REFERENCES
1. Sullivan, I.; Goryachev, A.; Digdaya, I. A.; et al. Author correction: coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 2022, 5, 75-6.
2. Dong, W. J.; Mi, Z. One-dimensional III-nitrides: towards ultrahigh efficiency, ultrahigh stability artificial photosynthesis. J. Mater. Chem. A. 2023, 11, 5427-59.
3. Bushuyev, O. S.; De Luna, P.; Dinh, C. T.; et al. What should we make with CO2 and how can we make it? Joule 2018, 2, 825-32.
4. Zhang, F.; Li, Y.; Qi, M.; et al. Photothermal catalytic CO2 reduction over nanomaterials. Chem. Catal. 2021, 1, 272-97.
5. Liu, H.; Gao, X.; Shi, D.; et al. Recent progress on photothermal heterogeneous catalysts for CO2 conversion reactions. Energy. Technol. 2022, 10, 2100804.
6. Fan, W. K.; Tahir, M. Recent developments in photothermal reactors with understanding on the role of light/heat for CO2 hydrogenation to fuels: a review. Chem. Eng. J. 2022, 427, 131617.
7. Luo, S.; Ren, X.; Lin, H.; Song, H.; Ye, J. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects. Chem. Sci. 2021, 12, 5701-19.
8. Lv, C.; Bai, X.; Ning, S.; et al. Nanostructured materials for photothermal carbon dioxide hydrogenation: regulating solar utilization and catalytic performance. ACS. Nano. 2023, 17, 1725-38.
9. Cai, M.; Li, C.; An, X.; et al. Supra-photothermal CO2 methanation over greenhouse-like plasmonic superstructures of ultrasmall cobalt nanoparticles. Adv. Mater. 2024, 36, e2308859.
10. Meng, X.; Wang, T.; Liu, L.; et al. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. 2014, 53, 11478-82.
11. Ren, J.; Ouyang, S.; Xu, H.; et al. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Adv. Energy. Mater. 2017, 7, 1601657.
12. Mateo, D.; Albero, J.; García, H. Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl. Catal. B. Environ. 2018, 224, 563-71.
13. Ali, F. M.; Ghuman, K. K.; O'brien, P. G.; et al. Highly efficient ambient temperature CO2 photomethanation catalyzed by nanostructured RuO2 on silicon photonic crystal support. Adv. Energy. Mater. 2018, 8, 1702277.
14. Mateo, D.; Albero, J.; García, H. Titanium-perovskite-supported RuO2 nanoparticles for photocatalytic CO2 methanation. Joule 2019, 3, 1949-62.
15. Li, Y.; Hao, J.; Song, H.; et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 2019, 10, 2359.
16. Mateo, D.; Morlanes, N.; Maity, P.; Shterk, G.; Mohammed, O. F.; Gascon, J. Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate. Adv. Funct. Mater. 2021, 31, 2008244.
17. Fu, G.; Jiang, M.; Liu, J.; et al. Rh/Al nanoantenna photothermal catalyst for wide-spectrum solar-driven CO2 methanation with nearly 100% selectivity. Nano. Lett. 2021, 21, 8824-30.
18. Zhou, L.; Martirez, J. M. P.; Finzel, J.; et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy. 2020, 5, 61-70.
19. Tang, Y.; Li, Y.; Bao, W.; et al. Enhanced dry reforming of CO2 and CH4 on photothermal catalyst Ru/SrTiO3. Appl. Catal. B. Environ. 2023, 338, 123054.
20. Huang, H.; Mao, M.; Zhang, Q.; et al. Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv. Energy. Mater. 2018, 8, 1702472.
21. Zhang, J.; Xie, K.; Jiang, Y.; et al. Photoinducing different mechanisms on a Co-Ni bimetallic alloy in catalytic dry reforming of methane. ACS. Catal. 2023, 13, 10855-65.
22. Shoji, S.; Peng, X.; Yamaguchi, A.; et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 2020, 3, 148-53.
23. Li, Y.; Liu, X.; Wu, T.; et al. Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane. Nat. Commun. 2024, 15, 5495.
24. Li, Y.; Li, D.; Liu, H.; et al. In situ fabricating a Rh/Ga2O3 photothermal catalyst for dry reforming of methane. Catal. Sci. Technol. 2024, 14, 2722-9.
25. Ulmer, U.; Dingle, T.; Duchesne, P. N.; et al. Fundamentals and applications of photocatalytic CO2 methanation. Nat. Commun. 2019, 10, 3169.
26. Feng, K.; Wang, S.; Zhang, D.; et al. Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO2 photocatalysis. Adv. Mater. 2020, 32, e2000014.
