REFERENCES

1. Manjakkal, L.; Pullanchiyodan, A.; Yogeswaran, N.; Hosseini, E. S.; Dahiya, R. A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte. Adv. Mater. 2020, 32, e1907254.

2. Lu, Y.; Yang, G.; Wang, S.; et al. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 2024, 7, 51-65.

3. Ok, J.; Park, S.; Jung, Y. H.; Kim, T. I. Wearable and implantable cortisol-sensing electronics for stress monitoring. Adv. Mater. 2024, 36, e2211595.

4. Zhang, B.; Cai, X.; Li, J.; et al. Biocompatible and stable quasi-solid-state zinc-ion batteries for real-time responsive wireless wearable electronics. Energy. Environ. Sci. 2024, 17, 3878-87.

5. Zhang, P.; Zhu, B.; Du, P.; Travas-Sejdic, J. Electrochemical and electrical biosensors for wearable and implantable electronics based on conducting polymers and carbon-based materials. Chem. Rev. 2024, 124, 722-67.

6. Sim, H. J.; Choi, C.; Lee, D. Y.; et al. Biomolecule based fiber supercapacitor for implantable device. Nano. Energy. 2018, 47, 385-92.

7. Chen, X.; Villa, N. S.; Zhuang, Y.; et al. Stretchable Supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv. Energy. Mater. 2020, 10, 1902769.

8. Huang, X.; Wang, L.; Wang, H.; et al. Materials strategies and device architectures of emerging power supply devices for implantable bioelectronics. Small 2020, 16, 1902827.

9. Inman, A.; Hryhorchuk, T.; Bi, L.; et al. Wearable energy storage with MXene textile supercapacitors for real world use. J. Mater. Chem. A. 2023, 11, 3514-23.

10. Chao, Y.; Han, Y.; Chen, Z.; et al. Multiscale structural design of 2D nanomaterials-based flexible electrodes for wearable energy storage applications. Adv. Sci. 2024, 11, e2305558.

11. Gao, T.; Yan, G.; Yang, X.; et al. Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. J. Energy. Chem. 2022, 71, 192-200.

12. Guan, T.; Li, Z.; Qiu, D.; et al. Recent progress of graphene fiber/fabric supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications. Adv. Fiber. Mater. 2023, 5, 896-927.

13. Zhang, X.; Hu, L.; Zhou, K.; et al. Fully printed and sweat-activated micro-batteries with lattice-match Zn/MoS2 anode for long-duration wearables. Adv. Mater. 2024, 36, 2412844.

14. Rafieerad, A.; Amiri, A.; Sequiera, G. L.; et al. Development of fluorine-free tantalum carbide MXene hybrid structure as a biocompatible material for supercapacitor electrodes. Adv. Funct. Mater. 2021, 31, 2100015.

15. Gao, D.; Luo, Z.; Liu, C.; Fan, S. A survey of hybrid energy devices based on supercapacitors. Green. Energy. Environ. 2023, 8, 972-88.

16. Lin, X.; Li, X.; Yang, N.; et al. Design and construction of 1D/2D/3D fabric-based wearable micro-supercapacitors. J. Power. Sources. 2023, 560, 232712.

17. Shin, S.; Gittins, J. W.; Balhatchet, C. J.; Walsh, A.; Forse, A. C. Metal-organic framework supercapacitors: challenges and opportunities. Adv. Funct. Mater. 2024, 34, 2308497.

18. Huang, J.; Xie, Y.; You, Y.; et al. Rational design of electrode materials for advanced supercapacitors: from lab research to commercialization. Adv. Funct. Mater. 2023, 33, 2213095.

19. Li, L.; Hu, C.; Liu, W.; Shen, G. Progress and perspectives in designing flexible microsupercapacitors. Micromachines 2021, 12, 1305.

20. Chodankar, N. R.; Karekar, S. V.; Safarkhani, M.; et al. Revolutionizing implantable technology: biocompatible supercapacitors as the future of power sources. Adv. Funct. Mater. 2024, 34, 2406819.

21. Hepel, M.; Petrukhina, M. A.; Samuilov, V. High power-density WO3-x-grafted corannulene-modified graphene nanostructures for micro-supercapacitors. J. Electroanal. Chem. 2023, 928, 116990.

