REFERENCES
1. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135, 1167-76.
2. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power. Sources. 2010, 195, 2419-30.
3. Pereira, N.; Amatucci, G. G.; Whittingham, M. S.; Hamlen, R. Lithium-titanium disulfide rechargeable cell performance after 35 years of storage. J. Power. Sources. 2015, 280, 18-22.
4. Yu, X.; Chen, R.; Gan, L.; Li, H.; Chen, L. Battery safety: from lithium-ion to solid-state batteries. Engineering 2023, 21, 9-14.
5. Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229-52.
6. Tang, X.; Lv, S.; Jiang, K.; Zhou, G.; Liu, X. Recent development of ionic liquid-based electrolytes in lithium-ion batteries. J. Power. Sources. 2022, 542, 231792.
7. Tang, L.; Xu, Q.; Zhang, Y.; Chen, W.; Wu, M. MOF/PCP-based electrocatalysts for the oxygen reduction reaction. Electrochem. Energy. Rev. 2022, 5, 32-81.
8. Reddy, R. C. K.; Lin, X.; Zeb, A.; Su, C. Metal-organic frameworks and their derivatives as cathodes for lithium-ion battery applications: a review. Electrochem. Energy. Rev. 2022, 5, 312-47.
9. Han, L.; Wang, L.; Chen, Z.; et al. Incombustible polymer electrolyte boosting safety of solid-state lithium batteries: a review. Adv. Funct. Mater. 2023, 33, 2300892.
10. Zhai, Y.; Hou, W.; Tao, M.; et al. Enabling high-voltage "superconcentrated ionogel-in-ceramic" hybrid electrolyte with ultrahigh ionic conductivity and single Li+-ion transference number. Adv. Mater. 2022, 34, e2205560.
11. Zhang, W.; Koverga, V.; Liu, S.; et al. Single-phase local-high-concentration solid polymer electrolytes for lithium-metal batteries. Nat. Energy. 2024, 9, 386-400.
12. Zhou, S.; Zhong, S.; Dong, Y.; et al. Composition and structure design of poly(vinylidene fluoride)-based solid polymer electrolytes for lithium batteries. Adv. Funct. Mater. 2023, 33, 2214432.
13. Zhang, H.; Chen, Y.; Li, C.; Armand, M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat 2021, 1, 24-37.
14. Shen, Z.; Huang, J.; Xie, Y.; Wei, D.; Chen, J.; Shi, Z. Solid electrolyte interphase on lithium metal anodes. ChemSusChem 2024, 17, e202301777.
15. Wu, L.; Wang, Y.; Guo, X.; Ding, P.; Lin, Z.; Yu, H. Interface science in polymer-based composite solid electrolytes in lithium metal batteries. SusMat 2022, 2, 264-92.
16. Wu, F.; Zhang, K.; Liu, Y.; et al. Polymer electrolytes and interfaces toward solid-state batteries: recent advances and prospects. Energy. Storage. Mater. 2020, 33, 26-54.
17. Su, G.; Zhang, X.; Xiao, M.; et al. Polymeric electrolytes for solid-state lithium ion batteries: structure design, electrochemical properties and cell performances. ChemSusChem 2024, 17, e202300293.
18. Lu, X.; Wang, Y.; Xu, X.; Yan, B.; Wu, T.; Lu, L. Polymer-based solid-state electrolytes for high-energy-density lithium-ion batteries - review. Adv. Energy. Mater. 2023, 13, 2301746.
19. Hu, L.; Gao, X.; Wang, H.; et al. Progress of polymer electrolytes worked in solid-state lithium batteries for wide-temperature application. Small 2024, 20, e2312251.
20. Lin, Z.; Sheng, O.; Cai, X.; et al. Solid polymer electrolytes in all-solid-state lithium metal batteries: from microstructures to properties. J. Energy. Chem. 2023, 81, 358-78.