27. Dong, W. J.; Yu, H. K.; Lee, J. L. Abnormal dewetting of Ag layer on three-dimensional ITO branches to form spatial plasmonic nanoparticles for organic solar cells. Sci. Rep. 2020, 10, 12819.
28. Cho, W. S.; Park, J. Y.; Yu, H. K.; Dong, W. J.; Lee, J. Simple and reversible method to control the surface energy of ITO branched nanowires for tuning wettability of micro/nanoscale droplets. App. Surf. Sci. 2025, 679, 161227.
29. Zhang, J. Z.; Noguez, C. Plasmonic optical properties and applications of metal nanostructures. Plasmonics 2008, 3, 127-50.
30. Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 2014, 8, 95-103.
31. Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25-34.
32. Zhang, X.; Chen, Y. L.; Liu, R. S.; Tsai, D. P. Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 046401.
33. Kumar, A.; Choudhary, P.; Kumar, A.; Camargo, P. H. C.; Krishnan, V. Recent advances in plasmonic photocatalysis based on TiO2 and noble metal nanoparticles for energy conversion, environmental remediation, and organic synthesis. Small 2022, 18, e2101638.
34. DuChene, J. S.; Tagliabue, G.; Welch, A. J.; Cheng, W. H.; Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano. Lett. 2018, 18, 2545-50.
35. Jiang, X.; Huang, J.; Bi, Z.; et al. Plasmonic active “hot spots”-confined photocatalytic CO2 reduction with high selectivity for CH4 production. Adv. Mater. 2022, 34, e2109330.
36. Baffou, G.; Quidant, R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser. Photonics. Rev. 2013, 7, 171-87.
37. Chen, J.; Ye, Z.; Yang, F.; Yin, Y. Plasmonic nanostructures for photothermal conversion. Small. Sci. 2021, 1, 2000055.
38. Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical transformations on plasmonic metal nanoparticles. Nat. Mater. 2015, 14, 567-76.
39. Jiang, W.; Low, B. Q. L.; Long, R.; et al. Active site engineering on plasmonic nanostructures for efficient photocatalysis. ACS. Nano. 2023, 17, 4193-229.
40. Cai, M.; Wu, Z.; Li, Z.; et al. Greenhouse-inspired supra-photothermal CO2 catalysis. Nat. Energy. 2021, 6, 807-14.
41. Coppens, Z. J.; Li, W.; Walker, D. G.; Valentine, J. G. Probing and controlling photothermal heat generation in plasmonic nanostructures. Nano. Lett. 2013, 13, 1023-8.
42. Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173-210.
43. Sun, C.; Zhao, Z.; Liu, H.; Wang, H. Core-shell nanostructure for supra-photothermal CO2 catalysis. Rare. Met. 2022, 41, 1403-5.
44. Chen, X.; Chen, Y.; Yan, M.; Qiu, M. Nanosecond photothermal effects in plasmonic nanostructures. ACS. Nano. 2012, 6, 2550-7.
45. Xiong, Y.; Zhao, W.; Gu, D.; Tie, Z.; Zhang, W.; Jin, Z. Tunable C2 products via photothermal steam reforming of CO2 over surface-modulated mesoporous cobalt oxides. Nano. Lett. 2023, 23, 4876-84.
46. Tang, X.; Song, C.; Li, H.; et al. Thermally stable Ni foam-supported inverse CeAlOx/Ni ensemble as an active structured catalyst for CO2 hydrogenation to methane. Nat. Commun. 2024, 15, 3115.
47. Li, N.; Liu, M.; Yang, B.; et al. Enhanced photocatalytic performance toward CO2 hydrogenation over nanosized TiO2-loaded Pd under UV irradiation. J. Phys. Chem. C. 2017, 121, 2923-32.
48. Deng, B.; Song, H.; Peng, K.; Li, Q.; Ye, J. Metal-organic framework-derived Ga-Cu/CeO2 catalyst for highly efficient photothermal catalytic CO2 reduction. Appl. Catal. B. Environ. 2021, 298, 120519.
49. Tang, Y.; Wang, H.; Guo, C.; et al. Ruthenium-cobalt solid-solution alloy nanoparticles for enhanced photopromoted thermocatalytic CO2 hydrogenation to methane. ACS. Nano. 2024, 18, 11449-61.
50. Peng, K.; Ye, J.; Wang, H.; et al. Natural halloysite nanotubes supported Ru as highly active catalyst for photothermal catalytic CO2 reduction. Appl. Catal. B. Environ. 2023, 324, 122262.
51. Ge, H.; Kuwahara, Y.; Kusu, K.; Bian, Z.; Yamashita, H. Ru/H MoO3- with plasmonic effect for boosting photothermal catalytic CO2 methanation. Appl. Catal. B. Environ. 2022, 317, 121734.
