REFERENCES

1. Wearable technology market size, share & trends analysis report by product (eyewear & headwear, wristwear), by application (consumer electronics, healthcare), by region, and segment forecasts, 2025-2030. Available from: https://www.grandviewresearch.com/industry-analysis/wearable-technology-market [Last accessed on 10 Mar 2025].

2. Ahmadabadi V, Shirvanimoghaddam K, Kerr R, Showkath N, Naebe M. Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries. Electrochim. Acta. 2020, 330, 135232.

3. Xu, C.; Fan, Z.; Zhang, M.; et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods. Cell. Rep. Phys. Sci. 2023, 4, 101705.

4. Ke, B.; Cheng, S.; Zhang, C.; et al. Low-temperature flexible integration of all-solid-state thin-film lithium batteries enabled by spin-coating electrode architecture. Adv. Energy. Mater. 2024, 14, 2303757.

5. Gao, Z.; Zhou, Y.; Zhang, J.; et al. Advanced energy harvesters and energy storage for powering wearable and implantable medical devices. Adv. Mater. 2024, 36, e2404492.

6. Ye, T.; Wang, J.; Jiao, Y.; et al. A tissue-like soft all-hydrogel battery. Adv. Mater. 2022, 34, e2105120.

7. Lu, C.; Jiang, H.; Cheng, X.; et al. High-performance fibre battery with polymer gel electrolyte. Nature 2024, 629, 86-91.

8. Zhao, C.; Wang, R.; Liang, H.; et al. Autonomous self-healing strategy for flexible fiber lithium-ion battery with ultra-high mechanical properties and volumetric energy densities. Chem. Eng. J. 2024, 496, 154153.

9. Hassan, M. M.; Wang, X.; Bristi, A. A.; Yang, R.; Li, X.; Lu, Q. Composite scaffold of electrospun nano-porous cellulose acetate membrane casted with chitosan for flexible solid-state sodium-ion batteries. Nano. Energy. 2024, 128, 109971.

10. Wan, X.; Zhao, Y.; Li, Z.; Li, L. Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022, 2, 20210029.

11. Cheng, X.; Liu, Y. T.; Si, Y.; Yu, J.; Ding, B. Direct synthesis of highly stretchable ceramic nanofibrous aerogels via 3D reaction electrospinning. Nat. Commun. 2022, 13, 2637.

12. Liu, C.; Liao, Y.; Jiao, W.; et al. High toughness combined with high strength in oxide ceramic nanofibers. Adv. Mater. 2023, 35, e2304401.

13. Xie, G.; Tan, X.; Shi, Z.; et al. SiOx based anodes for advanced Li-ion batteries: recent progress and perspectives. Adv. Funct. Mater. 2025, 35, 2414714.

14. Huang, Q.; Wang, D.; Zheng, Z. Nanocarbon materials toward textile-based electrochemical energy storage devices. In: Nanocarbon Electrochemistry; 2020, pp.123-43.

15. Wu, W.; Liu, M.; Pei, Y.; et al. Unprecedented superhigh-rate and ultrastable anode for high-power battery via cationic disordering. Adv. Energy. Mater. 2022, 12, 2201130.

16. Huang, Q.; Liu, L.; Wang, D.; Liu, J.; Huang, Z.; Zheng, Z. One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. J. Mater. Chem. A. 2016, 4, 6802-8.

17. Chang, J.; Huang, Q.; Gao, Y.; Zheng, Z. Pathways of developing high-energy-density flexible lithium batteries. Adv. Mater. 2021, 33, e2004419.

18. Zhang, T.; Ju, J.; Zhang, Z.; Su, D.; Wang, Y.; Kang, W. Wearable flexible zinc-ion batteries based on electrospinning technology. J. Energy. Chem. 2024, 98, 562-87.

19. Li, H.; Qu, R.; Ma, Z.; Zhou, N.; Huang, Q.; Zheng, Z. Permeable and patternable super-stretchable liquid metal fiber for constructing high-integration-density multifunctional electronic fibers. Adv. Funct. Mater. 2024, 34, 2308120.

20. Ding, Y.; Jiang, J.; Wu, Y.; et al. Porous conductive textiles for wearable electronics. Chem. Rev. 2024, 124, 1535-648.