22. Sun, N.; Zhou, D.; Liu, W.; et al. Significant enhancement in the power density of micro-supercapacitors by the in situ growth of TiN/TiOxNy-laminated films. ACS. Sustainable. Chem. Eng. 2022, 10, 3614-22.

23. Xu, S.; Zhang, Y.; Cho, J.; et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 2013, 4, 1543.

24. Yun, J.; Song, C.; Lee, H.; et al. Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano. Energy. 2018, 49, 644-54.

25. Kim, D.; Kim, D.; Lee, H.; et al. Body-attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices. Adv. Mater. 2016, 28, 748-56.

26. Xu, S.; Shi, X.; Dargusch, M.; Di, C.; Zou, J.; Chen, Z. Conducting polymer-based flexible thermoelectric materials and devices: from mechanisms to applications. Prog. Mater. Sci. 2021, 121, 100840.

27. Keum, K.; Kim, J. W.; Hong, S. Y.; Son, J. G.; Lee, S. S.; Ha, J. S. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv. Mater. 2020, 32, e2002180.

28. Xu, M.; Liu, Y.; Yang, K.; et al. Minimally invasive power sources for implantable electronics. Exploration 2024, 4, 20220106.

29. An, T.; Cheng, W. Recent progress in stretchable supercapacitors. J. Mater. Chem. A. 2018, 6, 15478-94.

30. Deng, J.; Yuk, H.; Wu, J.; et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 2021, 20, 229-36.

31. Feron, K.; Lim, R.; Sherwood, C.; Keynes, A.; Brichta, A.; Dastoor, P. C. Organic bioelectronics: materials and biocompatibility. Int. J. Mol. Sci. 2018, 19, 2382.

32. De Jong WH, Carraway JW, Geertsma RE. In vivo and in vitro testing for the biological safety evaluation of biomaterials and medical devices. In: Boutrand JP, editor. Biocompatibility and performance of medical devices. Elsevier; 2020. pp. 123-66.

33. Albert, D. Material and chemical characterization for the biological evaluation of medical device biocompatibility. In: Boutrand JP, editor. Biocompatibility and performance of medical devices. Elsevier; 2012. pp. 65-94.

34. Piersma, A. H.; Bosgra, S.; van, D. M. B.; et al. Evaluation of an alternative in vitro test battery for detecting reproductive toxicants. Reprod. Toxicol. 2013, 38, 53-64.

35. Kirkland, D.; Aardema, M.; Henderson, L.; Müller, L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens I. Sensitivity, specificity and relative predictivity. Mutat. Res. 2005, 584, 1-256.

36. Chae, J. S.; Park, S. K.; Roh, K. C.; Park, H. S. Electrode materials for biomedical patchable and implantable energy storage devices. Energy. Storage. Mater. 2020, 24, 113-28.

37. Sheng, H.; Zhang, X.; Liang, J.; et al. Recent advances of energy solutions for implantable bioelectronics. Adv. Healthc. Mater. 2021, 10, e2100199.

38. Guo, X.; Dong, Y.; Qin, J.; Zhang, Q.; Zhu, H.; Zhu, S. Fracture-resistant stretchable materials: an overview from methodology to applications. Adv. Mater. 2025, 37, e2312816.

39. Huang, Y.; Zhong, M.; Shi, F.; et al. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew. Chem. Int. Ed. 2017, 56, 9141-5.

40. Yu, M.; Peng, Y.; Wang, X.; Ran, F. Emerging design strategies toward developing next-generation implantable batteries and supercapacitors. Adv. Funct. Mater. 2023, 33, 2301877.

41. Li, Y.; Li, N.; Liu, W.; et al. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 2023, 14, 4488.

42. Li, D.; Qiu, J.; Zhu, Y.; et al. A biocompatible, thin, wet-adhesive, and high-performance zinc-ion hybrid supercapacitor as an implantable power source for biomedical application. Nano. Energy. 2024, 132, 110345.

43. Chen, L.; Wang, D.; Peng, F.; et al. Nanostructural surfaces with different elastic moduli regulate the immune response by stretching macrophages. Nano. Lett. 2019, 19, 3480-9.

44. Yuan, M.; Luo, F.; Wang, Z.; Yu, J.; Li, H.; Chen, X. Smart wearable band-aid integrated with high-performance micro-supercapacitor, humidity and pressure sensor for multifunctional monitoring. Chem. Eng. J. 2023, 453, 139898.

