REFERENCES

1. Bradshaw, A.; Schleicher, K. Electrical conductivity of seawater. IEEE. J. Ocean. Eng. 1980, 5, 50-62.

2. Yu, Z.; Liu, L. Recent advances in hybrid seawater electrolysis for hydrogen production. Adv. Mater. 2024, 36, e2308647.

3. Liu, G.; Xu, Y.; Yang, T.; Jiang, L. Recent advances in electrocatalysts for seawater splitting. Nano. Mater. Sci. 2023, 5, 101-16.

4. Fei, H.; Liu, R.; Liu, T.; et al. Direct seawater electrolysis: from catalyst design to device applications. Adv. Mater. 2024, 36, e2309211.

5. Hu, H.; Wang, X.; Attfield, J. P.; Yang, M. Metal nitrides for seawater electrolysis. Chem. Soc. Rev. 2024, 53, 163-203.

6. Tong, W.; Forster, M.; Dionigi, F.; et al. Electrolysis of low-grade and saline surface water. Nat. Energy. 2020, 5, 367-77.

7. Xiao, X.; Yang, L.; Sun, W.; et al. Electrocatalytic water splitting: from harsh and mild conditions to natural seawater. Small 2022, 18, e2105830.

8. Liu, Y.; Wang, Y.; Fornasiero, P.; Tian, G.; Strasser, P.; Yang, X. Long-term durability of seawater electrolysis for hydrogen: from catalysts to systems. Angew. Chem. Int. Ed. 2024, 136, e202412087.

9. Karlsson, R. K.; Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982-3028.

10. Bahuguna, G.; Patolsky, F. Routes to avoiding chlorine evolution in seawater electrolysis: recent perspective and future directions. ACS. Mater. Lett. 2024, 6, 3202-17.

11. Bahuguna, G.; Patolsky, F. Why today’s “water” in water splitting is not natural water? Critical up-to-date perspective and future challenges for direct seawater splitting. Nano. Energy. 2023, 117, 108884.

12. Haq, T. U.; Haik, Y. Strategies of anode design for seawater electrolysis: recent development and future perspective. Small. Sci. 2022, 2, 2200030.

13. Liang, J.; Li, Z.; He, X.; et al. Electrocatalytic seawater splitting: nice designs, advanced strategies, challenges and perspectives. Mater. Today. 2023, 69, 193-235.

14. Gouda, V. K.; Banat, I. M.; Riad, W. T.; Mansour, S. Microbiologically induced corrosion of UNS N04400 in seawater. Corrosion 1993, 49, 63-73.

15. Oh, B. S.; Oh, S.; Jung, Y. J.; Hwang, Y.; Kang, J.; Kim, I. S. Evaluation of a seawater electrolysis process considering formation of free chlorine and perchlorate. Desalination. Water. Treat. 2010, 18, 245-50.

16. Kang, X.; Yang, F.; Zhang, Z.; et al. A corrosion-resistant RuMoNi catalyst for efficient and long-lasting seawater oxidation and anion exchange membrane electrolyzer. Nat. Commun. 2023, 14, 3607.

17. Park, Y. S.; Jeong, J.; Jang, M. J.; et al. Ternary layered double hydroxide oxygen evolution reaction electrocatalyst for anion exchange membrane alkaline seawater electrolysis. J. Energy. Chem. 2022, 75, 127-34.

18. Yang, P.; Liu, F.; Zang, X.; et al. Microwave quasi-solid state to construct strong metal-support interactions with interfacial electron-enriched Ru for anion exchange membrane electrolysis. Adv. Energy. Mater. 2024, 14, 2303384.

19. Hu, H.; Zhang, Z.; Liu, L.; et al. Efficient and durable seawater electrolysis with a V2O3-protected catalyst. Sci. Adv. 2024, 10, eadn7012.

20. Chang, J.; Wang, G.; Yang, Z.; et al. Dual-doping and synergism toward high-performance seawater electrolysis. Adv. Mater. 2021, 33, e2101425.

21. Xia, Y.; Guo, L.; Zhu, J.; et al. Manipulating electronic structure of nickel phosphide via asymmetric coordination interaction for anion-exchange membrane based seawater electrolysis. Appl. Catal. B. Environ. Energy. 2024, 351, 123995.

22. Song, L.; Guo, L.; Mao, J.; et al. Boosting hydrogen adsorption via manipulating the d-band center of ferroferric oxide for anion exchange membrane-based seawater electrolysis. ACS. Catal. 2024, 14, 6981-91.

