. Lu S, Eid K, Lin M, Wang L, Wang H, Gu H. Hydrogen gas-assisted synthesis of worm-like PtMo wavy nanowires as efficient catalysts for the methanol oxidation reaction. J Mater Chem A 2016;4:10508-13.
42. Airo MA, Otieno F, Mxakaza L, et al. Probing the stoichiometry dependent catalytic activity of nickel selenide counter electrodes in the redox reaction of iodide/triiodide electrolyte in dye sensitized solar cells. RSC Adv 2020;10:39509-20.
43. Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E. Review on Sol-Gel synthesis of perovskite and oxide nanomaterials. Gels 2021;7:275.
44. He X, Liao J, Wang S, et al. From nanomelting to nanobeads: nanostructured SbxBi1-x alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries. J Mater Chem A 2019;7:27041-7.
45. Parashar M, Shukla VK, Singh R. Metal oxides nanoparticles via sol-gel method: a review on synthesis, characterization and applications. J Mater Sci Mater Electron 2020;31:3729-49.
46. Issa AA, El-Azazy M, Luyt AS. Kinetics of alkoxysilanes hydrolysis: an empirical approach. Sci Rep 2019;9:17624.
47. Danks AE, Hall SR, Schnepp Z. The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis. Mater Horiz 2016;3:91-112.
48. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. J Appl Polym Sci 2005;96:557-69.
50. Huang C, Thomas N. Fabricating porous poly(lactic acid) fibres via electrospinning. Eur Polym J 2018;99:464-76.
51. Sun B, Long Y, Zhang H, et al. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 2014;39:862-90.
52. Liao Y, Loh C, Tian M, Wang R, Fane AG. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog Polym Sci 2018;77:69-94.
53. Ni J, Zhu X, Yuan Y, et al. Rooting binder-free tin nanoarrays into copper substrate via tin-copper alloying for robust energy storage. Nat Commun 2020;11:1212.
54. Huang B, Pan Z, Su X, An L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J Power Sources 2018;395:41-59.
55. Mou H, Xiao W, Miao C, Li R, Yu L. Tin and Tin compound materials as anodes in lithium-ion and sodium-ion batteries: a review. Front Chem 2020;8:141.
56. Nam DH, Kim RH, Han DW, Kwon HS. Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries. Electrochimica Acta 2012;66:126-32.
57. Zhao H, Zhang G, Jiang C, He X. An electrochemical and structural investigation of porous composite anode materials for LIB. Ionics 2012;18:11-8.
58. Cui J, Yao S, Huang J, et al. Sb-doped SnO2/graphene-CNT aerogels for high performance Li-ion and Na-ion battery anodes. Energy Stor Mater 2017;9:85-95.
59. Wang S, He M, Walter M, Krumeich F, Kravchyk KV, Kovalenko MV. Monodisperse CoSn2 and FeSn2 nanocrystals as high-performance anode materials for lithium-ion batteries. Nanoscale 2018;10:6827-31.
60. Walter M, Doswald S, Krumeich F, et al. Oxidized Co-Sn nanoparticles as long-lasting anode materials for lithium-ion batteries. Nanoscale 2018;10:3777-83.
61. Li Z, Xue H, Wang J, Tang Y, Lee C, Yang S. Reduced graphene oxide/marcasite-type cobalt selenide nanocrystals as an anode for lithium-ion batteries with excellent cyclic performance. ChemElectroChem 2015;2:1682-6.
62. Han Z, Wang B, Liu X, Wang G, Wang H, Bai J. Peapod-like one-dimensional (1D) CoP hollow nanorods embedded into graphene networks as an anode material for lithium-ion batteries. J Mater Sci 2018;53:8445-59.
63. Cui C, Wei Z, Zhou G, et al. Quasi-reversible conversion reaction of CoSe2/nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries. J Mater Chem A 2018;6:7088-98.