21. He, F.; Wang, Y.; Liu, J.; Yao, X. One-dimensional carbon based nanoreactor fabrication by electrospinning for sustainable catalysis. Exploration 2023, 3, 20220164.

22. Khurram, T. M.; Ahmed, A.; Rafiq, M.; et al. Chemistry aspects and designing strategies of flexible materials for high-performance flexible lithium-ion batteries. Chem. Rec. 2024, 24, e202300155.

23. Li, H.; Tang, Z.; Liu, Z.; Zhi, C. Evaluating flexibility and wearability of flexible energy storage devices. Joule 2019, 3, 613-9.

24. Xiao, G.; Ju, J.; Li, M.; et al. Weavable yarn-shaped supercapacitor in sweat-activated self-charging power textile for wireless sweat biosensing. Biosens. Bioelectron. 2023, 235, 115389.

25. Shao, G.; Yu, R.; Zhang, X.; et al. Making stretchable hybrid supercapacitors by knitting non-stretchable metal fibers. Adv. Funct. Mater. 2020, 30, 2003153.

26. Ji, D.; Lin, Y.; Guo, X.; et al. Electrospinning of nanofibres. Nat. Rev. Methods. Primers. 2024, 4, 278.

27. Dinuwan, G. K. R. S.; Simorangkir, R. B. V. B.; McGuinness, G. B.; et al. The potential of electrospinning to enable the realization of energy-autonomous wearable sensing systems. ACS. Nano. 2024, 18, 2649-84.

28. Chen, L.; Mei, S.; Fu, K.; Zhou, J. Spinning the future: the convergence of nanofiber technologies and yarn fabrication. ACS. Nano. 2024, 18, 15358-86.

29. Huang, Y.; Li, Y.; Zhang, Y.; Yu, H.; Tan, Z. Near-field electrospinning for 2D and 3D structuring: fundamentals, methods, and applications. Mater. Today. Adv. 2024, 21, 100461.

30. Taylor, G. I.; Van, D. M. D. Electrically driven jets. Proc. R. Soc. Lond. A. 1969, 313, 453-75.

31. Si, Y.; Shi, S.; Hu, J. Electrospinning and electrospraying synergism: twins-tech collaboration across dimensions. Matter 2024, 7, 1373-405.

32. Zhang, Z.; Huang, X.; Hong, D.; Ye, P.; Chen, Z.; Xu, Q. Mechanism and experimental investigation on the formation of micro-triangle stepped jet in composite spinning solution. Polym. Eng. Sci. 2024, 64, 4309-20.

33. Fang, J.; Niu, H.; Wang, H.; Wang, X.; Lin, T. Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs. Energy. Environ. Sci. 2013, 6, 2196.

34. Yoo, J.; Kim, D. H.; Pyo, S. G.; Balasingam, S. K. Eletrospinning: improving the performance of 1-D nanofibers used in anodes, cathodes, and separators in lithium-ion batteries. Int. J. Energy. Res. 2024, 2024, 1847943.

35. Xue, M.; Quan, Z.; Qin, X.; Yu, J.; Li, Y. Impacts of viscosity on bending behavior of the electrospun jet: simulation model and experiment. Polymer 2024, 311, 127529.

36. Han, Y.; Shi, C.; Cui, F.; Chen, Q.; Tao, Y.; Li, Y. Solution properties and electrospinning of polyacrylamide and ε-polylysine complexes. Polymer 2020, 204, 122806.

37. Kheilbash, M.; Pirsalami, S.; Malayeri, M. R.; Zebarjad, S. M.; Riazi, M. Use of mixed low/high vapor pressure solvent as a novel solvent design strategy for tuning fiber diameter in electrospun mats. J. Polym. Res. 2024, 31, 3940.

38. Dong, T.; Arifeen, W. U.; Choi, J.; Yoo, K.; Ko, T. Surface-modified electrospun polyacrylonitrile nano-membrane for a lithium-ion battery separator based on phase separation mechanism. Chem. Eng. J. 2020, 398, 125646.

39. Asgari, S.; Mohammadi, Z. G.; Badiei, A.; Vasseghian, Y. Zr-UiO-66, ionic liquid (HMIM+TFSI-), and electrospun nanofibers (polyacrylonitrile): all in one as a piezo-photocatalyst for degradation of organic dye. Chem. Eng. J. 2024, 487, 150600.

