REFERENCES

1. Sharma, R.; Sharda, H.; Dutta, A.; et al. Optimizing green hydrogen production: leveraging load profile simulation and renewable energy integration. Int. J. Hydrogen. Energy. 2023, 48, 38015-26.

2. Reza, M.; Hannan, M.; Ker, P. J.; et al. Uncertainty parameters of battery energy storage integrated grid and their modeling approaches: a review and future research directions. J. Energy. Storage. 2023, 68, 107698.

3. Njema, G. G.; Ouma, R. B. O.; Kibet, J. K.; V. P. A review on the recent advances in battery development and energy storage technologies. J. Renew. Energy. 2024, 2024, 2329261.

4. Tian, X.; Yi, Y.; Fang, B.; et al. Design strategies of safe electrolytes for preventing thermal runaway in lithium ion batteries. Chem. Mater. 2020, 32, 9821-48.

5. Wang, Y.; Wu, Z.; Zhang, R.; et al. Spider silk inspired polymer electrolyte with well bonded interface and fast kinetics for solid-state lithium-ion batteries. Mater. Today. 2024, 76, 1-8.

6. Wang, M.; Zheng, X.; Zhang, X.; et al. Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry. Adv. Energy. Mater. 2021, 11, 2002904.

7. Lv, Y.; Geng, X.; Luo, W.; et al. Review on influence factors and prevention control technologies of lithium-ion battery energy storage safety. J. Energy. Storage. 2023, 72, 108389.

8. Kang, H.; Chen, Q.; Ma, Q.; et al. Coaxial spiral structural polymer/reduced graphene oxide composite as a high-performance anode for potassium ion batteries. J. Power. Sources. 2022, 545, 231951.

9. Lei, S.; Liu, Z.; Liu, C.; et al. Opportunities for biocompatible and safe zinc-based batteries. Energy. Environ. Sci. 2022, 15, 4911-27.

10. Fu, M.; Yu, H.; Huang, S.; et al. Building sustainable saturated fatty acid-zinc interfacial layer toward ultra-stable zinc metal anodes. Nano. Lett. 2023, 23, 3573-81.

11. Wu, Z.; Li, M.; Tian, Y.; et al. Cyclohexanedodecol-assisted interfacial engineering for robust and high-performance zinc metal anode. Nano-Micro. Lett. 2022, 14, 110.

12. Zhu, J.; Tie, Z.; Bi, S.; Niu, Z. Towards more sustainable aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2024, 136, e202403712.

13. Gu, X.; Du, Y.; Cao, Z.; et al. Hexamethylenetetramine additive with zincophilic head and hydrophobic tail for realizing ultra-stable Zn anode. Chem. Eng. J. 2023, 460, 141902.

14. Luo, Z.; Xia, Y.; Chen, S.; et al. Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro. Lett. 2023, 15, 205.

15. Han, C.; Li, W.; Liu, H. K.; Dou, S.; Wang, J. Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano. Energy. 2020, 74, 104880.

16. Zhou, M.; Tong, Z.; Li, H.; et al. Regulating preferred crystal plane with modification of exposed grain boundary toward stable Zn anode. Adv. Funct. Mater. 2025, 35, 2412092.

17. Liu, Z.; Luo, X.; Qin, L.; Fang, G.; Liang, S. Progress and prospect of low-temperature zinc metal batteries. Adv. Powder. Mate. 2022, 1, 100011.

18. Yi, Z.; Chen, G.; Hou, F.; Wang, L.; Liang, J. Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv. Energy. Mater. 2021, 11, 2003065.

19. Wang, J.; Yang, Y.; Zhang, Y.; et al. Strategies towards the challenges of zinc metal anode in rechargeable aqueous zinc ion batteries. Energy. Storage. Mater. 2021, 35, 19-46.

20. Du, W.; Ang, E. H.; Yang, Y.; Zhang, Y.; Ye, M.; Li, C. C. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy. Environ. Sci. 2020, 13, 3330-60.

21. Zhang, X.; Li, J.; Liu, D.; et al. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy. Environ. Sci. 2021, 14, 3120-9.

22. Hao, J.; Li, X.; Zhang, S.; et al. Designing dendrite-free Zinc anodes for advanced aqueous zinc batteries. Adv. Funct. Mater. 2020, 30, 2001263.