45. Lee, Y.; Bandari, V. K.; Li, Z.; et al. Nano-biosupercapacitors enable autarkic sensor operation in blood. Nat. Commun. 2021, 12, 4967.

46. Zhu, R. C. Toward fully processable micro-supercapacitors. Joule 2021, 5, 2257-8.

47. Wang, Y.; Zhang, Y.; Wang, G.; et al. Direct graphene-carbon nanotube composite ink writing all-solid-state flexible microsupercapacitors with high areal energy density. Adv. Funct. Mater. 2020, 30, 1907284.

48. Bai, C.; Zhang, J.; Chen, R.; et al. A 4 V planar Li-ion micro-supercapacitor with ultrahigh energy density. ACS. Energy. Lett. 2024, 9, 410-8.

49. Zheng, S.; Shi, X.; Das, P.; Wu, Z. S.; Bao, X. The road towards planar microbatteries and micro-supercapacitors: from 2D to 3D device geometries. Adv. Mater. 2019, 31, e1900583.

50. Jiao, Y.; Wang, Y.; Xiao, H.; et al. All-solid-state wire-shaped micro-supercapacitors: a microfluidic approach to core-shell structured bacterial cellulose-GN/PPy fibers. Carbohydr. Polym. 2025, 349, 122996.

51. Wang, M.; Feng, S.; Bai, C.; et al. Ultrastretchable MXene microsupercapacitors. Small 2023, 19, e2300386.

52. Liu, H.; Zhang, G.; Zheng, X.; Chen, F.; Duan, H. Emerging miniaturized energy storage devices for microsystem applications: from design to integration. Int. J. Extrem. Manuf. 2020, 2, 042001.

53. Hu, J.; Luo, J.; Xu, Z.; et al. Hybrid printed three-dimensionally integrated micro-supercapacitors for compact on-chip application. Applied. Physics. Reviews. 2021, 8, 011401.

54. Cha, G. D.; Kang, D.; Lee, J.; Kim, D. H. Bioresorbable electronic implants: history, materials, fabrication, devices, and clinical applications. Adv. Healthc. Mater. 2019, 8, e1801660.

55. Piro, B.; Tran, H. V.; Thu, V. T. Sensors made of natural renewable materials: efficiency, recyclability or biodegradability-the green electronics. Sensors 2020, 20, 5898.

56. Liu, Y.; Zheng, Y.; Hayes, B. Degradable, absorbable or resorbable-what is the best grammatical modifier for an implant that is eventually absorbed by the body? Sci. China. Mater. 2017, 60, 377-91.

57. Yu, X.; Shou, W.; Mahajan, B. K.; Huang, X.; Pan, H. Materials, processes, and facile manufacturing for bioresorbable electronics: a review. Adv. Mater. 2018, 30, e1707624.

58. Khodaei, T.; Schmitzer, E.; Suresh, A. P.; Acharya, A. P. Immune response differences in degradable and non-degradable alloy implants. Bioact. Mater. 2023, 24, 153-70.

59. Lan, L.; Ping, J.; Xiong, J.; Ying, Y. Sustainable natural bio-origin materials for future flexible devices. Adv. Sci. 2022, 9, e2200560.

60. Sheng, H.; Zhou, J.; Li, B.; et al. A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. Sci. Adv. 2021, 7.

61. Lee, G.; Kang, S.; Won, S. M.; et al. Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv. Energy. Mater. 2017, 7, 1700157.

62. Yin, L.; Huang, X.; Xu, H.; et al. Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 2014, 26, 3879-84.

63. Hwang, S. W.; Song, J. K.; Huang, X.; et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv. Mater. 2014, 26, 3905-11.

64. Hwang, S. W.; Lee, C. H.; Cheng, H.; et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano. Lett. 2015, 15, 2801-8.

65. Zhong, M.; Zhang, M.; Li, X. Carbon nanomaterials and their composites for supercapacitors. Carbon. Energy. 2022, 4, 950-85.

66. Wang, Y.; Xu, T.; Liu, K.; Zhang, M.; Cai, X.; Si, C. Biomass-based materials for advanced supercapacitor: principles, progress, and perspectives. Aggregate 2024, 5, e428.