52. Du, P.; Deng, G.; Li, Z.; et al. Effective CO2 activation of enriched oxygen vacancies for photothermal CO2 methanation. J. Mater. Sci. Technol. 2024, 189, 203-10.
53. Zhai, J.; Xia, Z.; Zhou, B.; et al. Photo-thermal coupling to enhance CO2 hydrogenation toward CH4 over Ru/MnO/Mn3O4. Nat. Commun. 2024, 15, 1109.
54. Guo, C.; Tang, Y.; Yang, Z.; et al. Reinforcing the efficiency of photothermal catalytic CO2 methanation through integration of Ru nanoparticles with photothermal MnCo2O4 nanosheets. ACS. Nano. 2023, 17, 23761-71.
55. Zhu, X.; Zong, H.; Pérez, C. J. V.; et al. Supercharged CO2 photothermal catalytic methanation: high conversion, rate, and selectivity. Angew. Chem. Int. Ed. 2023, 135, e202218694.
56. Li, Q.; Wang, C.; Wang, H.; Chen, J.; Chen, J.; Jia, H. Disclosing support-size-dependent effect on ambient light-driven photothermal CO2 hydrogenation over nickel/titanium dioxide. Angew. Chem. Int. Ed. 2024, 136, e202318166.
57. Vrijburg, W. L.; Moioli, E.; Chen, W.; et al. Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation. ACS. Catal. 2019, 9, 7823-39.
58. Guo, J.; Duchesne, P. N.; Wang, L.; et al. High-performance, scalable, and low-cost copper hydroxyapatite for photothermal CO2 reduction. ACS. Catal. 2020, 10, 13668-81.
59. Zhao, J.; Yang, Q.; Shi, R.; et al. FeO-CeO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG. Asia. Mater. 2020, 12, 171.
60. Lou, D.; Xu, A.; Fang, Y.; et al. Cobalt-sputtered anodic aluminum oxide membrane for efficient photothermal CO2 hydrogenation. ChemNanoMat 2021, 7, 1008-12.
61. Zhao, Z.; Doronkin, D. E.; Ye, Y.; Grunwaldt, J.; Huang, Z.; Zhou, Y. Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst. Chin. J. Catal. 2020, 41, 286-93.
62. Tang, Y.; Wu, S.; Wang, Y.; et al. Photo-Assisted Catalytic CO2 hydrogenation to CO with nearly 100% selectivity over Rh/TiO2 catalysts. Energy. Fuels. 2023, 37, 539-46.
63. Yang, Z.; Zhao, T.; Tang, Y.; et al. Size-modulated photo-thermal catalytic CO2 hydrogenation performances over Pd nanoparticles. J. Catal. 2023, 424, 22-8.
64. Su, X.; Yang, X.; Zhao, B.; Huang, Y. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J. Energy. Chem. 2017, 26, 854-67.
65. Lu, B.; Quan, F.; Sun, Z.; Jia, F.; Zhang, L. Photothermal reverse-water-gas-shift over Au/CeO2 with high yield and selectivity in CO2 conversion. Catal. Commun. 2019, 129, 105724.
66. Wang, L.; Dong, Y.; Yan, T.; et al. Black indium oxide a photothermal CO2 hydrogenation catalyst. Nat. Commun. 2020, 11, 2432.
67. Peng, Y.; Szalad, H.; Nikacevic, P.; et al. Co-doped hydroxyapatite as photothermal catalyst for selective CO2 hydrogenation. Appl. Catal. B. Environ. 2023, 333, 122790.
68. Wang, J.; Li, S.; Zhao, J.; Liu, K.; Jiang, B.; Li, H. Boron-doped Cu-Co catalyst boosting charge transfer in photothermal carbon dioxide hydrogenation. Appl. Catal. B. Environ. Energy. 2024, 352, 124045.
69. Tan, W.; Xie, S.; Zhang, X.; et al. Fine-tuning of Pt dispersion on Al2O3 and understanding the nature of active Pt sites for efficient CO and NH3 oxidation reactions. ACS. Appl. Mater. Interfaces. 2024, 16, 454-66.
70. Kiss, A. A.; Pragt, J.; Vos, H.; Bargeman, G.; de, G. M. Novel efficient process for methanol synthesis by CO2 hydrogenation. Chem. Eng. J. 2016, 284, 260-9.
71. Barberis, L.; Hakimioun, A. H.; Plessow, P. N.; et al. Competition between reverse water gas shift reaction and methanol synthesis from CO2: influence of copper particle size. Nanoscale 2022, 14, 13551-60.