23. Wang, H.; Jiang, N.; Huang, B.; Yu, Q.; Guan, L. Surface amorphization and functionalization of a NiFeOOH electrocatalyst for a robust seawater electrolyzer. EES. Catal. 2024, 2, 1092-9.

24. Li, Q.; Fu, X.; Li, H.; et al. Strong d-p orbital hybridization of Os-P via ultrafast microwave plasma assistance for anion exchange membrane electrolysis. Adv. Funct. Mater. 2024, 34, 2408517.

25. Cui, T.; Chi, J.; Liu, K.; et al. Manipulating the electron redistribution of Fe3O4 for anion exchange membrane based alkaline seawater electrolysis. Appl. Catal. B. Environ. Energy. 2024, 357, 124269.

26. Jun, S. E.; Myeong, S.; Cho, B.; et al. Exsolved Ru-mediated stabilization of MoO2-Ni4Mo electrocatalysts for anion exchange membrane water electrolysis and unbiased solar-driven saline water splitting. Appl. Catal. B. Environ. Energy. 2024, 358, 124364.

27. Lee, S. A.; Bu, J.; Lee, J.; Jang, H. W. High-entropy nanomaterials for advanced electrocatalysis. Small. Sci. 2023, 3, 2200109.

28. Choi, D.; Ryu, S. Efficient and selective oxygen evolution reaction in seawater electrolysis with electrochemically synthesized amorphous-like NiFeS. Electron. Mater. Lett. 2024, 20, 173-82.

29. Cho, Y. B.; Nguyen, D. C.; Hua, S. H.; Kim, Y. S. Direct detection of water-dissolved ammonia using paper-based analytical devices. J. Sensor. Sci. Technol. 2023, 32, 67-74.

30. Kim, J.; Kang, D.; Kim, S.; Jang, H. W. Catalyze materials science with machine learning. ACS. Mater. Lett. 2021, 3, 1151-71.

31. Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270-81.

32. Hu, H.; Zhang, Z.; Zhang, Y.; et al. An ultra-low Pt metal nitride electrocatalyst for sustainable seawater hydrogen production. Energy. Environ. Sci. 2023, 16, 4584-92.

33. Veroneau, S. S.; Nocera, D. G. Continuous electrochemical water splitting from natural water sources via forward osmosis. Proc. Natl. Acad. Sci. USA. 2021, 118, e2024855118.

34. Desai, D.; Beh, E. S.; Sahu, S.; et al. Electrochemical desalination of seawater and hypersaline brines with coupled electricity storage. ACS. Energy. Lett. 2018, 3, 375-9.

35. Loutatidou, S.; Chalermthai, B.; Marpu, P. R.; Arafat, H. A. Capital cost estimation of RO plants: GCC countries versus southern Europe. Desalination 2014, 347, 103-11.

36. Logan, B. E.; Shi, L.; Rossi, R. Enabling the use of seawater for hydrogen gas production in water electrolyzers. Joule 2021, 5, 760-2.

37. Lee, J. K.; Seo, J. H.; Lim, J.; Park, S.; Jang, H. W. Best practices in membrane electrode assembly for water electrolysis. ACS. Mater. Lett. 2024, 6, 2757-86.

38. Abbasi, R.; Setzler, B. P.; Lin, S.; et al. A roadmap to low-cost hydrogen with hydroxide exchange membrane electrolyzers. Adv. Mater. 2019, 31, e1805876.

39. Li, J.; Sun, J.; Li, Z.; Meng, X. Recent advances in electrocatalysts for seawater splitting in hydrogen evolution reaction. Int. J. Hydrogen. Energy. 2022, 47, 29685-97.

40. Lee, S. A.; Kim, J.; Kwon, K. C.; Park, S. H.; Jang, H. W. Anion exchange membrane water electrolysis for sustainable large-scale hydrogen production. Carbon. Neutral. 2022, 1, 26-48.

41. Vincent, I.; Bessarabov, D. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renew. Sustain. Energy. Rev. 2018, 81, 1690-704.

42. Shao, L.; Han, X.; Shi, L.; et al. In situ generation of molybdate-modulated nickel-iron oxide electrodes with high corrosion resistance for efficient seawater electrolysis. Adv. Energy. Mater. 2024, 14, 2303261.

43. Xu, W.; Wang, Z.; Liu, P.; et al. Ag nanoparticle-induced surface chloride immobilization strategy enables stable seawater electrolysis. Adv. Mater. 2024, 36, e2306062.

44. Zhang, S.; Xu, W.; Chen, H.; et al. Progress in anode stability improvement for seawater electrolysis to produce hydrogen. Adv. Mater. 2024, 36, e2311322.