67. Li, K.; Li, J.; Zhu, Q.; Xu, B. Three-dimensional MXenes for supercapacitors: a review. Small. Methods. 2022, 6, e2101537.

68. Girirajan, M.; Bojarajan, A. K.; Pulidindi, I. N.; Hui, K. N.; Sangaraju, S. An insight into the nanoarchitecture of electrode materials on the performance of supercapacitors. Coord. Chem. Rev. 2024, 518, 216080.

69. Jaleh, B.; Nasrollahzadeh, M.; Eslamipanah, M.; et al. The role of carbon-based materials for fuel cells performance. Carbon 2022, 198, 301-52.

70. Mokhtar, N. A. I. M.; Zawawi, R. M.; Khairul, W. M.; Yusof, N. A. Electrochemical and optical sensors made of composites of metal-organic frameworks and carbon-based materials. A review. Environ. Chem. Lett. 2022, 20, 3099-131.

71. Zhang, G.; Liu, X.; Wang, L.; Fu, H. Recent advances of biomass derived carbon-based materials for efficient electrochemical energy devices. J. Mater. Chem. A. 2022, 10, 9277-307.

72. He, S.; Hu, Y.; Wan, J.; et al. Biocompatible carbon nanotube fibers for implantable supercapacitors. Carbon 2017, 122, 162-7.

73. Chae, J. S.; Lee, H.; Kim, S.; et al. A durable high-energy implantable energy storage system with binder-free electrodes useable in body fluids. J. Mater. Chem. A. 2022, 10, 4611-20.

74. Kim, M. J.; Kim, M.; Sohn, W. B.; Kang, J.; Kim, W.; Kang, J. G. Ultrahigh energy density and ultrafast response in symmetric microsupercapacitors with 3D bicontinuous pseudocapacitance. Adv. Energy. Mater. 2024, 14, 2402322.

75. Ding, W.; Xiao, L.; Wang, Y.; Lv, L. Redox-active “structural pillar” molecular doping strategy towards high-performance polyaniline-based flexible supercapacitors. Chem. Eng. J. 2024, 495, 153505.

76. Gan, Z.; Yin, J.; Xu, X.; Cheng, Y.; Yu, T. Nanostructure and advanced energy storage: elaborate material designs lead to high-rate pseudocapacitive ion storage. ACS. Nano. 2022, 16, 5131-52.

77. Gao, Y.; Yin, J.; Xu, X.; Cheng, Y. Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. J. Mater. Chem. A. 2022, 10, 9773-87.

78. Ortiz-quiñonez, J.; Das, S.; Pal, U. Catalytic and pseudocapacitive energy storage performance of metal (Co, Ni, Cu and Mn) ferrite nanostructures and nanocomposites. Prog. Mater. Sci. 2022, 130, 100995.

79. Wan, Y.; Cao, T.; Li, Y.; et al. Laser thermal shock enabling ultrafastspin regulation of MnO2 for robust pseudocapacitive energy storage. Adv. Funct. Mater. 2024, 34, 2311157.

80. Ge, R.; Chen, L. Ultra-small RuO2 nanoparticles supported on carbon cloth as a high-performance pseudocapacitive electrode. Adv. Compos. Hybrid. Mater. 2022, 5, 696-703.

81. Alam, A.; Kim, K.; Jo, H.; et al. Ultrahigh-energy-density supercapacitors based on all-pseudocapacitive binary metal sulfide-MXene composites. J. Mater. Chem. A. 2024, 12, 13882-9.

82. Wu, Z.; Li, H.; Li, H.; et al. Direct growth of porous vanadium nitride on carbon cloth with commercial-level mass loading for solid-state supercapacitors. Chem. Eng. J. 2022, 444, 136597.

83. Mahadik, S.; Surendran, S.; Kim, J. Y.; et al. Syntheses and electronic structure engineering of transition metal nitrides for supercapacitor applications. J. Mater. Chem. A. 2022, 10, 14655-73.

84. Selvam, S.; Jo, Y.; Chan, A.; et al. Biocompatible supercapacitor engineered from marine collagen impregnated with polypyrrole and tungsten disulfide. J. Energy. Storage. 2024, 96, 112735.

85. Liu, Y.; Zhou, H.; Zhou, W.; et al. Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@rGO/Mxenes electrode and hydrogel electrolyte. Adv. Energy. Mater. 2021, 11, 2101329.