40. Wang, X.; Zhu, S.; Dong, X.; Huang, H.; Qi, M. Ionic liquid assisted electrospinning synthesis for ultra-uniform Sn@ mesoporous carbon nanofibers as a flexible self-standing anode for lithium ion batteries. J. Alloys. Compd. 2021, 866, 158984.

41. Souza, R. J.; Soares, F. J. E.; Simões, T. A.; Oliveira, J. E.; Medeiros, E. S. Experimental investigation of solution blow spinning nozzle geometry and processing parameters on fiber morphology. ACS. Appl. Polym. Mater. 2024, 6, 9735-43.

42. Khan, J.; Khan, A.; Khan, M. Q.; Khan, H. Applications of co-axial electrospinning in the biomedical field. Next. Mater. 2024, 3, 100138.

43. Kim, B. G.; Kang, D. W.; Park, G.; Park, S. H.; Lee, S.; Choi, J. W. Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chem. Eng. J. 2021, 422, 130017.

44. Hu, T.; Shen, X.; Peng, L.; et al. Preparation of single-ion conductor solid polymer electrolyte by multi-nozzle electrospinning process for lithium-ion batteries. J. Phys. Chem. Solids. 2021, 158, 110229.

45. Kılıç, A.; Yıldırım, B.; İçoğlu, H. İ.; Türkoğlu, M.; Topalbekiroğlu, M. Production of continuous nanofiber bundles by multi parallel electrodes in needleless electrospinning. Mater. Today. Commun. 2024, 39, 109025.

46. Jin, J.; Yeom, S. H.; Lee, H. J.; Choi, C. K.; Lee, S. H. The effect of nozzle spacing on the electric field and fiber size distribution in a multi-nozzle electrospinning system. J. Appl. Polym. Sci. 2023, 140, e53764.

47. Ding, L.; Li, R.; Gao, Y.; et al. Electrospun nanofibers for fragile artifact conservation. Compos. Commun. 2024, 46, 101824.

48. Yıldırım, B.; Kılıç, A.; İçoğlu, H. İ.; Türkoğlu, M.; Topalbekiroğlu, M. Continuous nanofiber bundle production using helical spinnerets with different configurations in needleless electrospinning. Adv. Eng. Mater. 2024, 26, 2400989.

49. Norzain, N. A.; Lin, W. C. Orientated and diameter-controlled fibrous scaffolds fabricated using the centrifugal electrospinning technique for stimulating the behaviours of fibroblast cells. J. Ind. Text. 2022, 51, 6728S-52S.

50. Sun, L.; Cai, Y.; Kim, D.; et al. Enhanced properties of solid polymer electrolytes by a bilayer nonwoven PET/nanofiber PVDF substrate for use in all-solid-state lithium metal batteries. J. Power. Sources. 2023, 564, 232851.

51. Zeng, Z.; Shao, Z.; Shen, R.; et al. Coaxial electrospun Tai chi-inspired lithium-ion battery separator with high performance and fireproofing capacity. ACS. Appl. Mater. Interfaces. 2023, 15, 44259-67.

52. Yu, Y.; Liu, M.; Chen, Z.; et al. Advances in nonwoven-based separators for lithium-ion batteries. Adv. Fiber. Mater. 2023, 5, 1827-51.

53. Zhang, S.; Li, Y.; Xu, G.; et al. High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries. J. Power. Sources. 2012, 213, 10-5.

54. Song, H. J.; Kim, J.; Choi, M.; et al. Li2MnSiO4 nanorods-embedded carbon nanofibers for lithium-ion battery electrodes. Electrochim. Acta. 2015, 180, 756-62.

55. Mados, E.; Atar, I.; Gratz, Y.; et al. Polymer-based LFP cathode/current collector microfiber-meshes with bi- and interlayered architectures for Li-ion battery. J. Power. Sources. 2024, 603, 234397.

56. Akhmetova, K.; Tatykayev, B.; Kalybekkyzy, S.; Sultanov, F.; Bakenov, Z.; Mentbayeva, A. One-step fabrication of all-in-one flexible nanofibrous lithium-ion battery. J. Energy. Storage. 2023, 65, 107237.

