REFERENCES

1. Xu, C.; Behrens, P.; Gasper, P.; et al. Electric vehicle batteries alone could satisfy short-term grid storage demand by as early as 2030. Nat. Commun. 2023, 14, 119.

2. Degen, F.; Winter, M.; Bendig, D.; Tübke, J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy. 2023, 8, 1284-95.

3. Liu, Y.; Shi, H.; Wu, Z. Recent status, key strategies and challenging perspectives of fast-charging graphite anodes for lithium-ion batteries. Energy. Environ. Sci. 2023, 16, 4834-71.

4. Asenbauer, J.; Eisenmann, T.; Kuenzel, M.; Kazzazi, A.; Chen, Z.; Bresser, D. The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy. Fuels. 2020, 4, 5387-416.

5. Sung, J.; Kim, N.; Ma, J.; et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack. Nat. Energy. 2021, 6, 1164-75.

6. Kim, N.; Kim, Y.; Sung, J.; Cho, J. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy. 2023, 8, 921-33.

7. Kim, M.; Harvey, S. P.; Huey, Z.; et al. A new mechanism of stabilizing SEI of Si anode driven by crosstalk behavior and its potential for developing high performance Si-based batteries. Energy. Storage. Mater. 2023, 55, 436-44.

8. Lee, Y.; Lee, T.; Hong, J.; et al. Stress relief principle of micron-sized anodes with large volume variation for practical high-energy lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2004841.

9. Li, P.; Hwang, J. Y.; Sun, Y. K. Nano/Microstructured silicon-graphite composite anode for high-energy-density Li-ion battery. ACS. Nano. 2019, 13, 2624-33.

10. Zhang, X.; Wang, D.; Qiu, X.; et al. Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation. Nat. Commun. 2020, 11, 3826.

11. Bärmann, P.; Diehl, M.; Göbel, L.; et al. Impact of the silicon particle size on the pre-lithiation behavior of silicon/carbon composite materials for lithium ion batteries. J. Power. Sources. 2020, 464, 228224.

12. Kim, B.; Ahn, J.; Oh, Y.; et al. Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries. J. Mater. Chem. A. 2018, 6, 3028-37.

13. Yang, Y.; Yuan, W.; Kang, W.; et al. A review on silicon nanowire-based anodes for next-generation high-performance lithium-ion batteries from a material-based perspective. Sustain. Energy. Fuels. 2020, 4, 1577-94.

14. Ma, L.; Fu, X.; Zhao, F.; et al. Microsized silicon/carbon composite anodes through in situ polymerization of phenolic resin onto silicon microparticles for high-performance lithium-ion batteries. ACS. Appl. Energy. Mater. 2023, 6, 4989-99.

15. Shi, H.; Zhang, W.; Wang, J.; et al. Scalable synthesis of a porous structure silicon/carbon composite decorated with copper as an anode for lithium ion batteries. Appl. Sur. Sci. 2023, 620, 156843.

16. Son, Y.; Ma, J.; Kim, N.; et al. Quantification of pseudocapacitive contribution in nanocage-shaped silicon-carbon composite anode. Adv. Energy. Mater. 2019, 9, 1803480.

17. Ryu, J.; Bok, T.; Joo, S. H.; et al. Electrochemical scissoring of disordered silicon-carbon composites for high-performance lithium storage. Energy. Storage. Mater. 2021, 36, 139-46.

18. Li, X.; Zhang, W.; Wang, X.; et al. A stable core-shell Si@SiOx/C anode produced via the spray and pyrolysis method for lithium-ion batteries. Front. Chem. 2022, 10, 857036.

19. Yu, C.; Chen, X.; Xiao, Z.; et al. Silicon carbide as a protective layer to stabilize Si-based anodes by inhibiting chemical reactions. Nano. Lett. 2019, 19, 5124-32.

20. Liu, M.; Gao, H.; Hu, G.; Zhu, K.; Huang, H. Facile preparation of core-shell Si@Li4Ti5O12 nanocomposite as large-capacity lithium-ion battery anode. J. Energy. Chem. 2020, 40, 89-98.

21. Casino, S.; Heidrich, B.; Makvandi, A.; et al. Al2O3 protective coating on silicon thin film electrodes and its effect on the aging mechanisms of lithium metal and lithium ion cells. J. Energy. Storage. 2021, 44, 103479.

22. Ngo, D. T.; Le, H. T. T.; Pham, X. M.; Park, C. N.; Park, C. J. Facile Synthesis of Si@SiC composite as an anode material for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 32790-800.