86. Wang, X.; Zhang, W.; Zhou, Q.; Ran, F. Integrating supercapacitor with sodium hyaluronate based hydrogel as a novel all-in-one wound dressing: self-powered electronic stimulation. Chem. Eng. J. 2023, 452, 139491.

87. Niska, K.; Zielinska, E.; Radomski, M. W.; Inkielewicz-Stepniak, I. Metal nanoparticles in dermatology and cosmetology: interactions with human skin cells. Chem. Biol. Interact. 2018, 295, 38-51.

88. Zhu, S.; Li, Y.; Zhu, H.; Ni, J.; Li, Y. Pencil-drawing skin-mountable micro-supercapacitors. Small 2019, 15, e1804037.

89. Kumar, N.; Ginting, R. T.; Kang, J. Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT:PSS/reduced-graphene oxide. Electrochim. Acta. 2018, 270, 37-47.

90. Zhang, A.; Mandeville, E. T.; Xu, L.; Stary, C. M.; Lo, E. H.; Lieber, C. M. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 2023, 381, 306-12.

91. Selvaraj, M.; Balamoorthy, E.; Manivasagam, T. G. Biomass derived nitrogen-doped activated carbon and novel biocompatible gel electrolytes for solid-state supercapacitor applications. J. Energy. Storage. 2023, 72, 108543.

92. Wu, L.; Shi, X.; Wu, Z. Recent Advancements and perspectives of biodegradable polymers for supercapacitors. Adv. Funct. Mater. 2023, 33, 2211454.

93. Wang, C.; Xia, K.; Zhang, Y.; Kaplan, D. L. Silk-based advanced materials for soft electronics. Acc. Chem. Res. 2019, 52, 2916-27.

94. Roy, B. K.; Tahmid, I.; Rashid, T. U. Chitosan-based materials for supercapacitor applications: a review. J. Mater. Chem. A. 2021, 9, 17592-642.

95. Jiang, C.; Gao, M.; Zhang, S.; et al. Chitosan/graphene oxide hybrid hydrogel electrode with porous network boosting ultrahigh energy density flexible supercapacitor. Int. J. Biol. Macromol. 2023, 225, 1437-48.

96. Hsu, S. H.; Hung, K. C.; Chen, C. W. Biodegradable polymer scaffolds. J. Mater. Chem. B. 2016, 4, 7493-505.

97. Liu, H.; Xu, T.; Cai, C.; et al. Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose‐based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 2022, 32, 2113082.

98. Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mater. 2021, 33, e2000619.

99. Pilipchuk, S. P.; Monje, A.; Jiao, Y.; et al. Integration of 3D printed and micropatterned polycaprolactone scaffolds for guidance of oriented collagenous tissue formation in vivo. Adv. Healthc. Mater. 2016, 5, 676-87.

100. Lee, H.; Lee, G.; Yun, J.; et al. Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor. Chem. Eng. J. 2019, 366, 62-71.

101. Chae, J. S.; Heo, N.; Kwak, C. H.; et al. A biocompatible implant electrode capable of operating in body fluids for energy storage devices. Nano. Energy. 2017, 34, 86-92.

102. Singh, R.; Bathaei, M. J.; Istif, E.; Beker, L. A review of bioresorbable implantable medical devices: materials, fabrication, and implementation. Adv. Healthc. Mater. 2020, 9, e2000790.

103. Kang, S. K.; Murphy, R. K.; Hwang, S. W.; et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71-6.

104. Seok, S. Polymer-based biocompatible packaging for implantable devices: packaging method, materials, and reliability simulation. Micromachines 2021, 12, 1020.

105. Shi, Y.; Ren, M.; Sun, A.; Johnston, E. D.; Allen, M. G.; Pikul, J. H. Stretchable metal‐air batteries through sliding electrodes. Adv. Funct. Mater. 2024, 34, 2314783.

106. Hou, S.; Chen, C.; Bai, L.; Yu, J.; Cheng, Y.; Huang, W. Stretchable electronics with strain-resistive performance. Small 2024, 20, e2306749.

107. Gao, X.; Guo, C.; Xu, S.; Song, H. Stretchable ionic conductive gels for wearable human-activity detection. Chem. Eng. J. 2024, 489, 151231.

