REFERENCES

1. Wu, M.; Hu, X.; Zheng, W.; Chen, L.; Zhang, Q. Recent advances in porous carbon nanosheets for high-performance metal-ion capacitors. Chem. Eng. J. 2023, 466, 143077.

2. Nagamuthu, S.; Zhang, Y.; Xu, Y.; et al. Non-lithium-based metal ion capacitors: recent advances and perspectives. J. Mater. Chem. A. 2022, 10, 357-78.

3. Xu, Y.; Zhang, C.; Zhou, M.; et al. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

4. Wu, Y.; Sun, Y.; Tong, Y.; et al. Recent advances in potassium-ion hybrid capacitors: electrode materials, storage mechanisms and performance evaluation. Energy. Storage. Mater. 2021, 41, 108-32.

5. Cheng, L.; Quan, J.; Li, H. Recent advances in antimony-based anode materials for potassium-ion batteries: material selection, structural design and storage mechanisms. Chinese. Chem. Lett. 2024, 36, 110685.

6. Li, X.; Chen, M.; Wang, L.; et al. Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor. Nanoscale. Horiz. 2020, 5, 1586-95.

7. Jian, Z.; Luo, W.; Ji, X. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566-9.

8. Cai, P.; Wang, K.; Wang, T.; et al. Comprehensive insights into potassium-ion capacitors: mechanisms, materials, devices and future perspectives. Adv. Energy. Mater. 2024, 14, 2401183.

9. Ma, J.; Gu, J.; Li, B.; Yang, S. Facile fabrication of 2D stanene nanosheets via a dealloying strategy for potassium storage. Chem. Commun. 2019, 55, 3983-6.

10. Li, J.; Rui, B.; Wei, W.; et al. Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J. Power. Sources. 2020, 449, 227481.

11. Chong, S.; Sun, L.; Shu, C.; et al. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano. Energy. 2019, 63, 103868.

12. Li, D.; Zhang, Y.; Sun, Q.; et al. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy. Storage. Mater. 2019, 23, 367-74.

13. Dong, S.; Li, Z.; Xing, Z.; Wu, X.; Ji, X.; Zhang, X. Novel potassium-ion hybrid capacitor based on an anode of K2Ti6O13 microscaffolds. ACS. Appl. Mater. Interfaces. 2018, 10, 15542-7.

14. Jiang, Y.; Lao, J.; Dai, G.; Ye, Z. Advanced insights on MXenes: categories, properties, synthesis, and applications in alkali metal ion batteries. ACS. Nano. 2024, 18, 14050-84.

15. Lu, C.; Sun, Z.; Yu, L.; et al. Enhanced kinetics harvested in heteroatom dual-doped graphitic hollow architectures toward high rate printable potassium‐ion batteries. Adv. Energy. Mater. 2020, 10, 2001161.

16. Liu, Y.; Lu, Y. X.; Xu, Y. S.; et al. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, e2000505.

17. Li, C.; Zhang, X.; Lv, Z.; et al. Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors. Chem. Eng. J. 2021, 414, 128781.

18. Xu, Z.; Wu, M.; Chen, Z.; et al. Direct structure-performance comparison of all-carbon potassium and sodium ion capacitors. Adv. Sci. 2019, 6, 1802272.

19. Li, Z.; Shin, W.; Chen, Y.; Neuefeind, J. C.; Greaney, P. A.; Ji, X. Low temperature pyrolyzed soft carbon as high capacity K-ion anode. ACS. Appl. Energy. Mater. 2019, 2, 4053-8.

20. Liu, Q.; Han, F.; Zhou, J.; et al. Boosting the potassium-ion storage performance in soft carbon anodes by the synergistic effect of optimized molten salt medium and N/S dual-doping. ACS. Appl. Mater. Interfaces. 2020, 12, 20838-48.

21. Bi, H.; He, X.; Yang, L.; Li, H.; Jin, B.; Qiu, J. Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode. J. Energy. Chem. 2022, 66, 195-204.

22. Ruan, J.; Wu, X.; Wang, Y.; et al. Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J. Mater. Chem. A. 2019, 7, 19305-15.

23. Luo, H.; Chen, M.; Cao, J.; et al. Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nanomicro. Lett. 2020, 12, 113.

24. Poudel, M. B.; Kim, A. R.; Ramakrishan, S.; et al. Integrating the essence of metal organic framework-derived ZnCoTe-N-C/MoS2 cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors. Compos. Part. B. Eng. 2022, 247, 110339.

25. Li, X.; Sun, N.; Tian, X.; et al. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries. Energy. Fuels. 2020, 34, 2445-51.

26. Zhang, Y.; Wang, G.; Yue, P.; et al. Construction of low-softening-point coal pitch derived carbon nanofiber films as self-standing anodes toward sodium dual-ion batteries. Adv. Funct. Mater. 2025, 35, 2414761.