23. Liu, Z.; Li, G.; Xi, M.; et al. Interfacial engineering of Zn metal via a localized conjugated layer for highly reversible aqueous zinc ion battery. Angew. Chem. Int. Ed. 2024, 136, e202319091.

24. Zhou, C.; Shan, L.; Nan, Q.; et al. Construction of robust organic-inorganic interface layer for dendrite-free and durable zinc metal anode. Adv. Funct. Mater. 2024, 34, 2312696.

25. Li, Y.; Liu, X.; Zhang, M.; et al. Optimization Strategy of surface and interface in electrolyte structure of aqueous zinc-ion battery. ACS. Mater. Lett. 2024, 6, 1938-60.

26. Huang, S.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 2022, 34, 2110140.

27. Wang, R.; Ma, Q.; Zhang, L.; et al. An aqueous electrolyte regulator for highly stable zinc anode under -35 to 65 °C. Adv. Energy. Mater. 2023, 13, 2302543.

28. Pan, Y.; Liu, Z.; Liu, S.; et al. Quasi-decoupled solid-liquid hybrid electrolyte for highly reversible interfacial reaction in aqueous zinc-manganese battery. Adv. Energy. Mater. 2023, 13, 2203766.

29. Hu, Y.; Liu, Z.; Li, L.; et al. Reconstructing interfacial manganese deposition for durable aqueous zinc-manganese batteries. Natl. Sci. Rev. 2023, 10, nwad220.

30. Zong, Q.; Zhuang, Y.; Liu, C.; et al. Dual effects of metal and organic ions Co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy. Mater. 2023, 13, 2301480.

31. Li, S.; Shang, J.; Li, M.; et al. Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. 2023, 35, 2207115.

32. Zeng, Y.; Lu, X. F.; Zhang, S. L.; Luan, D.; Li, S.; Lou, X. W. D. Construction of Co-Mn prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 2021, 60, 22189-94.

33. Yang, G.; Liang, Z.; Li, Q.; Li, Y.; Tian, F.; Wang, C. Epitaxial core-shell MnFe prussian blue cathode for highly stable aqueous zinc batteries. ACS. Energy. Lett. 2023, 8, 4085-95.

34. Hu, Y.; Wang, P.; Li, M.; Liu, Z.; Liang, S.; Fang, G. Challenges and industrial considerations towards stable and high-energy-density aqueous zinc-ion batteries. Energy. Environ. Sci. 2024, 17, 8078-93.

35. Nie, N.; Wang, F.; Yao, W. Fabrication of a 3D structure MnO2 electrode with high MnO2 mass loading as the cathode for high-performance aqueous zinc-ion batteries. Electrochim. Acta. 2023, 472, 143423.

36. Shang, P.; Liu, Y.; Mei, Y.; Wu, L.; Dong, Y. Defective MnO2 nanosheets based free-standing and high mass loading electrodes for high energy density aqueous zinc ion batteries. Mater. Chem. Front. 2021, 5, 8002-9.

37. Liu, S.; Zhang, R.; Wang, C.; et al. Zinc ion batteries: bridging the gap from academia to industry for grid-scale energy storage. Angew. Chem. Int. Ed. 2024, 63, e202400045.

38. Zhou, G.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy. 2022, 7, 312-9.

39. Zeng, Y.; Pei, Z.; Luan, D.; Lou, X. W. D. Atomically dispersed zincophilic sites in N,P-codoped carbon macroporous fibers enable efficient Zn metal anodes. J. Am. Chem. Soc. 2023, 145, 12333-41.

40. Wen, Y.; Lin, X.; Sun, X.; et al. A biomass-rich, self-healable, and high-adhesive polymer binder for advanced lithium-sulfur batteries. J. Colloid. Interface. Sci. 2024, 660, 647-56.

41. Liu, H.; Cheng, X.; Chong, Y.; Yuan, H.; Huang, J.; Zhang, Q. Advanced electrode processing of lithium ion batteries: a review of powder technology in battery fabrication. Particuology 2021, 57, 56-71.

42. Zou, F.; Manthiram, A. A review of the design of advanced binders for high-performance batteries. Adv. Energy. Mater. 2020, 10, 2002508.