64. Dong W, Shen D, Yang S, et al. First-principles Study of Mechanical and Electronic Properties of Co-Sn Intermetallics for Lithium Ion Battery Anode. Chem Res Chin Univ 2018;34:235-40.
65. Gao G, Wu HB, Lou XW. Citrate-assisted growth of NiCo2O4 nanosheets on reduced graphene oxide for highly reversible lithium storage. Adv Energy Mater 2014;4:1400422.
66. Wang J, Zhang Q, Li X, Zhang B, Mai L, Zhang K. Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage. Nano Energy 2015;12:437-46.
67. Zhang Q, Wang J, Dong J, et al. Facile general strategy toward hierarchical mesoporous transition metal oxides arrays on three-dimensional macroporous foam with superior lithium storage properties. Nano Energy 2015;13:77-91.
68. Xu J, Su D, Bao W, Zhao Y, Xie X, Wang G. Rose flower-like NiCo2O4 with hierarchically porous structures for highly reversible lithium storage. J Alloys Compd 2016;684:691-8.
69. Zhu H, Sun Y, Zhang X, Tang L, Guo J. Evaporation-induced self-assembly synthesis of mesoporous FeCo2O4 octahedra with large and fast lithium storage properties. Mater Lett 2016;166:1-4.
70. Zhang Q, Chen H, Han X, et al. Graphene-encapsulated nanosheet-assembled zinc-nickel-cobalt oxide microspheres for enhanced lithium storage. ChemSusChem 2016;9:186-96.
71. Yuan J, Chen C, Hao Y, et al. A facile synthetic strategy to three-dimensional porous ZnCo2O4 thin films on Ni foams for high-performance lithium-ion battery anodes. J Electroanal Chem 2017;787:158-62.
72. Huang G, Li Q, Yin D, Wang L. Hierarchical porous Te@ZnCo2O4 nanofibers derived from Te@Metal-organic frameworks for superior lithium storage capability. Adv Funct Mater 2017;27:1604941.
73. Tong H, Gong Z, Huang Y, et al. Bimetallic zinc-cobalt sulfides embedded within N, S-codoped hollow carbon polyhedra for superior lithium-ion batteries. Appl Surf Sci 2024;652:159233.
74. Liu Y, Wang L, Chen G, et al. Nitrogen-containing bimetal oxides derived from cobalt-zinc MOF as anode materials for lithium-ion batteries. J Phys Chem Solids 2024;185:111728.
75. Chen J, Zhu K, Liang P, et al. Ultrahigh reversible lithium storage of hierarchical porous Co-Mo oxides via graphene encapsulation and hydrothermal S-doping. J Mater Chem A 2022;10:5373-80.
76. Chen M, Zhou W, Qi M, Zhang J, Yin J, Chen Q. Reconstruction of copper shell on metal oxides as enhanced nanoarrays electrodes for lithium ion batteries. Mater Res Bull 2017;86:308-12.
77. Kamran U, Park S. Hybrid biochar supported transition metal doped MnO2 composites: efficient contenders for lithium adsorption and recovery from aqueous solutions. Desalination 2022;522:115387.
78. Gu X, Yue J, Li L, Xue H, Yang J, Zhao X. General Synthesis of MnOx (MnO2, Mn2O3, Mn3O4, MnO) hierarchical microspheres as lithium-ion battery anodes. Electrochim Acta 2015;184:250-6.
79. Feng L, Xuan Z, Zhao H, et al. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery. Nanoscale Res Lett 2014;9:290.
80. Ashokkumar K, Dhanapandian S, Suthakaran S, Krishnakumar N, Anandan M. Synthesis of MnO2 nanoparticles and its effective utilization as high-performance of supercapacitor. Mater Today Proc 2022;49:2675-8.
81. Jiang H, Hu Y, Guo S, Yan C, Lee PS, Li C. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014;8:6038-46.
82. Yue J, Gu X, Chen L, et al. General synthesis of hollow MnO2, Mn3O4 and MnO nanospheres as superior anode materials for lithium ion batteries. J Mater Chem A 2014;2:17421-6.
