REFERENCES

1. Shao, Y.; El-Kady, M. F.; Sun, J.; et al. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233-80.

2. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294-303.

3. Huang, Y.; Wang, Y.; Tang, C.; et al. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 2019, 31, 1803800.

4. Cano, Z. P.; Banham, D.; Ye, S.; et al. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy. 2018, 3, 279-89.

5. Borghei, M.; Lehtonen, J.; Liu, L.; Rojas, O. J. Advanced biomass-derived electrocatalysts for the oxygen reduction reaction. Adv. Mater. 2018, 30, 1703691.

6. Zhong, Y.; Xu, X.; Liu, P.; et al. A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy. Mater. 2020, 10, 2002992.

7. Wan, F.; Zhang, Y.; Zhang, L.; et al. Reversible oxygen redox chemistry in aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2019, 58, 7062-7.

8. Qian, J.; Wu, C.; Cao, Y.; et al. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy. Mater. 2018, 8, 1702619.

9. Li, J.; Chen, S.; Yang, N.; et al. Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem. Int. Ed. 2019, 131, 7109-13.

10. Wu, F.; Yang, H.; Bai, Y.; Wu, C. Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv. Mater. 2019, 31, 1806510.

11. Zhao, Z.; Zhao, J.; Hu, Z.; et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy. Environ. Sci. 2019, 12, 1938-49.

12. Lv, T.; Liu, M.; Zhu, D.; Gan, L.; Chen, T. Nanocarbon-based materials for flexible all-solid-state supercapacitors. Adv. Mater. 2018, 30, 1705489.

13. Da, Y.; Liu, J.; Zhou, L.; Zhu, X.; Chen, X.; Fu, L. Engineering 2D architectures toward high-performance micro-supercapacitors. Adv. Mater. 2019, 31, 1802793.

14. Ren, Q.; Wang, H.; Lu, X. F.; Tong, Y. X.; Li, G. R. Recent progress on MOF-derived heteroatom-doped carbon-based electrocatalysts for oxygen reduction reaction. Adv. Sci. 2018, 5, 1700515.

15. Qiu, H. J.; Du, P.; Hu, K.; et al. Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv. Mater. 2019, 31, 1900843.

16. Yang, Y.; Tang, Y.; Fang, G.; et al. Li + intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy. Environ. Sci. 2018, 11, 3157-62.

17. Lethien, C.; Le, B. J.; Brousse, T. Challenges and prospects of 3D micro-supercapacitors for powering the internet of things. Energy. Environ. Sci. 2019, 12, 96-115.

18. Guo, W.; Yu, C.; Li, S.; et al. Strategies and insights towards the intrinsic capacitive properties of MnO2 for supercapacitors: challenges and perspectives. Nano. Energy. 2019, 57, 459-72.

19. Li, B.; Zheng, J.; Zhang, H.; et al. Electrode materials, electrolytes, and challenges in nonaqueous lithium-ion capacitors. Adv. Mater. 2018, 30, 1705670.

20. Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-80.

21. Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 1-6.

22. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520-31.

23. Yang, C.; Chen, J.; Ji, X.; et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 2019, 569, 245-50.

24. Jiang, H.; Lee, P. S.; Li, C. 3D carbon based nanostructures for advanced supercapacitors. Energy. Environ. Sci. 2013, 6, 41-53.

25. Huang, J.; Sumpter, B.; Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 2008, 120, 530-4.

26. Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190-3.

27. Lukatskaya, M. R.; Dunn, B.; Gogotsi, Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647.

28. Dong, L.; Ma, X.; Li, Y.; et al. Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy. Storage. Mater. 2018, 13, 96-102.

29. Zuo, W.; Li, R.; Zhou, C.; Li, Y.; Xia, J.; Liu, J. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 2017, 4, 1600539.

30. Dong, L.; Yang, W.; Yang, W.; Li, Y.; Wu, W.; Wang, G. Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. J. Mater. Chem. A. 2019, 7, 13810-32.

31. Boruah, B. D. Roadmap of in-plane electrochemical capacitors and their advanced integrated systems. Energy. Storage. Mater. 2019, 21, 219-39.

32. Fu, W.; Zhao, E.; Ma, R.; et al. Anatase TiO2 confined in carbon nanopores for high-energy Li-ion hybrid supercapacitors operating at high rates and subzero temperatures. Adv. Energy. Mater. 2020, 10, 1902993.