23. Yu, C.; Lin, X.; Chen, X.; et al. Suppressing the side reaction by a selective blocking layer to enhance the performance of Si-based anodes. Nano. Lett. 2020, 20, 5176-84.

24. Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano. Lett. 2012, 12, 3315-21.

25. Luo, H.; Zhang, X.; Xu, C.; et al. Constructing a yolk-shell structure SiOx/C@C composite for long-life lithium-ion batteries. ACS. Appl. Energy. Mater. 2022, 5, 8982-9.

26. Wu, Z.; Luo, J.; Peng, J.; Liu, H.; Chang, B.; Wang, X. Rational architecture design of yolk/double-shells Si-based anode material with double buffering carbon layers for high performance lithium-ion battery. Green. Energy. Environ. 2021, 6, 517-27.

27. Wang, H.; Que, X.; Liu, Y.; et al. Facile synthesis of yolk-shell structured SiOx/C@Void@C nanospheres as anode for lithium-ion batteries. J. Alloys. Compd. 2021, 874, 159913.

28. Du, H.; Yu, R.; Tan, X.; et al. Encapsulating Si nanoparticles in multi-shell hollow spheres: an effective approach to boost the cyclability. Sci. China. Mater. 2023, 66, 2199-206.

29. Yao, Y.; Xu, X.; Zhao, H.; Tong, Y.; Li, Y. Multilayer Si@SiOx@void@C anode materials synthesized via simultaneously carbonization and redox for Li-ion batteries. Ceram. Int. 2022, 48, 12217-27.

30. Zhang, L.; Wang, C.; Dou, Y.; et al. A yolk-shell structured silicon anode with superior conductivity and high tap density for full lithium-ion batteries. Angew. Chem. Int. Ed. 2019, 58, 8824-8.

31. Son, Y.; Kim, N.; Lee, T.; et al. Calendering-compatible macroporous architecture for silicon-graphite composite toward high-energy lithium-ion batteries. Adv. Mater. 2020, 32, e2003286.

32. Park, S.; Sung, J.; Chae, S.; et al. Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS. Nano. 2020, 14, 11548-57.

33. Chae, S.; Park, S.; Ahn, K.; et al. Gas phase synthesis of amorphous silicon nitride nanoparticles for high-energy LIBs. Energy. Environ. Sci. 2020, 13, 1212-21.

34. Ko, M.; Chae, S.; Ma, J.; et al. Author correction: scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat. Energy. 2020, 5, 344-344.

35. Lee, P. K.; Tan, T.; Wang, S.; Kang, W.; Lee, C. S.; Yu, D. Y. W. Robust micron-sized silicon secondary particles anchored by polyimide as high-capacity, high-stability Li-ion battery anode. ACS. Appl. Mater. Interfaces. 2018, 10, 34132-9.

36. Chae, S.; Ko, M.; Kim, K.; Ahn, K.; Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 2017, 1, 47-60.

37. Lu, Y.; Chang, P.; Wang, L.; Nzabahimana, J.; Hu, X. Yolk-shell Si/SiOx@Void@C composites as anode materials for lithium-ion batteries. Funct. Mater. Lett. 2019, 12, 1850094.

38. Xiao, Z.; Yu, C.; Lin, X.; et al. Intrinsic blocking effect of SiOx on the side reaction with a LiPF6-based electrolyte. Catal. Today. 2021, 364, 61-6.

39. Wu, W.; Wang, M.; Wang, J.; Wang, C.; Deng, Y. Green design of Si/SiO2/C composites as high-performance anodes for lithium-ion batteries. ACS. Appl. Energy. Mater. 2020, 3, 3884-92.

40. Wu, H.; Zheng, L.; Du, N.; et al. Constructing densely compacted graphite/Si/SiO2 ternary composite anodes for high-performance Li-ion batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 22323-31.

41. Wei, H.; Niu, L.; Zhou, X.; et al. Nanostructured SiOx/Si composite confined by carbon layer as anode materials for high-performance lithium-ion battery. J. Alloys. Compd. 2023, 969, 172462.

42. Huang, W.; Wang, J.; Braun, M. R.; et al. Dynamic structure and chemistry of the silicon solid-electrolyte interphase visualized by cryogenic electron microscopy. Matter 2019, 1, 1232-45.

43. Huang, X.; Guo, R.; Lin, Y.; Cao, Y.; Wu, J. Si/SiC/C in-situ composite microspindles as anode materials for lithium-ion batteries. Electrochim. Acta. 2022, 422, 140546.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/