83. Gu X, Yue J, Chen L, et al. Coaxial MnO/N-doped carbon nanorods for advanced lithium-ion battery anodes. J Mater Chem A 2015;3:1037-41.
84. Liu Y, Bai J, Ma X, Li J, Xiong S. Formation of quasi-mesocrystal ZnMn2O4 twin microspheres via an oriented attachment for lithium-ion batteries. J Mater Chem A 2014;2:14236-44.
85. Liu X, Zhao C, Zhang H, Shen Q. Facile synthesis of porous ZnMnO3 spherulites with a high lithium storage capability. Electrochim Acta 2015;151:56-62.
86. Yuan J, Chen C, Hao Y, et al. Three-dimensionally porous CoMn2O4 thin films grown on Ni foams for high-performance lithium-ion battery anodes. J Mater Sci 2017;52:5751-8.
87. Yuan J, Chen C, Hao Y, et al. Fabrication of three-dimensional porous ZnMn2O4 thin films on Ni foams through electrostatic spray deposition for high-performance lithium-ion battery anodes. J Alloy Compd 2017;696:1174-9.
88. Luo D, Deng YP, Wang X, et al. Tuning shell numbers of transition metal oxide hollow microspheres toward durable and superior lithium storage. ACS Nano 2017;11:11521-30.
89. Zhang S, Zhang Z, Kang J, et al. Double-shelled nanoporous NiO nanocrystal doped MnO/Ni network for high performance lithium-ion battery. Electrochim Acta 2019;320:134542.
90. Lee J, Seo S, Kim D. Hierarchical Zn1.67Mn1.33O4/graphene nanoaggregates as new anode material for lithium-ion batteries. Int J Energy Res 2019;43:1735-46.
91. Lin S, Zhang T. Electrochemical in-situ generation of Ni-Mn MOF nanomaterials as anode materials for lithium-ion batteries. J Alloy Compd 2023;942:168926.
92. Miao X, Wang L, Shi Y, et al. Cu- and S-doped multielement composite Cu/Mn3O4@SC microspheres derived from bimetallic CuMn-MOF as anode materials for lithium-ion batteries. J Mater Sci 2024;59:3930-46.
93. Zheng M, Tang H, Li L, et al. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 2018;5:1700592.
94. Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 2016;11:626-32.
95. Mwonga PV, Ipadeola AK, Naidoo SR, Quandt A, Ozoemena KI. Annealing boosts the supercapacitive properties of molybdenum disulfide powder. Electroanalysis 2020;32:2642-9.
96. Liu J, Qian D, Feng H, et al. Designed synthesis of TiO2-modified iron oxides on/among carbon nanotubes as a superior lithium-ion storage material. J Mater Chem A 2014;2:11372.
97. Zhao D, Qin J, Zheng L, Cao M. Amorphous vanadium oxide/molybdenum oxide hybrid with three-dimensional ordered hierarchically porous structure as a high-performance Li-ion battery anode. Chem Mater 2016;28:4180-90.
98. Yin Z, Qin J, Wang W, Cao M. Rationally designed hollow precursor-derived Zn3V2O8 nanocages as a high-performance anode material for lithium-ion batteries. Nano Energy 2017;31:367-76.
99. Wang Z, Fei P, Xiong H, Qin C, Zhao W, Liu X. CoFe2O4 nanoplates synthesized by dealloying method as high performance Li-ion battery anodes. Electrochim Acta 2017;252:295-305.
100. Dong T, Wang G, Yang P. Electrospun NiFe2O4@C fibers as high-performance anode for lithium-ion batteries. Diam Relat Mater 2017;73:210-7.
101. Song H, Su J, Wang C. Vacancies revitalized Ni3ZnC0.7 bimetallic carbide hybrid electrodes with multiplied charge-storage capability for high-capacity and stable-cyclability lithium-ion storage. ACS Appl Energy Mater 2018;1:5008-15.