72. Wang, Z.; Song, H.; Pang, H.; et al. Photo-assisted methanol synthesis via CO2 reduction under ambient pressure over plasmonic Cu/ZnO catalysts. Appl. Catal. B. Environ. 2019, 250, 10-6.
73. Deng, B.; Song, H.; Wang, Q.; et al. Highly efficient and stable photothermal catalytic CO2 hydrogenation to methanol over Ru/In2O3 under atmospheric pressure. Appl. Catal. B. Environ. 2023, 327, 122471.
74. Xie, B.; Wong, R. J.; Tan, T. H.; et al. Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nat. Commun. 2020, 11, 1615.
75. Wu, D.; Deng, K.; Hu, B.; Lu, Q.; Liu, G.; Hong, X. Plasmon-assisted photothermal catalysis of low-pressure CO2 hydrogenation to methanol over Pd/ZnO catalyst. ChemCatChem 2019, 11, 1598-601.
76. Zhang, G.; Xu, Q.; Huang, H.; et al. Ni-doped In2O3 photothermal coupling catalyzed boosted carbon dioxide hydrogenation to methanol. Ind. Eng. Chem. Res. 2024, 63, 968-79.
77. Wang, L.; Ghoussoub, M.; Wang, H.; et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018, 2, 1369-81.
78. Zhang, Z.; Mao, C.; Meira, D. M.; et al. New black indium oxide - tandem photothermal CO2-H2 methanol selective catalyst. Nat. Commun. 2022, 13, 1512.
79. Xie, T.; Zhang, Z.; Zheng, H.; Xu, K.; Hu, Z.; Lei, Y. Enhanced photothermal catalytic performance of dry reforming of methane over Ni/mesoporous TiO2 composite catalyst. Chem. Eng. J. 2022, 429, 132507.
80. Han, K.; Wang, Y.; Wang, S.; Liu, Q.; Deng, Z.; Wang, F. Narrowing band gap energy of CeO2 in (Ni/CeO2)@SiO2 catalyst for photothermal methane dry reforming. Chem. Eng. J. 2021, 421, 129989.
81. Takami, D.; Tsubakimoto, J.; Sarwana, W.; Yamamoto, A.; Yoshida, H. Photothermal dry reforming of methane over phyllosilicate-derived silica-supported nickel catalysts. ACS. Appl. Energy. Mater. 2023, 6, 7627-35.
82. Hu, B.; Wang, B.; Zhou, W.; et al. Synergistic effect of Ru single atom and nanoparticle on photothermal methane dry reforming reaction. Chem. Eng. Sci. 2024, 297, 120308.
83. Yang, Y.; Chai, Z.; Qin, X.; et al. Light-induced redox looping of a rhodium/CexWO3 photocatalyst for highly active and robust dry reforming of methane. Angew. Chem. Int. Ed. 2022, 61, e202200567.
84. Liu, H.; Song, H.; Zhou, W.; Meng, X.; Ye, J. A promising application of optical hexagonal TaN in photocatalytic reactions. Angew. Chem. Int. Ed. 2018, 130, 17023-6.
85. Rao, Z.; Wang, K.; Cao, Y.; et al. Light-reinforced key intermediate for anticoking to boost highly durable methane dry reforming over single atom Ni active sites on CeO2. J. Am. Chem. Soc. 2023, 145, 24625-35.
86. Xiong, H.; Dong, Y.; Hu, C.; et al. Highly efficient and selective light-driven dry reforming of methane by a carbon exchange mechanism. J. Am. Chem. Soc. 2024, 146, 9465-75.
87. Tavasoli, A.; Gouda, A.; Zähringer, T.; et al. Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure. Nat. Commun. 2023, 14, 1435.
88. Li, Q.; Wang, H.; Zhang, M.; Li, G.; Chen, J.; Jia, H. Suppressive strong metal-support interactions on ruthenium/TiO2 promote light-driven photothermal CO2 reduction with methane. Angew. Chem. Int. Ed. 2023, 135, e202300129.
89. Rao, Z.; Cao, Y.; Huang, Z.; et al. Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3. ACS. Catal. 2021, 11, 4730-8.
90. Takami, D.; Yamamoto, A.; Kato, K.; Shishido, T.; Yoshida, H. Transient temperature response of supported Rh nanoparticles in photothermal dry reforming of methane - an Operando dispersive X-ray absorption spectroscopy study. J. Phys. Chem. C. 2022, 126, 15736-43.
91. Zhang, J.; Li, Y.; Sun, J.; et al. Regulation of energetic hot carriers on Pt/TiO2 with thermal energy for photothermal catalysis. Appl. Catal. B. Environ. 2022, 309, 121263.