108. Liang, X.; Sun, Q.; Zhang, X.; et al. Advanced stretchable aerogels and foams for flexible electronics and beyond. Adv. Funct. Mater. 2024, 34, 2408707.

109. Jost, K.; Stenger, D.; Perez, C. R.; et al. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy. Environ. Sci. 2013, 6, 2698.

110. Lee, S.; Choi, K.; Kim, S.; Lee, S. Wearable supercapacitors printed on garments. Adv. Funct. Mater. 2018, 28, 1705571.

111. Guo, H.; Jiang, Z.; Ren, D.; et al. High-performance flexible micro-supercapacitors printed on textiles for powering wearable electronics. ChemElectroChem 2021, 8, 1574-9.

112. Li, D.; Yang, S.; Chen, X.; Lai, W.; Huang, W. 3D wearable fabric-based micro-supercapacitors with ultra-high areal capacitance. Adv. Funct. Mater. 2021, 31, 2107484.

113. Pal, M.; Subhedar, K. M. CNT yarn based solid state linear supercapacitor with multi-featured capabilities for wearable and implantable devices. Energy. Storage. Mater. 2023, 57, 136-70.

114. Wang, J.; Li, F.; Zhu, F.; Schmidt, O. G. Recent progress in micro-supercapacitor design, integration, and functionalization. Small. Methods. 2019, 3, 1800367.

115. Zhang, Z.; Deng, J.; Li, X.; et al. Superelastic supercapacitors with high performances during stretching. Adv. Mater. 2015, 27, 356-62.

116. Meng, Y.; Zhao, Y.; Hu, C.; et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 2013, 25, 2326-31.

117. Choi, C.; Kim, S. H.; Sim, H. J.; et al. Stretchable, weavable coiled carbon nanotube/MnO2/polymer fiber solid-state supercapacitors. Sci. Rep. 2015, 5, 9387.

118. Zamarayeva, A. M.; Ostfeld, A. E.; Wang, M.; et al. Flexible and stretchable power sources for wearable electronics. Sci. Adv. 2017, 3, e1602051.

119. Keum, K.; Lee, G.; Lee, H.; et al. Wire-shaped supercapacitors with organic electrolytes fabricated via layer-by-layer assembly. ACS. Appl. Mater. Interfaces. 2018, 10, 26248-57.

120. Chen, Y.; Xu, B.; Wen, J.; et al. Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes. Small 2018, 14, e1704373.

121. Choi, C.; Park, J. W.; Kim, K. J.; et al. Weavable asymmetric carbon nanotube yarn supercapacitor for electronic textiles. RSC. Adv. 2018, 8, 13112-20.

122. Lv, J.; Dai, Y.; Xu, H.; et al. Transforming commercial regenerated cellulose yarns into multifunctional wearable electronic textiles. J. Mater. Chem. C. 2020, 8, 1309-18.

123. Gao, J.; Shao, C.; Shao, S.; et al. Laser-assisted large-scale fabrication of all-solid-state asymmetrical micro-supercapacitor array. Small 2018, 14, e1801809.

124. Li, L.; Fu, C.; Lou, Z.; et al. Flexible planar concentric circular micro-supercapacitor arrays for wearable gas sensing application. Nano. Energy. 2017, 41, 261-8.

125. Zhou, Y.; Guan, F.; Zhao, F.; Shen, Y.; Bao, L. High-energy-density graphene hybrid flexible fiber supercapacitors. Batteries. Supercaps. 2023, 6, e202200536.

126. Ahn, J.; Padmajan, S. S.; Jeong, Y.; et al. High-energy-density fiber supercapacitors based on transition metal oxide nanoribbon yarns for comprehensive wearable electronics. Adv. Fiber. Mater. 2024, 6, 1927-41.

127. Padmajan, S. S.; Lee, K. E.; Lim, J.; et al. Interface-confined high crystalline growth of semiconducting polymers at graphene fibers for high-performance wearable supercapacitors. ACS. Nano. 2017, 11, 9424-34.

128. Choi, C.; Kim, K. M.; Kim, K. J.; et al. Improvement of system capacitance via weavable superelastic biscrolled yarn supercapacitors. Nat. Commun. 2016, 7, 13811.