27. Wang, G.; Wang, X.; Sun, J.; Zhang, Y.; Hou, L.; Yuan, C. Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors. Rare. Met. 2022, 41, 3706-16.

28. Wang, B.; Zhang, Z.; Yuan, F.; et al. An insight into the initial coulombic efficiency of carbon-based anode materials for potassium-ion batteries. Chem. Eng. J. 2022, 428, 131093.

29. Ramakrishnan, S.; Karuppannan, M.; Vinothkannan, M.; Ramachandran, K.; Kwon, O. J.; Yoo, D. J. Ultrafine Pt nanoparticles stabilized by MoS2/N-doped reduced graphene oxide as a durable electrocatalyst for alcohol oxidation and oxygen reduction reactions. ACS. Appl. Mater. Interfaces. 2019, 11, 12504-15.

30. Zhang, W.; Liu, Y.; Guo, Z. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv. 2019, 5, eaav7412.

31. Tao, L.; Yang, Y.; Wang, H.; et al. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: Performance and storage mechanisms. Energy. Storage. Mater. 2020, 27, 212-25.

32. Cheng, C.; Wu, D.; Gong, T.; et al. Internal and external cultivation design of zero-strain columbite-structured MNb2O6 toward lithium-ion capacitors as competitive anodes. Adv. Energy. Mater. 2023, 13, 2302107.

33. Xu, K.; Ding, S. P.; Jow, T. R. Toward reliable values of electrochemical stability limits for electrolytes. J. Electrochem. Soc. 1999, 146, 4172-8.

34. Yao, Y.; Xu, R.; Chen, M.; et al. Encapsulation of SeS2 into nitrogen-doped free-standing carbon nanofiber film enabling long cycle life and high energy density K-SeS2 battery. ACS. Nano. 2019, 13, 4695-704.

35. Shen, Y.; Huang, C.; Li, Y.; et al. Enhanced sodium and potassium ions storage of soft carbon by a S/O co-doped strategy. Electrochim. Acta. 2021, 367, 137526.

36. Wang, C.; Yang, D.; Zhang, W.; Qin, Y.; Qiu, X.; Li, Z. Engineering of edge nitrogen dopant in carbon nanosheet framework for fast and stable potassium-ion storage. Carbon. Res. 2024, 3, 20.

37. Wei, X.; Yi, Y.; Yuan, X.; et al. Intrinsic carbon structure modification overcomes the challenge of potassium bond chemistry. Energy. Environ. Sci. 2024, 17, 2968-3003.

38. Hou, L.; Chen, Z.; Zhao, Z.; Sun, X.; Zhang, J.; Yuan, C. Universal FeCl3-activating strategy for green and scalable fabrication of sustainable biomass-derived hierarchical porous nitrogen-doped carbons for electrochemical supercapacitors. ACS. Appl. Energy. Mater. 2019, 2, 548-57.

39. Huang, R.; Zhang, X.; Qu, Z.; et al. Defects and sulfur-doping design of porous carbon spheres for high-capacity potassium-ion storage. J. Mater. Chem. A. 2022, 10, 682-9.

40. Duan, M.; Zhu, F.; Zhao, G.; et al. Nitrogen and sulfur co-doped mesoporous carbon derived from ionic liquid as high-performance anode material for sodium ion batteries. Microporous. Mesoporous. Mater. 2020, 306, 110433.

41. Xie, Z.; Xia, J.; Qiu, D.; et al. Rich-phosphorus/nitrogen co-doped carbon for boosting the kinetics of potassium-ion hybrid capacitors. Sustain. Energy. Fuels. 2021, 6, 162-9.

42. Yin, R.; Wang, K.; Han, B.; et al. Structural evaluation of coal-tar-pitch-based carbon materials and their Na+ storage properties. Coatings 2021, 11, 948.

43. Liu, Y.; Wang, S.; Sun, X.; et al. Sub-nanoscale engineering of MoO2 clusters for enhanced sodium storage. Energy. Environ. Mater. 2023, 6, e12263.

44. Zhao, J.; Yang, S.; Zhang, P.; Dai, S. Sulphur as medium: directly converting pitch into porous carbon. Fuel 2021, 286, 119393.

45. Cai, P.; Momen, R.; Tian, Y.; et al. Advanced pre-diagnosis method of biomass intermediates toward high energy dual-carbon potassium-ion capacitor. Adv. Energy. Mater. 2022, 12, 2103221.

46. Hu, X.; Liu, Y.; Chen, J.; Yi, L.; Zhan, H.; Wen, Z. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy. Mater. 2019, 9, 1901533.

47. Lotfabad E, Kalisvaart P, Kohandehghan A, Karpuzov D, Mitlin D. Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. J. Mater. Chem. A. 2014, 2, 19685-95.