43. Jiang, X.; Wang, T.; Ji, M.; et al. Enhancement of De-solvation kinetics on V5O12•6H2O cathode through a Bi-functional modification layer for low-temperature zinc-ion batteries. Adv. Funct. Mater. 2025, 35, 2420686.

44. Ding, T.; Yu, S.; Feng, Z.; Song, B.; Zhang, H.; Lu, K. Tunable Zn2+ de-solvation behavior in MnO2 cathodes via self-assembled phytic acid monolayers for stable aqueous Zn-ion batteries. Nanoscale 2024, 16, 21317-25.

45. Liang, W.; Che, Y.; Cai, Z.; et al. Surface decoration manipulating Zn2+/H+ carrier ratios for hyperstable aqueous zinc ion battery cathode. Adv. Funct. Mater. 2024, 34, 2304798.

46. Zhu, K.; Wu, T.; Sun, S.; van, B. W.; Stefik, M.; Huang, K. Synergistic H+/Zn2+ dual ion insertion mechanism in high-capacity and ultra-stable hydrated VO2 cathode for aqueous Zn-ion batteries. Energy. Storage. Mater. 2020, 29, 60-70.

47. Yu, X.; Yu, D.; Li, Y.; et al. Lattice site substitution and interlayer engineering in layered manganese oxide toward durable and fast aqueous Zn-Mn batteries. J. Energy. Storage. 2024, 93, 112456.

48. He, L.; Lin, C.; Zeng, L.; et al. Synergistic regulation of anode and cathode interphases via an alum electrolyte additive for high-performance aqueous zinc-vanadium batteries. Angew. Chem. Int. Ed. 2025, 64, e202415221.

49. Liu, J.; Shen, Z.; Lu, C. Research progress of prussian blue and its analogues for cathodes of aqueous zinc ion batteries. J. Mater. Chem. A. 2024, 12, 2647-72.

50. Zhang, S.; Fang, M.; Wang, F.; et al. A novel layered ternary metal chalcogenide Bi2Te2Se as a high-performance cathode for aqueous zinc ion batteries. Chem. Eng. J. 2024, 496, 153980.

51. Mahmood, A.; Zheng, Z.; Chen, Y. Zinc-bromine batteries: challenges, prospective solutions, and future. Adv. Sci. 2024, 11, 2305561.

52. Huang, L.; Li, J.; Wang, J.; et al. Organic compound as a cathode for aqueous zinc-ion batteries with improved electrochemical performance via multiple active centers. ACS. Appl. Energy. Mater. 2022, 5, 15780-7.

53. Wu, L.; Li, Z.; Xiang, Y.; et al. Revisiting the charging mechanism of α-MnO2 in mildly acidic aqueous zinc electrolytes. Small 2024, 20, 2404583.

54. Ren, Y.; Li, H.; Rao, Y.; Zhou, H.; Guo, S. Aqueous MnO2/Mn2+ electrochemistry in batteries: progress, challenges, and perspectives. Energy. Environ. Sci. 2024, 17, 425-41.

55. Dai, Y.; Zhang, C.; Li, J.; et al. Inhibition of vanadium cathodes dissolution in aqueous Zn-ion batteries. Adv. Mater. 2024, 36, 2310645.

56. Yang, P.; Zhang, K.; Liu, S.; et al. Ionic selective separator design enables long-life zinc-iodine batteries via synergistic anode stabilization and polyiodide shuttle suppression. Adv. Funct. Mater. 2024, 34, 2410712.

57. Zhang, S. J.; Hao, J.; Wu, H.; et al. Toward high-energy-density aqueous zinc-iodine batteries: multielectron pathways. ACS. Nano. 2024, 18, 28557-74.

58. Li, X.; Li, N.; Huang, Z.; et al. Enhanced redox kinetics and duration of aqueous I2/I- conversion chemistry by MXene confinement. Adv. Mater. 2021, 33, 2006897.

59. Nie, C.; Wang, G.; Wang, D.; et al. Recent progress on zn anodes for advanced aqueous zinc-ion batteries. Adv. Energy. Mater. 2023, 13, 2300606.

60. Zhou, T.; Huang, R.; Lu, Q.; et al. Recent progress and perspectives on highly utilized Zn metal anode - towards marketable aqueous Zn-ion batteries. Energy. Storage. Mater. 2024, 72, 103689.