45. Huang, C.; Zhou, Q.; Yu, L.; et al. Functional bimetal Co-modification for boosting large-current-density seawater electrolysis by inhibiting adsorption of chloride ions. Adv. Energy. Mater. 2023, 13, 2301475.

46. Gong, Z.; Liu, J.; Yan, M.; Gong, H.; Ye, G.; Fei, H. Highly durable and efficient seawater electrolysis enabled by defective graphene-confined nanoreactor. ACS. Nano. 2023, 17, 18372-81.

47. Fan, R.; Liu, C.; Li, Z.; et al. Ultrastable electrocatalytic seawater splitting at ampere-level current density. Nat. Sustain. 2024, 7, 158-67.

48. Liu, J.; Liu, X.; Shi, H.; et al. Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl. Catal. B. Environ. 2022, 302, 120862.

49. Liu, H.; Shen, W.; Jin, H.; et al. High-performance alkaline seawater electrolysis with anomalous chloride promoted oxygen evolution reaction. Angew. Chem. Int. Ed. 2023, 62, e202311674.

50. Zhao, Y.; Adiyeri, S. D. P.; Huang, C.; et al. Oxygen evolution/reduction reaction catalysts: from in situ monitoring and reaction mechanisms to rational design. Chem. Rev. 2023, 123, 6257-358.

51. Dionigi, F.; Reier, T.; Pawolek, Z.; Gliech, M.; Strasser, P. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem 2016, 9, 962-72.

52. Guo, J.; Zheng, Y.; Hu, Z.; et al. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nat. Energy. 2023, 8, 264-72.

53. Dresp, S.; Dionigi, F.; Loos, S.; et al. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Adv. Energy. Mater. 2018, 8, 1800338.

54. Jung, H.; Song, J.; Lee, Y.; et al. Computational discovery of optimal dopants for nickel iron oxyhydroxide to enhance OER activity and saline water compatibility. ACS. Energy. Lett. 2024, 9, 2162-72.

55. Zhang, S.; Wang, Y.; Li, S.; et al. Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode. Nat. Commun. 2023, 14, 4822.

56. Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: opportunities and challenges. ACS. Energy. Lett. 2019, 4, 933-42.

57. Han, J.; Jwa, E.; Lee, H.; et al. Direct seawater electrolysis via synergistic acidification by inorganic precipitation and proton flux from bipolar membrane. Chem. Eng. J. 2022, 429, 132383.

58. Li, T.; Zhao, X.; Getaye, S. M.; et al. Phosphate-decorated Ni3Fe-LDHs@CoPx nanoarray for near-neutral seawater splitting. Chem. Eng. J. 2023, 460, 141413.

59. Li, J.; Yu, T.; Wang, K.; et al. Multiscale engineering of nonprecious metal electrocatalyst for realizing ultrastable seawater splitting in weakly alkaline solution. Adv. Sci. 2022, 9, e2202387.

60. Cai, Z.; Liang, J.; Li, Z.; et al. Stabilizing NiFe sites by high-dispersity of nanosized and anionic Cr species toward durable seawater oxidation. Nat. Commun. 2024, 15, 6624.

61. Li, P.; Zhao, S.; Huang, Y.; Huang, Q.; Yang, Y.; Yang, H. Multiscale structural engineering of a multilayered nanoarray electrode realizing boosted and sustained oxygen evolution catalysis in seawater electrolysis. ACS. Catal. 2023, 13, 15360-74.

62. Khan, M. A.; Al-Attas, T.; Roy, S.; et al. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy. Environ. Sci. 2021, 14, 4831-9.

63. Karoui, H.; Riffault, B.; Jeannin, M.; et al. Electrochemical scaling of stainless steel in artificial seawater: role of experimental conditions on CaCO3 and Mg(OH)2 formation. Desalination 2013, 311, 234-40.

64. Kang, W.; Meng, S.; Zhao, Y.; et al. Scaling-free cathodes: enabling electrochemical extraction of high-purity nano-CaCO3 and -Mg(OH)2 in seawater. Environ. Sci. Technol. 2024, 58, 14034-41.

65. Yi, L.; Chen, X.; Wen, Y.; et al. Solidophobic surface for electrochemical extraction of high-valued Mg(OH)2 coupled with H2 production from seawater. Nano. Lett. 2024, 24, 5920-8.

66. Lee, S.; Kim, E.; Lee, D.; Jang, K.; Park, J.; Choi, W. Y. Synthesis of seawater-derived superhydrophobic calcium carbonate via CO2 mineralization by utilizing L-Arginine/L-Lysine oleate-based self-assembly structures. Chem. Eng. J. 2024, 490, 151785.