33. Tie, D.; Huang, S.; Wang, J.; Ma, J.; Zhang, J.; Zhao, Y. Hybrid energy storage devices: Advanced electrode materials and matching principles. Energy. Storage. Mater. 2019, 21, 22-40.

34. Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Thirumalai, J. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renew. Sustain. Energy. Rev. 2019, 101, 123-45.

35. Chen, Q.; Jin, J.; Kou, Z.; et al. Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 Nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density. Small 2020, 16, 2000091.

36. Zhong, Y.; Xu, X.; Veder, J. P.; Shao, Z. Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries. iScience 2020, 23, 100943.

37. Liu, C.; Wu, J. C.; Zhou, H.; et al. Great enhancement of carbon energy storage through narrow pores and hydrogen-containing functional groups for aqueous Zn-ion hybrid supercapacitor. Molecules 2019, 24, 2589.

38. Ma, X.; Cheng, J.; Dong, L.; et al. Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy. Storage. Mater. 2019, 20, 335-42.

39. Yin, J.; Zhang, W.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Electrochemical zinc ion capacitors: fundamentals, materials, and systems. Adv. Energy. Mater. 2021, 11, 2100201.

40. Miao, L.; Lv, Y.; Zhu, D.; Li, L.; Gan, L.; Liu, M. Recent advances in zinc-ion hybrid energy storage: coloring high-power capacitors with battery-level energy. Chin. Chem. Lett. 2023, 34, 107784.

41. Li, Z.; Chen, D.; An, Y.; et al. Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy. Storage. Mater. 2020, 28, 307-14.

42. Wang, H.; Wang, M.; Tang, Y. A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy. Storage. Mater. 2018, 13, 1-7.

43. Zheng, Y.; Zhao, W.; Jia, D.; et al. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chem. Eng. J. 2020, 387, 124161.

44. Yu, P.; Zeng, Y.; Zeng, Y.; et al. Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochim. Acta. 2019, 327, 134999.

45. Tong, Y.; Wu, Y.; Liu, Z.; Yin, Y.; Sun, Y.; Li, H. Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries. Chin. Chem. Lett. 2023, 34, 107443.

46. Liu, X.; Tong, Y.; Wu, Y.; et al. Synergistically enhanced electrochemical performance using nitrogen, phosphorus and sulfur tri-doped hollow carbon for advanced potassium ion storage device. Chem. Eng. J. 2022, 431, 133986.

47. Liu, X.; Yu, X.; Tong, Y.; et al. Potassium storage in bismuth nanoparticles embedded in N-doped porous carbon facilitated by ether-based electrolyte. Chem. Eng. J. 2022, 446, 137329.

48. Devi, N.; Sahoo, S.; Kumar, R.; Singh, R. K. A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. Nanoscale 2021, 13, 11679-711.

49. Gautam, M.; Patodia, T.; Gupta, V.; Sachdev, K.; Kushwaha, H. S. Synthesis of high surface area activated carbon from banana peels biomass for zinc-ion hybrid super-capacitor. J. Energy. Storage. 2024, 102, 114088.

50. Lin, Y.; Li, F.; Zhang, Q.; Liu, G.; Xue, C. Controllable preparation of green biochar based high-performance supercapacitors. Ionics 2022, 28, 2525-61.

51. Li, Z.; Guo, D.; Liu, Y.; Wang, H.; Wang, L. Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chem. Eng. J. 2020, 397, 125418.

52. Zhou, Y.; Luo, J.; Shao, Y.; Xia, Z.; Shao, Y. Progress on carbonene-based materials for Zn-ion hybrid supercapacitors. New. Carbon. Mater. 2022, 37, 918-35.

53. Tian, Y.; Amal, R.; Wang, D. An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes. Front. Energy. Res. 2016, 4.

54. Huang, J.; Wang, Z.; Hou, M.; et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9, 2906.

55. Han, Q.; Chi, X.; Liu, Y.; et al. An inorganic salt reinforced Zn2+-conducting solid-state electrolyte for ultra-stable Zn metal batteries. J. Mater. Chem. A. 2019, 7, 22287-95.

56. Liu, Y.; Zhou, X.; Liu, R.; et al. Tailoring three-dimensional composite architecture for advanced zinc-ion batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 19191-9.

57. Yu, L.; Li, J.; Ahmad, N.; et al. Recent progress on carbon materials for emerging zinc-ion hybrid capacitors. J. Mater. Chem. A. 2024, 12, 9400-20.