61. Ouyang, K.; Chen, S.; Ling, W.; et al. Synergistic modulation of in-situ hybrid interface construction and pH buffering enabled ultra-stable zinc anode at high current density and areal capacity. Angew. Chem. Int. Ed. 2023, 135, e202311988.

62. Li, M.; Wang, X.; Meng, J.; et al. Comprehensive understandings of hydrogen bond chemistry in aqueous batteries. Adv. Mater. 2024, 36, 2308628.

63. He, Q.; Ning, J.; Chen, H.; et al. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. Chem. Soc. Rev. 2024, 53, 7091-157.

64. Sudhakaran, S.; Bijoy, T. K. A comprehensive review of current and emerging binder technologies for energy storage applications. ACS. Appl. Energy. Mater. 2023, 6, 11773-94.

65. Liu, J.; Galpaya, D. G. D.; Yan, L.; et al. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery. Energy. Environ. Sci. 2017, 10, 750-5.

66. Qi, Q.; Lv, X.; Lv, W.; Yang, Q. Multifunctional binder designs for lithium-sulfur batteries. J. Energy. Chem. 2019, 39, 88-100.

67. Yu, D.; Zhang, Q.; Liu, J.; Guo, Z.; Wang, L. A mechanically robust and high-wettability multifunctional network binder for high-loading Li-S batteries with an enhanced rate property. J. Mater. Chem. A. 2021, 9, 22684-90.

68. Guo, R.; Yang, Y.; Huang, X. L.; et al. Recent advances in multifunctional binders for high sulfur loading lithium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2307108.

69. Ling, M.; Xu, Y.; Zhao, H.; et al. Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano. Energy. 2015, 12, 178-85.

70. Sun, R.; Hu, J.; Shi, X.; et al. Water-soluble cross-linking functional binder for low-cost and high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2021, 31, 2104858.

71. Xie, D.; Zhao, J.; Jiang, Q.; et al. A high-performance alginate hydrogel binder for aqueous zn-ion batteries. Chemphyschem 2022, 23, e202200106.

72. Niu, B.; Wang, J.; Guo, Y.; et al. Polymers for aqueous zinc-ion batteries: from fundamental to applications across core components. Adv. Energy. Mater. 2024, 14, 2303967.

73. Patra, N.; Ramesh, P.; Donthu, V.; Ahmad, A. Biopolymer-based composites for sustainable energy storage: recent developments and future outlook. J. Mater. Sci. Mater. Eng. 2024, 19, 34.

74. Salleh, N. A.; Kheawhom, S.; Ashrina, A. H. N.; Rahiman, W.; Mohamad, A. A. Electrode polymer binders for supercapacitor applications: a review. J. Mater. Res. Technol. 2023, 23, 3470-91.

75. Gao, Q.; Shen, Z.; Guo, Z.; et al. Metal coordinated polymer as three-dimensional network binder for high sulfur loading cathode of lithium-sulfur battery. Small 2023, 19, 2301344.

76. Wang, D.; Zhang, Q.; Liu, J.; et al. A universal cross-linking binding polymer composite for ultrahigh-loading Li-ion battery electrodes. J. Mater. Chem. A. 2020, 8, 9693-700.

77. Zhao, E.; Guo, Z.; Liu, J.; et al. A low-cost and eco-friendly network binder coupling stiffness and softness for high-performance Li-ion batteries. Electrochim. Acta. 2021, 387, 138491.

78. Gao, R.; Zhang, Q.; Zhao, Y.; et al. Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2110313.

79. Kovalenko, I.; Zdyrko, B.; Magasinski, A.; et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 2011, 334, 75-9.

80. Zhang, J.; Wang, N.; Zhang, W.; et al. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries. J. Colloid. Interface. Sci. 2020, 578, 452-60.

81. Xu, Y.; Zhang, M.; Tang, R.; et al. A plant root cell-inspired interphase layer for practical aqueous zinc-iodine batteries with super-high areal capacity and long lifespan. Energy. Environ. Sci. 2024, 17, 6656-65.

82. Dong, H.; Liu, R.; Hu, X.; et al. Cathode-electrolyte interface modification by binder engineering for high-performance aqueous zinc-ion batteries. Adv. Sci. 2023, 10, 2205084.