67. Dresp, S.; Ngo, T. T.; Klingenhof, M.; Brückner, S.; Hauke, P.; Strasser, P. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy. Environ. Sci. 2020, 13, 1725-9.

68. Zhou, Z.; Pei, Z.; Wei, L.; Zhao, S.; Jian, X.; Chen, Y. Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy. Environ. Sci. 2020, 13, 3185-206.

69. Rodriguez-blanco, J.; Shaw, S.; Bots, P.; Roncal-herrero, T.; Benning, L. The role of pH and Mg on the stability and crystallization of amorphous calcium carbonate. J. Alloys. Compd. 2012, 536, S477-9.

70. Yousefi, S.; Ghasemi, B.; Tajally, M.; Asghari, A. Optical properties of MgO and Mg(OH)2 nanostructures synthesized by a chemical precipitation method using impure brine. J. Alloys. Compd. 2017, 711, 521-9.

71. Chen, H.; Liu, P.; Li, W.; et al. Stable seawater electrolysis over 10 000 H via chemical fixation of sulfate on NiFeBa-LDH. Adv. Mater. 2024, 36, e2411302.

72. Liao, L.; Li, D.; Zhang, Y.; et al. Complementary multisite turnover catalysis toward superefficient bifunctional seawater splitting at ampere-level current density. Adv. Mater. 2024, 36, e2405852.

73. Liu, X.; Chi, J.; Mao, H.; Wang, L. Principles of designing electrocatalyst to boost reactivity for seawater splitting. Adv. Energy. Mater. 2023, 13, 2301438.

74. Tlili, M. M.; Benamor, M.; Gabrielli, C.; Perrot, H.; Tribollet, B. Influence of the interfacial pH on electrochemical CaCO3 precipitation. J. Electrochem. Soc. 2003, 150, C765.

75. Zheng, W.; Lee, L. Y. S.; Wong, K. Y. Improving the performance stability of direct seawater electrolysis: from catalyst design to electrode engineering. Nanoscale 2021, 13, 15177-87.

76. Liu, J.; Duan, S.; Shi, H.; et al. Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises. Angew. Chem. Int. Ed. 2022, 61, e202210753.

77. Xie, H.; Zhao, Z.; Liu, T.; et al. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673-8.

78. Adisasmito, S.; Khoiruddin, K.; Sutrisna, P. D.; Wenten, I. G.; Siagian, U. W. R. Bipolar membrane seawater splitting for hydrogen production: a review. ACS. Omega. 2024, 9, 14704-27.

79. Zheng, Y.; Qiao, S. Direct seawater splitting to hydrogen by a membrane electrolyzer. Joule 2023, 7, 20-2.

80. Jin, H.; Xu, J.; Liu, H.; et al. Emerging materials and technologies for electrocatalytic seawater splitting. Sci. Adv. 2023, 9, eadi7755.

81. Liang, J.; Cai, Z.; He, X.; et al. Electroreduction of alkaline/natural seawater: self-cleaning Pt/carbon cathode and on-site co-synthesis of H2 and Mg hydroxide nanoflakes. Chem 2024, 10, 3067-87.

82. Zhao, L.; Zhou, S.; Lv, Z.; et al. Anti-precipitation molecular metal chalcogenide complexes modification for efficient direct alkaline seawater splitting at the large current density. Appl. Catal. B. Environ. 2023, 338, 122996.

83. Yang, C.; Wu, Z.; Zheng, Y.; et al. Electron-donating Cu atoms induced high proton supply and anti-poisoning ruthenium clusters for superior direct seawater hydrogen production. Adv. Funct. Mater. 2024, 34, 2404061.

84. Liang, J.; Cai, Z.; Li, Z.; et al. Efficient bubble/precipitate traffic enables stable seawater reduction electrocatalysis at industrial-level current densities. Nat. Commun. 2024, 15, 2950.

85. Jwa, E.; Kim, H.; Chon, K.; et al. Bioelectrochemical precipitation system for removal of scale-forming ions from seawater using two different buffers. Desalination 2017, 418, 35-42.

86. Ren, Y.; Fan, F.; Zhang, Y.; et al. A Dual-cation exchange membrane electrolyzer for continuous H2 production from seawater. Adv. Sci. 2024, 11, e2401702.

87. Shi, H.; Wang, T.; Liu, J.; et al. A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis. Nat. Commun. 2023, 14, 3934.

88. Li, T.; Wang, B.; Cao, Y.; et al. Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation. Nat. Commun. 2024, 15, 6173.

89. Sun, F.; Qin, J.; Wang, Z.; et al. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/