58. Huang, J.; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y. Curvature effects in carbon nanomaterials: exohedral versus endohedral supercapacitors. J. Mater. Res. 2010, 25, 1525-31.

59. Wei, J.; Zhong, L.; Xia, H.; et al. Metal-ion oligomerization inside electrified carbon micropores and its effect on capacitive charge storage. Adv. Mater. 2022, 34, 2107439.

60. Liu, Q.; Zhang, H.; Xie, J.; Liu, X.; Lu, X. Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors. Carbon. Energy. 2020, 2, 521-39.

61. Jin, J.; Geng, X.; Chen, Q.; Ren, T. L. A better Zn-ion storage device: recent progress for zn-ion hybrid supercapacitors. Nanomicro. Lett. 2022, 14, 64.

62. Zheng, J.; Wu, Y.; Sun, Y.; Rong, J.; Li, H.; Niu, L. Advanced anode materials of potassium ion batteries: from zero dimension to three dimensions. Nanomicro. Lett. 2020, 13, 1-37.

63. Liu, T.; Jiang, C.; Cheng, B.; You, W.; Yu, J. Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J. Mater. Chem. A. 2017, 5, 21257-65.

64. Wang, J.; Liu, H.; Sun, H.; et al. One-pot synthesis of nitrogen-doped ordered mesoporous carbon spheres for high-rate and long-cycle life supercapacitors. Carbon 2018, 127, 85-92.

65. Liu, J.; Wickramaratne, N. P.; Qiao, S. Z.; Jaroniec, M. Molecular-based design and emerging applications of nanoporous carbon spheres. Nat. Mater. 2015, 14, 763-74.

66. Ding, J.; Zhang, H.; Zhou, H.; et al. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 2019, 31, 1900429.

67. Yu, X.; Li, W.; Hu, Y.; Ye, C.; Lu, A. Sculpturing solid polymer spheres into internal gridded hollow carbon spheres under controlled pyrolysis micro-environment. Nano. Res. 2021, 14, 1565-73.

68. Du, J.; Liu, L.; Yu, Y.; Lv, H.; Zhang, Y.; Chen, A. Confined pyrolysis for direct conversion of solid resin spheres into yolk-shell carbon spheres for supercapacitor. J. Mater. Chem. A. 2019, 7, 1038-44.

69. Zhang, Y.; Sun, K.; Liang, Z.; Wang, Y.; Ling, L. N-doped yolk-shell hollow carbon sphere wrapped with graphene as sulfur host for high-performance lithium-sulfur batteries. Appl. Surf. Sci. 2018, 427, 823-9.

70. Gong, J.; Liu, J.; Chen, X.; et al. One-pot synthesis of core/shell Co@C spheres by catalytic carbonization of mixed plastics and their application in the photo-degradation of Congo red. J. Mater. Chem. A. 2014, 2, 7461-70.

71. Chen, B.; Yang, L.; Bai, X.; et al. Heterostructure engineering of core-shelled Sb@Sb2O3 encapsulated in 3D N-doped carbon hollow-spheres for superior sodium/potassium storage. Small 2021, 17, 2006824.

72. Li, S.; Zhu, H.; Liu, Y.; et al. Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat. Commun. 2022, 13, 4911.

73. Park, S.; Seo, B.; Shin, D.; Kim, K.; Choi, W. Sodium-chloride-assisted synthesis of nitrogen-doped porous carbon shells via one-step combustion waves for supercapacitor electrodes. Chem. Eng. J. 2022, 433, 134486.

74. Zheng, J.; Wu, Y.; Tong, Y.; et al. High capacity and fast kinetics of potassium-ion batteries boosted by nitrogen-doped mesoporous carbon spheres. Nano-Micro. Lett. 2021, 13, 174.

75. Chen, S.; Yang, G.; Zhao, X.; et al. Hollow mesoporous carbon spheres for high performance symmetrical and aqueous zinc-ion hybrid supercapacitor. Front. Chem. 2020, 8, 663.

76. Du, J.; Han, Q.; Chen, Y.; Peng, M.; Xie, L.; Chen, A. Micro/meso-porous double-shell hollow carbon spheres through spatially confined pyrolysis for supercapacitors and zinc-ion capacitor. Angew. Chem. Int. Ed. 2024, 63, e202411066.

77. Li, J.; Zhang, J.; Yu, L.; et al. Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for aqueous zinc ion hybrid capacitors. Energy. Storage. Mater. 2021, 42, 705-14.