129. Li, Y.; Yang, D.; Wu, Z.; et al. Self-adhesive, self-healing, biocompatible and conductive polyacrylamide nanocomposite hydrogels for reliable strain and pressure sensors. Nano. Energy. 2023, 109, 108324.

130. Ye, G.; Song, D.; Song, J.; Zhao, Y.; Liu, N. A fully biodegradable and biocompatible ionotronic skin for transient electronics. Adv. Funct. Mater. 2023, 33, 2303990.

131. Wu, M.; Pan, M.; Qiao, C.; et al. Ultra stretchable, tough, elastic and transparent hydrogel skins integrated with intelligent sensing functions enabled by machine learning algorithms. Chem. Eng. J. 2022, 450, 138212.

132. Yun, T. G.; Park, M.; Kim, D. H.; et al. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS. Nano. 2019, 13, 3141-50.

133. Kil, H. J.; Kim, S. R.; Park, J. W. A self-charging supercapacitor for a patch-type glucose sensor. ACS. Appl. Mater. Interfaces. 2022, 14, 3838-48.

134. Song, W.; Zhu, J.; Gan, B.; et al. Flexible, stretchable, and transparent planar microsupercapacitors based on 3D porous laser-induced graphene. Small 2018, 14.

135. Lee, G.; Kim, J. W.; Park, H.; et al. Skin-like, dynamically stretchable, planar supercapacitors with buckled carbon nanotube/Mn-Mo mixed oxide electrodes and air-stable organic electrolyte. ACS. Nano. 2019, 13, 855-66.

136. An, T.; Ling, Y.; Gong, S.; et al. A wearable second skin-like multifunctional supercapacitor with vertical gold nanowires and electrochromic polyaniline. Adv. Mater. Technol. 2019, 4, 1800473.

137. Wang, B.; Zhao, X.; Liang, J.; et al. Microwave-welded and photopolymer-embedded silver nanowire electrodes for skin-like supercapacitors. ACS. Appl. Energy. Mater. 2022, 5, 10490-500.

138. Song, K.; Kim, J.; Cho, S.; et al. Flexible-device injector with a microflap array for subcutaneously implanting flexible medical electronics. Adv. Healthc. Mater. 2018, 7, e1800419.

139. Yang, S. Y.; Sencadas, V.; You, S. S.; et al. Powering implantable and ingestible electronics. Adv. Funct. Mater. 2021, 31, 2009289.

140. Sheng, H.; Zhang, X.; Ma, Y.; et al. Ultrathin, wrinkled, vertically aligned Co(OH)2 nanosheets/Ag nanowires hybrid network for flexible transparent supercapacitor with high performance. ACS. Appl. Mater. Interfaces. 2019, 11, 8992-9001.

141. Zhang, C.; Peng, Z.; Huang, C.; et al. High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano. Energy. 2021, 81, 105609.

142. Zhang, C. J.; Anasori, B.; Seral-Ascaso, A.; et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29.

143. Kuhnt, T.; Camarero‐espinosa, S.; Takhsha, G. M.; et al. 4D printed shape morphing biocompatible materials based on anisotropic ferromagnetic nanoparticles. Adv. Funct. Mater. 2022, 32, 2270289.

144. Alipoori, S.; Mazinani, S.; Aboutalebi, S. H.; Sharif, F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J. Energy. Storage. 2020, 27, 101072.

145. Huang, X.; Lyu, X.; Wu, G.; et al. Multilayer superlattices of monolayer mesoporous carbon framework-intercalated MXene for efficient capacitive energy storage. Adv. Energy. Mater. 2024, 14, 2303417.

146. Hou, P.; Gao, C.; Wang, J.; et al. A semi-transparent polyurethane/porous wood composite gel polymer electrolyte for solid-state supercapacitor with high energy density and cycling stability. Chem. Eng. J. 2023, 454, 139954.

147. Zhang, Y.; Bai, W.; Cheng, X.; et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angew. Chem. Int. Ed. 2014, 53, 14564-8.

148. Cai, Z.; Li, L.; Ren, J.; Qiu, L.; Lin, H.; Peng, H. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes. J. Mater. Chem. A. 2013, 1, 258-61.

149. Park, T.; Lee, D. Y.; Ahn, B. J.; et al. Implantable anti-biofouling biosupercapacitor with high energy performance. Biosens. Bioelectron. 2024, 243, 115757.