83. Peng, Z.; Feng, Z.; Zhou, X.; et al. Polymer engineering for electrodes of aqueous zinc ion batteries. J. Energy. Chem. 2024, 91, 345-69.

84. Tolstopyatova, E. G.; Kamenskii, M. A.; Kondratiev, V. V. Vanadium oxide-conducting polymers composite cathodes for aqueous zinc-ion batteries: interfacial design and enhancement of electrochemical performance. Energies 2022, 15, 8966.

85. Kamenskii, M. A.; Volkov, F. S.; Eliseeva, S. N.; Holze, R.; Kondratiev, V. V. Comparative study of PEDOT- and PEDOT:PSS modified δ-MnO2 cathodes for aqueous zinc batteries with enhanced properties. J. Electrochem. Soc. 2023, 170, 010505.

86. Yan, L.; Zhang, S.; Kang, Q.; et al. Iodine conversion chemistry in aqueous batteries: challenges, strategies, and perspectives. Energy. Storage. Mater. 2023, 54, 339-65.

87. Chen, H.; Li, X.; Fang, K.; Wang, H.; Ning, J.; Hu, Y. Aqueous zinc-iodine batteries: from electrochemistry to energy storage mechanism. Adv. Energy. Mater. 2023, 13, 2302187.

88. Ma, J.; Wang, M.; Zhang, H.; et al. Accelerating the electrochemical kinetics of metal-iodine batteries: progress and prospects. Mater. Today. Energy. 2022, 30, 101146.

89. Wang, K.; Li, H.; Xu, Z.; et al. An Iodine-chemisorption binder for high-loading and shuttle-free Zn-iodine batteries. Adv. Energy. Mater. 2024, 14, 2304110.

90. Yang, J. L.; Liu, H. H.; Zhao, X. X.; et al. Janus binder chemistry for synchronous enhancement of iodine species adsorption and redox kinetics toward sustainable aqueous Zn-I2 batteries. J. Am. Chem. Soc. 2024, 146, 6628-37.

91. Ma, L.; Wang, X.; Sun, J. A strategy associated with conductive binder and 3D current collector for aqueous zinc-ion batteries with high mass loading. J. Electroanal. Chem. 2020, 873, 114395.

92. Xue, M.; Bai, J.; Wu, M.; He, Q.; Zhang, Q.; Chen, L. Carbon-assisted anodes and cathodes for zinc ion batteries: from basic science to specific applications, opportunities and challenges. Energy. Storage. Mater. 2023, 62, 102940.

93. Zheng, W.; Zhu, L.; Huang, H.; Sun, Z.; Zhou, H.; Zhang, K. Achieving high performance aqueous Zn-ion batteries via interfacial coating of N, P dual-doped biomass porous carbon on Zn metal anode. ACS. Sustain. Chem. Eng. 2024, 12, 8070-82.

94. Liu, X.; Shen, X.; Chen, T.; Xu, Q. The spinel MnFe2O4 grown in biomass-derived porous carbons materials for high-performance cathode materials of aqueous zinc-ion batteries. J. Alloys. Compd. 2022, 904, 164002.

95. Wei, L.; Li, X.; Peng, J.; Chen, C.; Li, Z.; Zhao, G. Green synthesis of renewable biomass-derived porous carbon hosts for superior aqueous zinc-iodine batteries. Inorg. Chem. Commun. 2024, 170, 113489.

96. Zhao, H.; Chen, M.; Yu, J.; et al. Three-dimensional rattan-derived electrodes with directional channels and large mass loadings for high-performance aqueous zinc-ion batteries. J. Colloid. Interface. Sci. 2025, 678, 441-8.

97. Chen, D.; Lu, M.; Wang, B.; et al. High-mass loading V3O7·H2O nanoarray for Zn-ion battery: new synthesis and two-stage ion intercalation chemistry. Nano. Energy. 2021, 83, 105835.

98. Gao, X.; Zhang, C.; Dai, Y.; et al. Three-dimensional manganese oxide@carbon networks as free-standing, high-loading cathodes for high-performance Zinc-ion batteries. Small. Struct. 2023, 4, 2200316.