21. Ning, Z.; Jolly, D. S.; Li, G.; et al. Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater. 2021, 20, 1121-9.
22. Zhao, J.; Tang, Y.; Dai, Q.; et al. In situ observation of Li deposition-induced cracking in garnet solid electrolytes. Energy. Environ. Mater. 2022, 5, 524-32.
23. Liu, M.; Ganapathy, S.; Wagemaker, M. A direct view on Li-ion transport and Li-metal plating in inorganic and hybrid solid-state electrolytes. ACC. Chem. Res. 2022, 55, 333-44.
24. Lucero, M.; Qiu, S.; Feng, Z. In situ characterizations of solid-solid interfaces in solid-state batteries using synchrotron X-ray techniques. Carbon. Energy. 2021, 3, 762-83.
25. Wu, L. T.; Andersson, E. K. W.; Hahlin, M.; Mindemark, J.; Brandell, D.; Jiang, J. C. A method for modelling polymer electrolyte decomposition during the Li-nucleation process in Li-metal batteries. Sci. Rep. 2023, 13, 9060.
26. Qiu, W.; Wang, Y.; Liu, J. Multiscale computations and artificial intelligent models of electrochemical performance in Li-ion battery materials. WIREs. Comput. Mol. Sci. 2022, 12, e1592.
27. Li, C.; Bao, L.; Ji, Y.; et al. Combining machine learning and metal-organic frameworks research: novel modeling, performance prediction, and materials discovery. Coordin. Chem. Rev. 2024, 514, 215888.
28. Gu, Q.; Liu, X.; Zhou, X.; Li, J.; Lin, X.; Ma, Y. Recent progress on polymer solid electrolytes for lithium metal batteries. Acta. Chim. Sin. 2024, 82, 449.
29. An, Y.; Han, X.; Liu, Y.; et al. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, e2103617.
30. Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: design, performance, and challenges. Adv. Energy. Mater. 2021, 11, 2003836.
31. Wu, Y.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q.; Chen, M. Advances and prospects of PVDF based polymer electrolytes. J. Energy. Chem. 2022, 64, 62-84.
32. Zhao, Y.; Wang, L.; Zhou, Y.; et al. Solid polymer electrolytes with high conductivity and transference number of Li ions for Li-based rechargeable batteries. Adv. Sci. 2021, 8, 2003675.
33. Liu, W.; Yi, C.; Li, L.; et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. 2021, 133, 13041-50.
34. Deng, T.; Cao, L.; He, X.; et al. In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries. Chem 2021, 7, 3052-68.
35. Ma, Q.; Fu, S.; Wu, A.; et al. Designing bidirectionally functional polymer electrolytes for stable solid lithium metal batteries. Adv. Energy. Mater. 2023, 13, 2203892.
36. Sen, S.; Richter, F. H. Typology of battery cells - from liquid to solid electrolytes. Adv. Sci. 2023, 10, e2303985.
37. Weiss, M.; Simon, F. J.; Busche, M. R.; et al. From liquid- to solid-state batteries: ion transfer kinetics of heteroionic interfaces. Electrochem. Energy. Rev. 2020, 3, 221-38.
38. Kim, T.; Son, D. Y.; Ono, L. K.; Jiang, Y.; Qi, Y. B. A solid-liquid hybrid electrolyte for lithium ion batteries enabled by a single-body polymer/indium tin oxide architecture. J. Phys. D. Appl. Phys. 2021, 54, 15.
39. Li, X.; Cong, L.; Ma, S.; et al. Low resistance and high stable solid-liquid electrolyte interphases enable high-voltage solid-state lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2010611.
40. Ferreira, M.; Schmidt, R.; Xu, F.; Ketabi, S.; Cai, M.; Zhu, Y. Polydopamine-based polymer layer for enhanced interfacial properties of hybrid ceramic-polymer solid electrolytes. ACS. Appl. Energy. Mater. 2023, 6, 12095-104.