150. Dinis, H.; Mendes, P. M. A comprehensive review of powering methods used in state-of-the-art miniaturized implantable electronic devices. Biosens. Bioelectron. 2021, 172, 112781.

151. Hwang, S. W.; Tao, H.; Kim, D. H.; et al. A physically transient form of silicon electronics. Science 2012, 337, 1640-4.

152. Fu, K. K.; Wang, Z.; Dai, J.; Carter, M.; Hu, L. Transient electronics: materials and devices. Chem. Mater. 2016, 28, 3527-39.

153. Chen, X.; Park, Y. J.; Kang, M.; et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 2018, 9, 1690.

154. Chernysheva, D. V.; Smirnova, N. V.; Ananikov, V. P. Recent trends in supercapacitor research: sustainability in energy and materials. ChemSusChem 2024, 17, e202301367.

155. Li, R.; Wang, L.; Kong, D.; Yin, L. Recent progress on biodegradable materials and transient electronics. Bioact. Mater. 2018, 3, 322-33.

156. Li, H.; Zhao, C.; Wang, X.; et al. Fully bioabsorbable capacitor as an energy storage unit for implantable medical electronics. Adv. Sci. 2019, 6, 1801625.

157. Song, P.; Kuang, S.; Panwar, N.; et al. A self-powered implantable drug-delivery system using biokinetic energy. Adv. Mater. 2017, 29.

158. Chen, K.; Yan, L.; Sheng, Y.; Ma, Y.; Qu, L.; Zhao, Y. An edible and nutritive zinc-ion micro-supercapacitor in the stomach with ultrahigh energy density. ACS. Nano. 2022, 16, 15261-72.

159. Guk, K.; Han, G.; Lim, J.; et al. Evolution of wearable devices with real-time disease monitoring for personalized healthcare. Nanomaterials 2019, 9, 813.

160. Teng, Y.; Wei, J.; Du, H.; Mojtaba, M.; Li, D. A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring. J. Mater. Chem. A. 2020, 8, 11695-711.

161. Yu, L.; Yi, Y.; Yao, T.; et al. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano. Res. 2019, 12, 331-8.

162. Zha, X.; Yang, W.; Shi, L.; Zeng, Q.; Xu, J.; Yang, Y. 2D bimetallic organic framework nanosheets for high-performance wearable power source and real-time monitoring of glucose. Dalton. Trans. 2023, 52, 2631-40.

163. Lu, Y.; Jiang, K.; Chen, D.; Shen, G. Wearable sweat monitoring system with integrated micro-supercapacitors. Nano. Energy. 2019, 58, 624-32.

164. Chiou, J. C.; Shieh, C. E.; Yeh, K. T.; Hsu, S. H.

165. Park, J.; Ahn, D. B.; Kim, J.; et al. Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Sci. Adv. 2019, 5, eaay0764.

166. Jiang, Y.; Trotsyuk, A. A.; Niu, S.; et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 2023, 41, 652-62.

167. Zhang, P.; Teng, Z.; Zhou, M.; et al. Upconversion 3D bioprinting for noninvasive in vivo molding. Adv. Mater. 2024, 36, e2310617.

168. Peña, O. A.; Martin, P. Cellular and molecular mechanisms of skin wound healing. Nat. Rev. Mol. Cell. Biol. 2024, 25, 599-616.

169. Cox, A.; Bousfield, C. Velcro compression wraps as an alternative form of compression therapy for venous leg ulcers: a review. Br. J. Community. Nurs. 2021, 26, S10-20.

170. Dong, J.; Qing, C.; Song, F.; Wang, X.; Lu, S.; Tian, M. Potential molecular mechanisms of negative pressure in promoting wound healing. Int. Wound. J. 2020, 17, 1428-38.

171. Kwon, K.; Kim, J. U.; Won, S. M.; et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 2023, 7, 1215-28.

172. Lee, J. H.; Rim, Y. S.; Min, W. K.; et al. Biocompatible and biodegradable neuromorphic device based on hyaluronic acid for implantable bioelectronics. Adv. Funct. Mater. 2021, 31, 2107074.

173. Elsanadidy, E.; Mosa, I. M.; Hou, B.; et al. Self-sustainable intermittent deep brain stimulator. Cell. Rep. Phys. Sci. 2022, 3, 101099.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/