78. Song, Z.; Miao, L.; Ruhlmann, L.; et al. Lewis pair interaction self-assembly of carbon superstructures harvesting high-energy and ultralong-life zinc-ion storage. Adv. Funct. Mater. 2022, 32, 2208049.

79. Guo, M.; Wang, S.; Zhao, L.; Guo, Z. High-performance asymmetric supercapacitor based on flowery nickel-zinc phosphate microspheres with carbon dots. Electrochim. Acta. 2018, 292, 299-308.

80. Xiao, K.; Jiang, X.; Zeng, S.; et al. Porous structure-electrochemical performance relationship of carbonaceous electrode-based zinc ion capacitors. Adv. Funct. Mater. 2024, 34, 2405830.

81. Liu, C.; Wang, J.; Li, J.; et al. Controllable synthesis of functional hollow carbon nanostructures with dopamine as precursor for supercapacitors. ACS. Appl. Mater. Interfaces. 2015, 7, 18609-17.

82. Tschannen, C. D.; Frimmer, M.; Vasconcelos, T. L.; Shi, L.; Pichler, T.; Novotny, L. Tip-enhanced stokes-anti-stokes scattering from carbyne. Nano. Lett. 2022, 22, 3260-5.

83. Chen, X.; Zhang, H.; Gao, Y.; et al. Zinc-ion hybrid supercapacitors: design strategies, challenges, and perspectives. Carbon. Neutraliz. 2022, 1, 159-88.

84. Gao, T.; Yan, G.; Yang, X.; et al. Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. J. Energy. Chem. 2022, 71, 192-200.

85. Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-8.

86. Chen, C.; Zhang, Y.; Li, Y.; et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv. Energy. Mater. 2017, 7, 1700595.

87. Zhang, X.; Pei, Z.; Wang, C.; et al. Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 2019, 15, 1903817.

88. Lin, W.; Liu, S.; Gull, S.; et al. Nanoporous core-shell-structured multi-wall carbon nanotube/graphene oxide nanoribbons as cathodes and protection layer for aqueous zinc-ion capacitors: mechanism study of zinc dendrite suppression by in-situ transmission X-ray microscopy. J. Power. Sources. 2022, 541, 231627.

89. Wang, Q.; Yan, J.; Fan, Z. Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy. Environ. Sci. 2016, 9, 729-62.

90. Yang, B.; Zhao, W.; Gao, Z.; et al. Flexible CNT@Porous carbon sponge cathode with large mesopores for high-rate zinc-ion hybrid capacitors. Carbon 2024, 218, 118695.

91. Tang, X.; Zhou, H.; Cai, Z.; et al. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS. Nano. 2018, 12, 3502-11.

92. Tagliaferri, S.; Nagaraju, G.; Panagiotopoulos, A.; et al. Aqueous inks of pristine graphene for 3D printed microsupercapacitors with high capacitance. ACS. Nano. 2021, 15, 15342-53.

93. Yang, W.; Yang, J.; Byun, J. J.; et al. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 2019, 31, 1902725.

94. Fan, Z.; Jin, J.; Li, C.; et al. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS. Nano. 2021, 15, 3098-107.

95. Shen, K.; Ding, J.; Yang, S. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy. Mater. 2018, 8, 1800408.

96. Xu, N.; Yan, C.; He, W.; et al. Flexible electrode material of V2O5 carbon fiber cloth for enhanced zinc ion storage performance in flexible zinc-ion battery. J. Power. Sources. 2022, 533, 231358.

97. kumar T, Babu KJ, Yoo DJ, Kim AR, Gnana kumar G. Binder free and free-standing electrospun membrane architecture for sensitive and selective non-enzymatic glucose sensors. RSC. Adv. 2015, 5, 41457-67.

98. He, H.; Lian, J.; Chen, C.; Xiong, Q.; Zhang, M. Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid supercapacitors. Chem. Eng. J. 2021, 421, 129786.

99. Li, Y.; Yang, W.; Yang, W.; et al. Towards high-energy and anti-self-discharge Zn-Ion hybrid supercapacitors with new understanding of the electrochemistry. Nano-Micro. Lett. 2021, 13, 1-16.

100. Chen, S.; Ma, L.; Zhang, K.; Kamruzzaman, M.; Zhi, C.; Zapien, J. A. A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J. Mater. Chem. A. 2019, 7, 7784-90.

101. Zhou, H.; Liu, C.; Wu, J.; et al. Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. J. Mater. Chem. A. 2019, 7, 9708-15.