102. Ruttert M, Siozios V, Winter M, Placke T. Synthesis and comparative investigation of silicon transition metal silicide composite anodes for lithium ion batteries. Z Anorg Allg Chem 2019;645:248-56.
103. Chen H, Shen X, Xu K, et al. NiFe-NiFe2O4/rGO composites: controlled preparation and superior lithium storage properties. J Am Ceram Soc 2021;104:6696-708.
104. Zheng G, Deng Y, Yu X, Song M. Fe-based frameworks in situ derived 3D Ni-Co-Fe nanocage TMO anode for LIB batteries. Ionics 2022;28:5489-98.
105. Zheng G, Yu X, Huang X, Deng Y, Yuan Z, Song M. Construction of three-dimensional crumpled Ni-Co TMOs for electrochemical energy storage. Electroanalysis 2023;35:e202200480.
106. Han Q, Zhang W, Zhu L, et al. MOF-derived bimetallic selenide CoNiSe2 nanododecahedrons encapsulated in porous carbon matrix as advanced anodes for lithium-ion batteries. ACS Appl Mater Interfaces 2024;16:6033-47.
107. Yu XY, Lou XW. Mixed metal sulfides for electrochemical energy storage and conversion. Adv Energy Mater 2018;8:1701592.
108. Wang S, Fang Y, Wang X, Lou XWD. Hierarchical microboxes constructed by SnS nanoplates coated with nitrogen-doped carbon for efficient sodium storage. Angew Chem Int Ed 2019;58:760-3.
109. Li W, Chou SL, Wang JZ, Kim JH, Liu HK, Dou SX. Sn4+xP3 @ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv Mater 2014;26:4037-42.
110. Ramireddy T, Xing T, Rahman MM, et al. Phosphorus-carbon nanocomposite anodes for lithium-ion and sodium-ion batteries. J Mater Chem A 2015;3:5572-84.
111. Chen C, Fu K, Lu Y, et al. Use of a tin antimony alloy-filled porous carbon nanofiber composite as an anode in sodium-ion batteries. RSC Adv 2015;5:30793-800.
112. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L. Na-ion battery anodes: materials and electrochemistry. ACC Chem Res 2016;49:231-40.
114. Wang X, Fan L, Gong D, Zhu J, Zhang Q, Lu B. Core-shell Ge@Graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv Funct Mater 2016;26:1104-11.
115. Yue C, Yu Y, Sun S, et al. High performance 3D Si/Ge nanorods array anode buffered by TiN/Ti interlayer for sodium-ion batteries. Adv Funct Mater 2015;25:1386-92.
116. Fang Y, Yu XY, Lou XWD. Formation of Hierarchical Cu-Doped CoSe2 microboxes via sequential ion exchange for high-performance sodium-ion batteries. Adv Mater 2018;30:e1706668.
117. Gu H, Yang L, Zhang Y, et al. Highly reversible alloying/dealloying behavior of SnSb nanoparticles incorporated into N-rich porous carbon nanowires for ultra-stable Na storage. Energy Stor Mater 2019;21:203-9.
118. Zhang Y, Zhong W, Tan P, Niu Y, Zhang X, Xu M. Heterogeneous interface design of bimetallic selenide nanoboxes enables stable sodium storage. Inorg Chem Front 2021;8:4796-805.
119. Chen J, Zhang G, Xiao J, et al. A stress self-adaptive bimetallic stellar nanosphere for high-energy sodium-ion batteries. Adv Funct Mater 2024;34:2307959.
120. Zhou P, Zhang M, Wang L, et al. MOFs-derived flower-like hierarchically porous Zn-Mn-Se/C composite for extraordinary rate performance and durable anode of sodium-ion and potassium-ion batteries. Small 2022;18:e2203964.