57. Zhijiang, C.; Xingjuan, S.; Yanan, F. Electrochemical properties of electrospun polyindole nanofibers as a polymer electrode for lithium ion secondary battery. J. Power. Sources. 2013, 227, 53-9.

58. Xiong, Y.; Li, Y.; Hu, Z.; et al. Nonsolvent-induced electrospun fibers with crater-like surface and high-loading polytriphenylamine-derived as a flexible cathode for lithium-ion batteries. Surf. Interfaces. 2024, 46, 104126.

59. Park, H.; Song, T.; Tripathi, R.; Nazar, L. F.; Paik, U. Li2MnSiO4/carbon nanofiber cathodes for Li-ion batteries. Ionics 2014, 20, 1351-9.

60. Zhang, C.; Liang, Y.; Yao, L.; Qiu, Y. Effect of thermal treatment on the properties of electrospun LiFePO4-carbon nanofiber composite cathode materials for lithium-ion batteries. J. Alloys. Compd. 2015, 627, 91-100.

61. Liu, J.; Hu, X.; Ran, F.; Wang, K.; Dai, J.; Zhu, X. Electrospinning-assisted construction of 3D LiFePO4@rGO/carbon nanofibers as flexible cathode to boost the rate capabilities of lithium-ion batteries. Ceram. Int. 2023, 49, 1401-8.

62. Kwon, O. H.; Oh, J. H.; Gu, B.; et al. Porous SnO2/C nanofiber anodes and LiFePO4/C nanofiber cathodes with a wrinkle structure for stretchable lithium polymer batteries with high electrochemical performance. Adv. Sci. 2020, 7, 2001358.

63. Hongtong, R.; Thanwisai, P.; Yensano, R.; Nash, J.; Srilomsak, S.; Meethong, N. Core-shell electrospun and doped LiFePO4/FeS/C composite fibers for Li-ion batteries. J. Alloys. Compd. 2019, 804, 339-47.

64. Chen, W.; Xu, D.; Chen, Y.; et al. In situ electrospinning synthesis of N-doped C nanofibers with uniform embedding of Mn doped MFe1-xMnxPO4 (M = Li, Na) as a high performance cathode for lithium/sodium-ion batteries. Adv. Mater. Inter. 2020, 7, 2000684.

65. Shin, J.; Yang, J.; Sergey, C.; Song, M. S.; Kang, Y. M. Carbon nanofibers heavy laden with Li3V2(PO4)3 particles featuring superb kinetics for high-power lithium ion battery. Adv. Sci. 2017, 4, 1700128.

66. Lokeswararao, Y.; Dakshinamurthy, A. C.; Budumuru, A. K.; Sudakar, C. Influence of nano-fibrous and nano-particulate morphology on the rate capability of Li3V2(PO4)3/C Li-ion battery cathode. Mater. Res. Bull. 2023, 166, 112331.

67. Gavali, D. S.; Abhijitha, V. G.; Nanda, B.; Thapa, R. Origin of high stability, enhanced specific capacity, and low Li diffusion energy in boron doped Li3V2(PO4)3. J. Energy. Storage. 2023, 69, 107899.

68. Zeng, W.; Xia, F.; Wang, J.; et al. Entropy-increased LiMn2O4-based positive electrodes for fast-charging lithium metal batteries. Nat. Commun. 2024, 15, 7371.

69. Duan, L.; Zhang, X.; Yue, K.; Wu, Y.; Zhuang, J.; Lü, W. Synthesis and electrochemical property of LiMn2O4 porous hollow nanofiber as cathode for lithium-ion batteries. Nanoscale. Res. Lett. 2017, 12, 109.

70. Xu, R.; Zhang, X.; Chamoun, R.; et al. Enhanced rate performance of LiNi0.5Mn1.5O4 fibers synthesized by electrospinning. Nano. Energy. 2015, 15, 616-24.

71. Kim, N.; Gi, M. K.; Chandio, Z. A.; Park, J.; Cheong, J. Y.; Jung, J. Breaking limits of Li-ion batteries with high-voltage spinel LiNi0.5Mn1.5O4 nanofiber/carbon nanotube composite cathodes. Korean. J. Chem. Eng. 2024, 41, 1513-20.

72. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. LixCoO2 (0 < x < -1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783-9.

73. Kap, Ö.; Inan, A.; Er, M.; Horzum, N. Li-ion battery cathode performance from the electrospun binary LiCoO2 to ternary Li2CoTi3O8. J. Mater. Sci. Mater. Electron. 2020, 31, 8394-402.

74. Min, J. W.; Yim, C. J.; Im, W. B. Facile synthesis of electrospun Li1.2Ni0.17Co0.17Mn0.5O2 nanofiber and its enhanced high-rate performance for lithium-ion battery applications. ACS. Appl. Mater. Interfaces. 2013, 5, 7765-9.

75. Jin, Y.; Zong, X.; Zhang, X.; Jia, Z.; Tan, S.; Xiong, Y. Cathode structural design enabling interconnected ionic/electronic transport channels for high-performance solid-state lithium batteries. J. Power. Sources. 2022, 530, 231297.

76. Zhao, J.; Kang, T.; Chu, Y.; et al. A polyimide cathode with superior stability and rate capability for lithium-ion batteries. Nano. Res. 2019, 12, 1355-60.

77. Li, D.; Cheng, H.; Hao, X.; et al. Wood-derived freestanding carbon-based electrode with hierarchical structure for industrial-level hydrogen production. Adv. Mater. 2024, 36, e2304917.

78. Cao, Z.; Sang, M.; Chen, S.; et al. In situ constructed (010)-oriented LiFePO4 nanocrystals/carbon nanofiber hybrid network: Facile synthesis of free-standing cathodes for lithium-ion batteries. Electrochim. Acta. 2020, 333, 135538.

79. Chen, L. L.; Yang, H.; Jing, M. X.; et al. A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes. Beilstein. J. Nanotechnol. 2019, 10, 2229-37.

80. Peng, Y.; Tan, R.; Ma, J.; Li, Q.; Wang, T.; Duan, X. Electrospun Li3V2(PO4)3 nanocubes/carbon nanofibers as free-standing cathodes for high-performance lithium-ion batteries. J. Mater. Chem. A. 2019, 7, 14681-8.

81. Jing, M.; Pi, Z.; Zhai, H.; et al. Three-dimensional Li3V2(PO4)3/C nanowire and nanofiber hybrid membrane as a self-standing, binder-free cathode for lithium ion batteries. RSC. Adv. 2016, 6, 71574-80.

82. Yang, S.; Pei, C.; Zhang, D.; et al. Hierarchical porous N-doped carbon nanofibers with encapsulated Li3VO4 nanoparticles for lithium-ion storage. ACS. Appl. Nano. Mater. 2024, 7, 827-35.

83. Wang, Z.; Kang, K.; Wu, J.; et al. Comparative effects of electrospinning ways for fabricating green, sustainable, flexible, porous, nanofibrous cellulose/chitosan carbon mats as anode materials for lithium-ion batteries. J. Mater. Res. Technol. 2021, 11, 50-61.

84. Han, X.; Guo, H.; Xing, B.; et al. A facile electrospinning strategy to prepare cost-effective carbon fibers as a self-supporting anode for lithium-ion batteries. Fuel 2024, 373, 132277.

85. Rao, X.; Lou, Y.; Zhao, J.; et al. Carbon nanofibers derived from carbonization of electrospinning polyacrylonitrile (PAN) as high performance anode material for lithium ion batteries. J. Porous. Mater. 2023, 30, 403-19.

86. Xu, H.; Hou, X.; Yang, Y.; et al. Flexible and crosslinking electrospun porous carbon nanofiber membranes as freestanding binder-free anodes for lithium-ion batteries. J. Energy. Storage. 2024, 86, 111281.

87. Charkhesht, V.; Yarar, K. B.; Alkan, G. S.; Yürüm, A. Electrospun nanotubular titania and polymeric interfaces for high energy density Li-ion electrodes. Energy. Fuels. 2023, 37, 6197-207.

88. Zhou, Y.; Xiao, S.; Jiang, J.; Wu, R.; Niu, X.; Chen, J. S. In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage. Nano. Res. 2023, 16, 1513-21.