99. Pan, R.; Zheng, A.; He, B.; et al. In situ crafting of a 3D N-doped carbon/defect-rich V2O5-x·nH2O nanosheet composite for high performance fibrous flexible Zn-ion batteries. Nanoscale. Horiz. 2022, 7, 1501-12. Available from: https://pubs.rsc.org/en/content/articlelanding/2022/nh/d2nh00349j [Last accessed on 18 Apr 2025]

100. Li, Y.; Zhang, F.; Wu, M.; et al. In situ growth of δ-MnO2/C fibers as a binder-free and free-standing cathode for advanced aqueous Zn-ion batteries. Inorg. Chem. Front. 2024, 11, 8016-24.

101. Peng, J.; Gou, W.; Jiang, T.; et al. 3D printed reticular manganese dioxide cathode with high areal capacity for aqueous zinc ion batteries. J. Alloys. Compd. 2024, 998, 174772.

102. Ji, D.; Zheng, H.; Zhang, H.; Liu, W.; Ding, J. Coaxial 3D-printing constructing all-in-one fibrous lithium-, sodium-, and zinc-ion batteries. Chem. Eng. J. 2022, 433, 133815.

103. Yang, H.; Wan, Y.; Sun, K.; et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries. Adv. Funct. Mater. 2023, 33, 2215076.

104. Ma, H.; Tian, X.; Wang, T.; et al. Tailoring pore structures of 3D printed cellular high-loading cathodes for advanced rechargeable zinc-ion batteries. Small 2021, 17, 2100746.

105. He, Y.; Pu, Y.; Zheng, Y.; et al. Carbon nanofiber-coated MnO composite as high-performance cathode material for aqueous zinc-ion batteries. J. Phys. Chem. Solids. 2024, 184, 111669.

106. Zhang, W.; Liang, S.; Fang, G.; Yang, Y.; Zhou, J. Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts. Nano-Micro. Lett. 2019, 11, 69.

107. Xu, H.; Du, Y.; Emin, A.; et al. Interconnected vertical δ-MnO2 nanoflakes coated by a dopamine-derived carbon thin shell as a high-performance self-supporting cathode for aqueous zinc ion batteries. J. Electrochem. Soc. 2021, 168, 030540.

108. Luo, Z.; Zeng, J.; Liu, Z.; He, H. Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries. J. Alloys. Compd. 2022, 906, 164388.

109. Venkatkarthick, R.; Rodthongkum, N.; Zhang, X.; et al. Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS. Appl. Energy. Mater. 2020, 3, 4677-89.

110. Shi, M.; Wang, B.; Chen, C.; Lang, J.; Yan, C.; Yan, X. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J. Mater. Chem. A. 2020, 8, 24635-44.

111. Yang, J.; Li, J.; Li, Y.; et al. Defect regulation in bimetallic oxide cathodes for significantly improving the performance of flexible aqueous Zn-ion batteries. Chem. Eng. J. 2023, 468, 143600.

112. Yang, L.; Zhu, Y.; Zeng, F.; et al. Synchronously promoting the electron and ion transport in high-loading Mn2.5V10O24∙5.9H2O cathodes for practical aqueous zinc-ion batteries. Energy. Storage. Mater. 2024, 65, 103162.

113. Zong, Y.; Chen, H.; Wang, J.; et al. Cation defect-engineered boost fast kinetics of two-dimensional topological Bi2Se3 cathode for high-performance aqueous Zn-ion batteries. Adv. Mater. 2023, 35, 2306269.

114. Zeng, X.; Gong, Z.; Wang, C.; Cullen, P. J.; Pei, Z. Vanadium-based cathodes modification via defect engineering: strategies to support the leap from lab to commercialization of aqueous zinc-ion batteries. Adv. Energy. Mater. 2024, 14, 2401704.

115. Cui, X.; Li, Y.; Zhang, Y.; et al. Unraveling the electrochemical charge storage dynamics of defective oxides-based cathodes toward high-performance aqueous zinc-ion batteries. Chem. Eng. J. 2023, 478, 147197.

116. Gao, X.; Shen, C.; Dong, H.; et al. Co-intercalation strategy for simultaneously boosting two-electron conversion and bulk stabilization of Mn-based cathodes in aqueous zinc-ion batteries. Energy. Environ. Sci. 2024, 17, 2287-97.

117. He, W.; Meng, C.; Ai, Z.; et al. Achieving fast ion diffusion in aqueous zinc-ion batteries by cathode reconstruction design. Chem. Eng. J. 2023, 454, 140260.