102. Jin, T.; Li, H.; Zhu, K.; Wang, P. F.; Liu, P.; Jiao, L. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342-77.

103. Zeng, J.; Dong, L.; Sun, L.; et al. Printable zinc-ion hybrid micro-capacitors for flexible self-powered integrated units. Nano-Micro. Lett. 2020, 13, 19.

104. He, H.; Lian, J.; Chen, C.; Xiong, Q.; Li, C. C.; Zhang, M. Enabling multi-chemisorption sites on carbon nanofibers cathodes by an in-situ exfoliation strategy for high-performance Zn-ion hybrid capacitors. Nano-Micro. Lett. 2022, 14, 106.

105. Zhang, W.; Yin, J.; Sun, M.; et al. Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries. Adv. Mater. 2020, 32, 2000732.

106. Yuan, F.; Shi, C.; Li, Q.; et al. Unraveling the effect of intrinsic carbon defects on potassium storage performance. Adv. Funct. Mater. 2022, 32, 2208966.

107. Zhang, Y.; Zhu, C.; Xiong, Y.; et al. Multi-channel hollow carbon nanofibers with graphene-like shell-structure and ultrahigh surface area for high-performance Zn-ion hybrid capacitors. Small. Methods. 2023, 7, 2300714.

108. Hou, L.; Cui, X.; Guan, B.; et al. Synthesis of a monolayer fullerene network. Nature 2022, 606, 507-10.

109. Wu, S.; Chen, Y.; Jiao, T.; et al. An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv. Energy. Mater. 2019, 9, 1902915.

110. Sun, G.; Xiao, Y.; Lu, B.; et al. Hybrid energy storage device: combination of zinc-ion supercapacitor and zinc-air battery in mild electrolyte. ACS. Appl. Mater. Interfaces. 2020, 12, 7239-48.

111. Liu, J.; Khanam, Z.; Ahmed, S.; Wang, T.; Wang, H.; Song, S. Flexible antifreeze Zn-ion hybrid supercapacitor based on gel electrolyte with graphene electrodes. ACS. Appl. Mater. Interfaces. 2021, 13, 16454-68.

112. Wang, H.; Ye, W.; Yang, Y.; Zhong, Y.; Hu, Y. Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano. Energy. 2021, 85, 105942.

113. Poudel, M. B.; Balanay, M. P.; Lohani, P. C.; Sekar, K.; Yoo, D. J. Atomic engineering of 3D self-supported bifunctional oxygen electrodes for rechargeable zinc-air batteries and fuel cell applications. Adv. Energy. Mater. 2024, 14, 2400347.

114. Jia, D.; Shen, Z.; Lv, Y.; et al. In situ electrochemical tuning of MIL-88B(V)@rGO into amorphous V2O5@rGO as cathode for high-performance aqueous zinc-ion battery. Adv. Funct. Mater. 2024, 34, 2308319.

115. Wu, Y.; Yuan, W.; Wang, P.; et al. Conformal engineering of both electrodes toward high-performance flexible quasi-solid-state Zn-ion micro-supercapacitors. Adv. Sci. 2024, 11, 2308021.

116. Yao, L.; Wu, Q.; Zhang, P.; et al. Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density. Adv. Mater. 2018, 30.

117. Tian, W.; Gao, Q.; Tan, Y.; Li, Z. Unusual interconnected graphitized carbon nanosheets as the electrode of high-rate ionic liquid-based supercapacitor. Carbon 2017, 119, 287-95.

118. Liu, S.; Zhou, J.; Song, H. 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy. Mater. 2018, 8, 1800569.

119. Yu, J.; Yu, C.; Guo, W.; et al. Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage. Nano. Energy. 2019, 64, 103921.

120. Cao, Y.; Tang, X.; Liu, M.; et al. Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode. Chem. Eng. J. 2022, 431, 133241.

121. Zhang, H.; Chen, Z.; Zhang, Y.; et al. Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor. J. Mater. Chem. A. 2021, 9, 16565-74.

122. Xu, Z.; Sun, Z.; Shan, J.; et al. O, N-codoped, self-activated, holey carbon sheets for low-cost and high-loading zinc-ion supercapacitors. Adv. Funct. Mater. 2024, 34, 2302818.

123. Wang, H.; Chen, X.; Zhang, J.; et al. Unveiling the cooperative roles of pyrrolic-N and carboxyl groups in biomass-derived hierarchical porous carbon nanosheets for high energy-power Zn-ion hybrid supercapacitors. Appl. Surf. Sci. 2022, 598, 153819.