89. Cao, K.; Zhu, Y.; He, H.; et al. Zero-strain sodium lanthanum titanate perovskite embedded in flexible carbon fibers as a long-span anode for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 11421-30.

90. Chen, Y.; Cheng, J.; Wang, A.; et al. The enhanced performance of Li-ion batteries based on Co-MOF/MXene composites. Inorg. Chem. Commun. 2024, 159, 111793.

91. Liu, J.; Ma, L.; Li, S.; et al. Three-dimensional architecture using hollow Cu/C nanofiber interpenetrated with MXenes for high-rate lithium-ion batteries. Rare. Met. 2023, 42, 3378-86.

92. Xiao, J.; Jin, Q.; Cang, R.; Gao, H.; Yao, J. Carbon-coated MXene nanofiber as a free-standing electrode for high-performance lithium-ion storage. Electrochim. Acta. 2023, 451, 142289.

93. Yang, M.; Liu, L.; Yan, H.; et al. Porous nitrogen-doped Sn/C film as free-standing anodes for lithium ion batteries. Appl. Surf. Sci. 2021, 551, 149246.

94. Zhu, S.; Huang, A.; Wang, Q.; Xu, Y. MOF-derived porous carbon nanofibers wrapping Sn nanoparticles as flexible anodes for lithium/sodium ion batteries. Nanotechnology 2021, 32, 165401.

95. Xin, Y.; Mou, H.; Miao, C.; et al. Encapsulating Sn-Cu alloy particles into carbon nanofibers as improved performance anodes for lithium-ion batteries. J. Alloys. Compd. 2022, 922, 166176.

96. Li, W.; Peng, J.; Li, H.; et al. Encapsulating nanoscale silicon inside carbon fiber as flexible self-supporting anode material for lithium-ion battery. ACS. Appl. Energy. Mater. 2021, 4, 8529-37.

97. Zeng, L.; Xi, H.; Liu, X.; Zhang, C. Coaxial electrospinning construction Si@C core-shell nanofibers for advanced flexible lithium-ion batteries. Nanomaterials 2021, 11, 3454.

98. Sun, N.; Wang, X.; Dong, X.; Huang, H.; Qi, M. PVP-grafted synthesis for uniform electrospinning silica@carbon nanofibers as flexible free-standing anode for Li-ion batteries. Solid. State. Ion. 2022, 374, 115817.

99. Xian, Z.; Tao, J.; Yu, J.; et al. Si@SiOx/CNF flexible anode prepared by electrospinning for Li-ion batteries. Russ. J. Electrochem. 2023, 59, 430-40.

100. Li, X.; Wang, X.; Li, J.; et al. High-performance, flexible, binder-free silicon-carbon anode for lithium storage applications. Electrochem. Commun. 2022, 137, 107257.

101. Zhu, R.; Wang, Z.; Hu, X.; Liu, X.; Wang, H. Silicon in hollow carbon nanospheres assembled microspheres cross-linked with N-doped carbon fibers toward a binder free, high performance, and flexible anode for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2101487.

102. Zhang, T.; Huang, T.; Li, X.; et al. Ultra-high rapid-charging performance of 1D germanium anode materials for lithium-ion batteries. J. Alloys. Compd. 2024, 976, 173287.

103. Sheng, X.; Li, T.; Sun, M.; et al. Flexible electrospun iron compounds/carbon fibers: phase transformation and electrochemical properties. Electrochim. Acta. 2022, 407, 139892.

104. Su, Y.; Fu, B.; Yuan, G.; et al. Three-dimensional mesoporous γ-Fe2O3@carbon nanofiber network as high performance anode material for lithium- and sodium-ion batteries. Nanotechnology 2020, 31, 155401.

105. Xie, F.; Sheng, X.; Ling, Z.; et al. Flexible electrospun iron/manganese-based compounds/carbon fibers: phase transformation and electrochemical properties. Electrochim. Acta. 2023, 470, 143288.

106. Velásquez, C.; Vásquez, F.; Alvarez-Láinez, M.; Zapata-González, A.; Calderón, J. Carbon nanofibers impregnated with Fe3O4 nanoparticles as a flexible and high capacity negative electrode for lithium-ion batteries. J. Alloys. Compd. 2021, 862, 158045.