121. Wang S, Zou R, Liu Q, Chen H. Bimetallic selenide Cu4Mo6Se8 nanosheet arrays grown on a carbon skeleton via MOF-derived with enhanced electrochemical kinetics for high-performance sodium-ion batteries. J Mater Chem A 2023;11:8710-8.
122. Guo Y, Li X, Li Z, et al. Rational construction of Sb2Se3 wrapped bimetallic selenide as anode material toward efficient sodium storage performance. Ceram Int 2024;50:14959-67.
123. Zhang L, Xie P, Zhang X, Zhu B, Liu T, Yu J. Facile synthesis of NiCoSe2@carbon anode for high-performance sodium-ion batteries. J Colloid Interface Sci 2024;662:1075-85.
124. Hou YL, Chen JZ, Zhang BH, Wang HY, Wen WX, Zhao DL. Fast ion/electron transport enabled by MXene confined bimetallic sulfides with heterostructure toward highly effective lithium/sodium storage. Chem Eng J 2024;479:147914.
125. He S, Wang Z, Qiu W, Zhao H, Lei Y. Effect of partial cation replacement on anode performance of sodium-ion batteries. Batteries 2024;10:44.
126. Xu Y, Titirici M, Chen J, et al. 2023 roadmap for potassium-ion batteries. J Phys Energy 2023;5:021502.
127. Marcus Y. Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: part 3 - standard potentials of selected electrodes. Pure Appl Chem 1985;57:1129-32.
128. Matsuda Y, Nakashima H, Morita M, Takasu Y. Behavior of some ions in mixed organic electrolytes of high energy density batteries. J Electrochem Soc 1981;128:2552-6.
130. Kim H, Kim JC, Bianchini M, Seo D, Rodriguez-Garcia J, Ceder G. Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater 2018;8:1702384.
131. Wu X, Zhang W, Wu N, Pang S, He G, Ding Y. Exploration of nanoporous CuBi binary alloy for potassium storage. Adv Funct Mater 2020;30:2003838.
132. Xie Y, Wang X, Zhang H, et al. Bimetallic alloy nanoparticles embedded in N-doped carbon-based as an anode for potassium-ion storage material. J Electroanal Chem 2024;959:118178.
133. Zhang R, Luo Q, Gong J, et al. Multilevel spatial confinement of transition metal selenides porous microcubes for efficient and stable potassium storage. J Colloid Interface Sci 2023;644:10-8.
134. Chen W, Hu K, Zheng H, et al. GeV4S8: a novel bimetallic sulfide for robust and fast potassium storage. Small 2024;20:e2311638.
135. Ma Y, Ouyang Y, Liang H, et al. Heterostructured CoS2/SnS2 encapsulated in sulfur-doped carbon exhibiting high potassium ion storage capacity. J Coll Interface Sci 2024;661:671-80.
136. Kim S, Kim TH, Park HK, Kang YC, Cho JS, Park GD. Aerosol-assisted synthesis of 3D hybridized reduced graphene oxide-carbon nanotube composite microsphere with cobalt-iron selenide nanocrystal as anode materials for potassium-ion batteries. J Energy Stor 2024;83:110683.
137. Guo J, Wang L, Hu A, Zhang J, Xiao Z. 3D micro-flower structured BiFeO3 constructing high energy efficiency/stability potassium ion batteries over wide temperature range. Adv Funct Mater 2024;34:2313300.
138. Liang H, Wang X, Shi J, et al. Design of heterostructured hydrangea-like FeS2/MoS2 encapsulated in nitrogen-doped carbon as high-performance anode for potassium-ion capacitors. J Colloid Interf Sci 2024;664:96-106.
139. Toro L, Moscardini E, Baldassari L, et al. A systematic review of battery recycling technologies: advances, challenges, and future prospects. Energies 2023;16:6571.
140. Yu X, Li W, Gupta V, et al. Current challenges in efficient lithium-ion batteries’ recycling: a perspective. Glob Chall 2022;6:2200099.