124. Panmand, R. P.; Patil, P.; Sethi, Y.; et al. Unique perforated graphene derived from Bougainvillea flowers for high-power supercapacitors: a green approach. Nanoscale 2017, 9, 4801-9.

125. Han, X.; Funk, M. R.; Shen, F.; et al. Scalable holey graphene synthesis and dense electrode fabrication toward high-performance ultracapacitors. ACS. Nano. 2014, 8, 8255-65.

126. Liu, P.; Kong, F.; Tang, H.; et al. Hierarchically porous carbon nanosheets derived from bougainvillea petals with “pores-on-surface” structure for ultrahigh performance Zinc-ions hybrid capacitors. Chem. Eng. J. 2024, 491, 151944.

127. Zhang, G.; Song, Y.; Zhang, H.; Xu, J.; Duan, H.; Liu, J. Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv. Funct. Mater. 2016, 26, 3012-20.

128. Pan, L.; Wang, Y.; Hu, H.; et al. 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon 2018, 134, 345-53.

129. Fleischmann, S.; Zhang, Y.; Wang, X.; et al. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nat. Energy. 2022, 7, 222-8.

130. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760-3.

131. Zeng, S.; Shi, X.; Zheng, D.; et al. Molten salt assisted synthesis of pitch derived carbon for Zn ion hybrid supercapacitors. Mater. Res. Bull. 2021, 135, 111134.

132. Zhang, X.; Tian, X.; Song, Y.; Wu, J.; Yang, T.; Liu, Z. High-performance activated carbon cathodes from green cokes for Zn-ion hybrid supercapacitors. Fuel 2022, 310, 122485.

133. Fleischmann, S.; Mitchell, J. B.; Wang, R.; et al. Pseudocapacitance: from fundamental understanding to high power energy storage materials. Chem. Rev. 2020, 120, 6738-82.

134. Shi, X.; Xie, J.; Yang, F.; et al. Compacting Electric double layer enables carbon electrode with ultrahigh Zn ion storage capability. Angew. Chem. Int. Ed. 2022, 61, e202214773.

135. Zhang, H.; Liu, Q.; Fang, Y.; et al. Boosting Zn-ion energy storage capability of hierarchically porous carbon by promoting chemical adsorption. Adv. Mater. 2019, 31, 1904948.

136. Chen, H.; Lu, X.; Wang, H.; Sui, D.; Meng, F.; Qi, W. Controllable fabrication of nitrogen-doped porous nanocarbons for high-performance supercapacitors via supramolecular modulation strategy. J. Energy. Chem. 2020, 49, 348-57.

137. Peng, X.; Zhang, L.; Chen, Z.; et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 2019, 31, 1900341.

138. Deng, J.; Peng, Z.; Xiao, Z.; Song, S.; Dai, H.; Li, L. Porous doped carbons from anthracite for high-performance supercapacitors. Appl. Sci. 2020, 10, 1081.

139. Li, H.; Su, P.; Liao, Q.; et al. Olive leaves-derived hierarchical porous carbon as cathode material for anti-self-discharge zinc-ion hybrid capacitor. Small 2023, 19, 2304172.

140. Chen, G.; Chen, S.; Wu, X.; et al. Ammonium persulfate assisted synthesis of ant-nest-like hierarchical porous carbons derived from chitosan for high-performance supercapacitors and zinc-ion hybrid capacitors. J. Mater. Chem. A. 2024, 12, 11920-35.

141. Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS. Nano. 2010, 4, 4324-30.

142. Cong, H. P.; Ren, X. C.; Wang, P.; Yu, S. H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS. Nano. 2012, 6, 2693-703.

143. Wu, Z. S.; Sun, Y.; Tan, Y. Z.; Yang, S.; Feng, X.; Müllen, K. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 2012, 134, 19532-5.

144. Chen, Y.; Kone, I.; Gong, Y.; et al. Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries. Carbon 2019, 152, 325-34.

145. Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 2008, 130, 2730-1.

146. Xu, X.; Zhao, X.; Yang, Z.; et al. High-density three-dimensional graphene cathode with a tailored pore structure for high volumetric capacity zinc-ion storage. Carbon 2022, 186, 624-31.

147. Zou, T.; Ding, H.; Qian, C.; et al. Three-dimensional graphene-wrapped CoSe2 nanowires for high-performance asymmetric supercapacitors. ACS. Appl. Nano. Mater. 2023, 6, 10466-76.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/