107. Rosaiah, P.; Niyitanga, T.; Sambasivam, S.; Kim, H. Graphene based magnetite carbon nanofiber composites as anodes for high-performance Li-ion batteries. New. J. Chem. 2022, 47, 482-90.

108. Guo, Y.; Zhang, D.; Bai, Z.; et al. MXene nanofibers confining MnOx nanoparticles: a flexible anode for high-speed lithium ion storage networks. Dalton. Trans. 2022, 51, 1423-33.

109. Kim, K.; Song, Y.; Ahn, H. Quantum dot-derived carbon nanopocket-confined Co3O4 within mesoporous carbon nanofiber for Cu-free anode of flexible Li-ion batteries. Appl. Surf. Sci. 2023, 637, 157905.

110. Xia, J.; Zhang, X.; Yang, Y.; Wang, X.; Yao, J. Electrospinning fabrication of flexible, foldable, and twistable Sb2S3/TiO2/C nanofiber anode for lithium ion batteries. Chem. Eng. J. 2021, 413, 127400.

111. Kim, Y.; Samuel, E.; Huh, J.; An, S.; Lee, H.; Yoon, S. S. Carbon-nickel core-shell nanofibers decorated with bimetallic nickel-gallium chalcogenide nanosheets as flexible, binder-free lithium-ion-battery anodes. Intl. J. Energy. Res. 2022, 46, 21797-811.

112. Zhang, C.; Shen, L.; Shen, J.; et al. Anion-sorbent composite separators for high-rate lithium-ion batteries. Adv. Mater. 2019, 31, e1808338.

113. Zhan, L.; Song, X.; Deng, W.; et al. Facile approach to prepare FeP2/P/C nanofiber heterostructure via electrospinning as highly performance self-supporting anode for Li/Na ion batteries. Electrochim. Acta. 2022, 403, 139682.

114. Li, X.; Guan, G.; Yu, C.; et al. Enhanced electrochemical performances based on ZnSnO3 microcubes functionalized in-doped carbon nanofibers as free-standing anode materials. Dalton. Trans. 2023, 52, 11187-95.

115. Tan, F.; Guo, H.; Wang, Z.; et al. Electrospinning-enabled SiO@TiO2/C fibers as anode materials for lithium-ion batteries. J. Alloys. Compd. 2021, 888, 161635.

116. Mou, H.; Chen, S.; Xiao, W.; et al. Encapsulating homogenous ultra-fine SnO2/TiO2 particles into carbon nanofibers through electrospinning as high-performance anodes for lithium-ion batteries. Ceram. Int. 2021, 47, 19945-54.

117. Gao, L.; Liang, H.; Li, J.; Cheng, B.; Deng, N.; Kang, W. The high-strength and ultra-thin composite electrolyte using one-step electrospinning/electrostatic spraying process for interface control in all-solid-state lithium metal battery. J. Power. Sources. 2021, 515, 230622.

118. Fang, Z.; Zhao, M.; Peng, Y.; Guan, S. Combining organic plastic salts with a bicontinuous electrospun PVDF-HFP/Li7La3Zr2O12 membrane: LiF-rich solid-electrolyte interphase enabling stable solid-state lithium metal batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 18922-34.

119. Wang, L.; Yan, J.; Zhang, R.; et al. Core-shell pmia@ PVDF-HFP/Al2O3 nanofiber mats in situ coaxial electrospun on LiFePO4 electrode as matrices for gel electrolytes. ACS. Appl. Mater. Interfaces. 2021, 13, 9875-84.

120. Xiao, W.; Cheng, D.; Huang, L.; Song, J.; Yang, Z.; Qiao, Q. An integrated separator/anode assembly based on electrospinning technique for advanced lithium-ion batteries. Electrochim. Acta. 2021, 389, 138776.

121. Shi, S.; Ming, Y.; Wu, H.; et al. A bionic skin for health management: excellent breathability, in situ sensing, and big data analysis. Adv. Mater. 2024, 36, e2306435.

122. Chen, Q.; Akram, W.; Cao, Y.; Ge, C.; Lin, T.; Fang, J. Recent progress in the fabrication and processing of triboelectric yarns. Carbon. Neutralization. 2023, 2, 63-89.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/