48. Ning, G.; Ma, X.; Zhu, X.; et al. Enhancing the Li storage capacity and initial coulombic efficiency for porous carbons by sulfur doping. ACS. Appl. Mater. Interfaces. 2014, 6, 15950-8.

49. Tang, H.; Yan, D.; Lu, T.; Pan, L. Sulfur-doped carbon spheres with hierarchical micro/mesopores as anode materials for sodium-ion batteries. Electrochim. Acta. 2017, 241, 63-72.

50. Xiao, N.; Zhang, X.; Liu, C.; Wang, Y.; Li, H.; Qiu, J. Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 2019, 147, 574-81.

51. Li, Q.; Wang, T.; Shu, T.; et al. Controllable construction of hierarchically porous carbon composite of nanosheet network for advanced dual-carbon potassium-ion capacitors. J. Colloid. Interface. Sci. 2022, 621, 169-79.

52. Zeng, S.; Zhou, X.; Wang, B.; et al. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. J. Mater. Chem. A. 2019, 7, 15774-81.

53. Liu, C.; Zheng, H.; Yu, K.; et al. Direct synthesis of P/O-enriched pitch-based carbon microspheres from a coordinated emulsification and pre-oxidation towards high-rate potassium-ion batteries. Carbon 2022, 194, 176-84.

54. Xu, J.; Dou, S.; Zhou, W.; et al. Scalable waste-plastic-derived carbon nanosheets with high contents of inbuilt nitrogen/sulfur sites for high performance potassium-ion hybrid capacitors. Nano. Energy. 2022, 95, 107015.

55. Wang, M.; Zhu, Y.; Zhang, Y.; et al. Isotropic high softening point petroleum pitch-based carbon as anode for high-performance potassium-ion batteries. J. Power. Sources. 2021, 481, 228902.

56. Shen, C.; Yuan, K.; Tian, T.; et al. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 5015-21.

57. Sun, Y.; Wang, H.; Wei, W.; et al. Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance. ACS. Nano. 2021, 15, 1652-65.

58. Zhang, C.; Han, F.; Wang, F.; et al. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy. Storage. Mater. 2020, 24, 208-19.

59. Huang, N.; Tang, C.; Jiang, H.; Sun, J.; Du, A.; Zhang, H. Interfacial growth of N,S-codoped mesoporous carbon onto biomass-derived carbon for superior potassium-ion storage. Nano. Res. 2024, 17, 2619-27.

60. Yang, W.; Zhou, J.; Wang, S.; et al. A three-dimensional carbon framework constructed by N/S Co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS. Energy. Lett. 2020, 5, 1653-61.

61. Lv, C.; Xu, W.; Liu, H.; et al. 3D sulfur and nitrogen codoped carbon nanofiber aerogels with optimized electronic structure and enlarged interlayer spacing boost potassium-ion storage. Small 2019, 15, e1900816.

62. Sun, X.; Zhang, X.; Wang, K.; et al. Determination strategy of stable electrochemical operating voltage window for practical lithium-ion capacitors. Electrochim. Acta. 2022, 428, 140972.

63. Gao, Q.; Li, T.; Liu, C.; et al. Hierarchically porous N-doped carbon framework with enlarged interlayer spacing as dual-carbon electrodes for potassium ion hybrid capacitors. Carb. Neutral. 2023, 2, 57.

64. Qiu, D.; Guan, J.; Li, M.; et al. Kinetics enhanced nitrogen-doped hierarchical porous hollow carbon spheres boosting advanced potassium-ion hybrid capacitors. Adv. Funct. Mater. 2019, 29, 1903496.

65. Cao, J.; Xu, H.; Zhong, J.; et al. Dual-carbon electrode-based high-energy-density potassium-ion hybrid capacitor. ACS. Appl. Mater. Interfaces. 2021, 13, 8497-506.

66. Fan, L.; Lin, K.; Wang, J.; Ma, R.; Lu, B. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv. Mater. 2018, 30, e1800804.

67. Luo, Y.; Liu, L.; Lei, K.; et al. A nonaqueous potassium-ion hybrid capacitor enabled by two-dimensional diffusion pathways of dipotassium terephthalate. Chem. Sci. 2019, 10, 2048-52.

68. Zhao, S.; Yan, K.; Liang, J.; et al. Phosphorus and oxygen dual-doped porous carbon spheres with enhanced reaction kinetics as anode materials for high-performance potassium-ion hybrid capacitors. Adv. Funct. Mater. 2021, 31, 2102060.

69. Zhang, H.; Fang, L.; Guo, Y.; et al. Nitrogen-sulfur co-doped ZIF-8-derived carbon materials for supercapacitors with low self-discharge. J. Energy. Storage. 2024, 80, 110138.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/