118. Yao, Z.; Zhang, W.; Ren, X.; et al. A volume self-regulation MoS2 superstructure cathode for stable and high mass-loaded Zn-ion storage. ACS. Nano. 2022, 16, 12095-106.

119. Zhao, X.; Mao, L.; Cheng, Q.; et al. Interlayer engineering of preintercalated layered oxides as cathode for emerging multivalent metal-ion batteries: zinc and beyond. Energy. Storage. Mater. 2021, 38, 397-437.

120. Jiang, N.; Zeng, Y.; Yang, Q.; et al. Deep ion mass transfer addressing the capacity shrink challenge of aqueous Zn‖MnO2 batteries during the cathode scaleup. Energy. Environ. Sci. 2024, 17, 8904-14.

121. Zhu, Y.; Huang, Z.; Zheng, M.; et al. Scalable construction of multifunctional protection layer with low-cost water glass for robust and high-performance zinc anode. Adv. Funct. Mater. 2024, 34, 2306085.

122. Hong, L.; Wu, X.; Wang, L. Y.; et al. Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels. ACS. Nano. 2022, 16, 6906-15.

123. Li, W.; Zhang, Q.; Yang, Z.; et al. Isotropic amorphous protective layer with uniform interfacial zincophobicity for stable zinc anode. Small 2022, 18, 2205667.

124. Wang, Z.; Zhou, D.; Zhou, Z.; et al. Synergistic effect of 3D elastomer/super-ionic conductor hybrid fiber networks enables zinc anode protection for aqueous zinc-ion batteries. Adv. Funct. Mater. 2024, 34, 2313371.

125. Chen, A.; Zhao, C.; Gao, J.; et al. Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy. Environ. Sci. 2023, 16, 275-84.

126. Zhang, Q.; Su, Y.; Shi, Z.; Yang, X.; Sun, J. Artificial interphase layer for stabilized Zn anodes: progress and prospects. Small 2022, 18, 2203583.

127. Li, J.; Yin, X.; Duan, F.; et al. Pure amorphous and ultrathin phosphate layer with superior ionic conduction for zinc anode protection. ACS. Nano. 2023, 17, 20062-72.

128. Zhou, X.; Chen, R.; Cui, E.; et al. A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes. Energy. Storage. Mater. 2023, 55, 538-45.

129. Qiao, L.; Zhang, P.; Yu, Y.; et al. Constructing dynamic cross-linking networks as durable bifunctional coating for highly stable zinc anodes. Chem. Eur. J. 2024, 30, e202401693.

130. Guo, Z.; Fan, L.; Zhao, C.; et al. A dynamic and self-adapting interface coating for stable Zn-metal anodes. Adv. Mater. 2022, 34, 2105133.

131. Hong, L.; Wu, X.; Liu, Y.; et al. Self-adapting and self-healing hydrogel interface with fast Zn2+ transport kinetics for highly reversible Zn anodes. Adv. Funct. Mater. 2023, 33, 2300952.

132. Zhang, P.; Yu, Y.; Zhai, R.; et al. Achieving planar Zn deposition enabled by an eco-friendly and mechanically robust dual cross-linking dynamic network coating for long-lifespan Zn-ion batteries. ACS. Appl. Energy. Mater. 2024, 7, 4160-9.

133. Du, H.; Dong, Y.; Li, Q. J.; et al. A new zinc salt chemistry for aqueous zinc-metal batteries. Adv. Mater. 2023, 35, 2210055.

134. Zhang, J.; Liu, Y.; Wang, Y.; Zhu, Z.; Yang, Z. Zwitterionic organic multifunctional additive stabilizes electrodes for reversible aqueous Zn-ion batteries. Adv. Funct. Mater. 2024, 34, 2401889.

135. Liu, Z.; Wang, R.; Ma, Q.; et al. A dual-functional organic electrolyte additive with regulating suitable overpotential for building highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 2024, 34, 2214538.

136. Li, Z.; Liao, Y.; Wang, Y.; et al. A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries. Energy. Storage. Mater. 2023, 56, 174-82.