141. González YC, Alcaraz L, Alguacil FJ, González J, Barbosa L, López FA. Study of the carbochlorination process with CaCl2 and water leaching for the extraction of lithium from spent lithium-ion batteries. Batteries 2023;9:12.
142. Porzio J, Scown CD. Life-cycle assessment considerations for batteries and battery materials. Adv Energy Mater 2021;11:2100771.
143. Lorero I, Campo M, Del Rosario G, López FA, Prolongo SG. New manufacturing process of composites reinforced with ZnO nanoparticles recycled from alkaline batteries. Polymers 2020;12:1619.
144. Lorero I, Campo M, Arribas C, Prolongo MG, López FA, Prolongo SG. Epoxy composites reinforced with ZnO from waste alkaline batteries. Materials 2022;15:2842.
145. Alguacil FJ, Lopez FA. Separation iron(III)-manganese(II) via supported liquid membrane technology in the treatment of spent alkaline batteries. Membranes 2021;11:991.
146. Llamas-Orozco JA, Meng F, Walker GS, et al. Estimating the environmental impacts of global lithium-ion battery supply chain: a temporal, geographical, and technological perspective. PNAS Nexus 2023;2:pgad361.
147. Balali Y, Stegen S. Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renew Sustain Energy Rev 2021;135:110185.
148. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7:19-29.
149. Helbig C, Hillenbrand M. Principles of a circular economy for batteries. In: Passerini S, Barelli L, Baumann M, Peters J, Weil M, editors. Emerging battery technologies to boost the clean energy transition. The materials research society series. Cham: Springe; 2024.
150. Automated guided vehicle market size & share report 2030. Automated guided vehicle market trends. Available from: https://www.grandviewresearch.com/industry-analysis/automated-guided-vehicle-agv-market [Last accessed on 2 Aug 2024].
151. Tankou A, Bieker G, Hall D. Scaling up reuse and recycling of electric vehicle batteries: assessing challenges and policy approaches. In: Proc ICCT; 2023. pp. 1-138. Available from: https://theicct.org/wp-content/uploads/2023/02/recycling-electric-vehicle-batteries-feb-23.pdf [Last accessed on 2 Aug 2024].
152. Navarro RP, Seidel P, Lenz L, Kolk M, Krug A. European battery recycling: an emerging cross-industry convergence. In: Arthur D. Litle; 2022. Available from:https://www.adlittle.mx/sites/default/files/viewpoints/ADL_European_battery_recycling.pdf [Last accessed on 2 Aug 2024].
153. Yu W, Guo Y, Shang Z, Zhang Y, Xu S. A review on comprehensive recycling of spent power lithium-ion battery in China. eTransportation 2022;11:100155.
154. Yoo E, Lee U, Kelly JC, Wang M. Life-cycle analysis of battery metal recycling with lithium recovery from a spent lithium-ion battery. Resour Conserv Recy 2023;196:107040.
155. Wang X, Guo W, Fu Y. High-entropy alloys: emerging materials for advanced functional applications. J Mater Chem A 2021;9:663-701.
156. Tian H, Tian H, Wang S, et al. High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. Nat Commun 2020;11:5025.
157. Wang R, Wang H, Zhao H, et al. Highly fluorinated co-solvent enabling ether electrolyte for high-voltage lithium ion batteries with graphite anode. Energy Mater 2023;3:300040.
158. Lei K, Wang J, Chen C, et al. Recent progresses on alloy-based anodes for potassium-ion batteries. Rare Met 2020;39:989-1004.
159. Jin C, Liu T, Sheng O, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat Energy 2021;6:378-87.
160. Sun J, Liu C, Zheng P, et al. Exploring the potential of one-dimensional van der Waals material V2PS10/carbon composite: an anode design paradigm for lithium-ion batteries. Next Mater 2023;1:100053.
161. Tian H, Liang J, Liu J. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv Mater 2019;31:e1903886.