137. Chen, Z.; Zhou, W.; Zhao, S.; Lou, X.; Chen, S. In-situ construction of solid electrolyte interphases with gradient zincophilicity for wide temperature zinc ion batteries. Adv. Energy. Mater. 2025, 15, 2404108.

138. Dai, Q.; Li, L.; Tu, T.; Zhang, M.; Song, L. An appropriate Zn2+/Mn2+ concentration of the electrolyte enables superior performance of AZIBs. J. Mater. Chem. A. 2022, 10, 23722-30.

139. Li, C.; Shyamsunder, A.; Hoane, A. G.; et al. Highly reversible Zn anode with a practical areal capacity enabled by a sustainable electrolyte and superacid interfacial chemistry. Joule 2022, 6, 1103-20.

140. Zeng, X.; Mao, J.; Hao, J.; et al. Electrolyte design for in situ construction of highly Zn2+ -conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv. Mater. 2021, 33, 2007416.

141. Yu, Y.; Zhang, P.; Wang, W.; Liu, J. Tuning the electrode/electrolyte interface enabled by a trifunctional inorganic oligomer electrolyte additive for highly stable and high-rate Zn anodes. Small. Methods. 2023, 7, 2300546.

142. Li, D.; Tang, Y.; Liang, S.; Lu, B.; Chen, G.; Zhou, J. Self-assembled multilayers direct a buffer interphase for long-life aqueous zinc-ion batteries. Energy. Environ. Sci. 2023, 16, 3381-90.

143. You, C.; Wu, R.; Yuan, X.; et al. An inexpensive electrolyte with double-site hydrogen bonding and a regulated Zn2+ solvation structure for aqueous Zn-ion batteries capable of high-rate and ultra-long low-temperature operation. Energy. Environ. Sci. 2023, 16, 5096-107.

144. Yu, Y.; Zhang, Q.; Zhang, P.; et al. Massively reconstructing hydrogen bonding network and coordination structure enabled by a natural multifunctional Co-solvent for practical aqueous Zn-ion batteries. Adv. Sci. 2024, 11, 2400336.

145. Jia, H.; Jiang, X.; Wang, Y.; Lam, Y.; Shi, S.; Liu, G. Hybrid Co-solvent-induced high-entropy electrolyte: regulating of hydrated Zn2+ solvation structures for excellent reversibility and wide temperature adaptability. Adv. Energy. Mater. 2024, 14, 2304285.

146. Wang, H.; Wang, K.; Jing, E.; et al. Strategies of regulating Zn2+ solvation structures toward advanced aqueous zinc-based batteries. Energy. Storage. Mater. 2024, 70, 103451.

147. Li, L.; Jiang, G.; Li, M.; et al. Ether-water Co-solvent electrolytes enhanced vanadium oxide cathode cyclic behaviors for zinc batteries. ChemSusChem 2024, 17, e202301833.

148. Qiu, K.; Ma, G.; Wang, Y.; et al. Highly compact zinc metal anode and wide-temperature aqueous electrolyte enabled by acetamide additives for deep cycling Zn batteries. Adv. Funct. Mater. 2024, 34, 2313358.

149. Zhou, S.; Meng, X.; Chen, Y.; et al. Zinc-ion anchor induced highly reversible Zn anodes for high performance Zn-ion batteries. Angew. Chem. Int. Ed. 2024, 136, e202403050.

150. Huang, Y.; Zhuang, Y.; Guo, L.; et al. Stabilizing anode-electrolyte interface for dendrite-free Zn-ion batteries through orientational plating with zinc aspartate additive. Small 2024, 20, 2306211.

151. Zhang, Z.; Zhang, Y.; Ye, M.; et al. Lithium bis(oxalate)borate additive for self-repairing zincophilic solid electrolyte interphases towards ultrahigh-rate and ultra-stable zinc anodes. Angew. Chem. Int. Ed. 2023, 62, e202311032.

152. Cao, H.; Zhang, X.; Xie, B.; et al. Unraveling the solvation structure and electrolyte interface through carbonyl chemistry for durable and dendrite-free Zn anode. Adv. Funct. Mater. 2023, 33, 2305683.

153. Yu, Y.; Jia, X.; Zhang, Q.; et al. Achieving high-durability aqueous Zn-ion batteries enabled by reanimating inactive Zn on Zn anodes. J. Colloid. Interface. Sci. 2025, 677, 748-55.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/