41. Liu, Q.; Dan, Y.; Kong, M.; Niu, Y.; Li, G. Sandwich-structured quasi-solid polymer electrolyte enables high-capacity, long-cycling, and dendrite-free lithium metal battery at room temperature. Small 2023, 19, e2300118.
42. Yang, H.; Zhang, Y.; Tennenbaum, M. J.; et al. Polypropylene carbonate-based adaptive buffer layer for stable interfaces of solid polymer lithium metal batteries. ACS. Appl. Mater. Interfaces. 2019, 11, 27906-12.
43. Guan, D.; Huang, Y.; He, M.; et al. Multilayer PEO/LLZTO composite electrolyte enables high-performance solid-state Li-ion batteries. Ionics 2021, 27, 4127-34.
44. Nassir, W. B.; Mengesha, T. H.; Chang, J.; Jose, R.; Yang, C. Multilayer hybrid solid-state electrolyte membrane for the high rate and long-life cycle performance of lithium-metal batteries. Colloid. Surface. A. 2024, 691, 133839.
45. Liu, Y.; Lin, D.; Jin, Y.; et al. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Sci. Adv. 2017, 3, eaao0713.
46. Kobayashi, N. P.; Donley, C. L.; Wang, S. Y.; Williams, R. S. Atomic layer deposition of aluminum oxide on hydrophobic and hydrophilic surfaces. J. Cryst. Growth. 2007, 299, 218-22.
47. Johnson, R. W.; Hultqvist, A.; Bent, S. F. A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today. 2014, 17, 236-46.
48. Oviroh, P. O.; Akbarzadeh, R.; Pan, D.; Coetzee, R. A. M.; Jen, T. C. New development of atomic layer deposition: processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465-96.
49. Zhao, B.; Li, J.; Guillaume, M.; Dendooven, J.; Detavernier, C. In vacuo XPS investigation of surface engineering for lithium metal anodes with plasma treatment. J. Energy. Chem. 2022, 66, 295-305.
50. Fan, Z.; Ding, B.; Zhang, T.; et al. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition. Small 2019, 15, e1903952.
51. Garbayo, I.; Santiago, A.; Judez, X.; de Buruaga, A. S.; Castillo, J.; Muñoz-márquez, M. A. Alumina nanofilms as active barriers for polysulfides in high-performance all-solid-state lithium-sulfur batteries. ACS. Appl. Energy. Mater. 2021, 4, 2463-70.
52. Ding, P.; Lin, Z.; Guo, X.; et al. Polymer electrolytes and interfaces in solid-state lithium metal batteries. Mater. Today. 2021, 51, 449-74.
53. Su, S.; Ma, J.; Zhao, L.; et al. Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon. Energy. 2021, 3, 866-94.
54. Yu, X.; Jiang, Z.; Yuan, R.; Song, H. A review of the relationship between gel polymer electrolytes and solid electrolyte interfaces in lithium metal batteries. Nanomaterials 2023, 13, 1789.
55. He, Y.; Wang, C.; Zhang, R.; et al. A self-healing plastic ceramic electrolyte by an aprotic dynamic polymer network for lithium metal batteries. Nat. Commun. 2024, 15, 10015.
56. Möhl, G. E.; Metwalli, E.; Müller-buschbaum, P. In operando small-angle X-ray scattering investigation of nanostructured polymer electrolyte for lithium-ion batteries. ACS. Energy. Lett. 2018, 3, 1525-30.
57. Cheng, Q.; Wei, L.; Liu, Z.; et al. Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy. Nat. Commun. 2018, 9, 2942.
58. Liu, J.; Song, Z.; Yu, F.; et al. In situ optical observation of lithium dendrite pattern in solid polymer electrolytes. Small. Methods. 2024, e2401233.
59. Otto, S. K.; Riegger, L. M.; Fuchs, T.; et al. In situ investigation of lithium metal-solid electrolyte anode interfaces with ToF-SIMS. Adv. Mater. Inter. 2022, 9, 2102387.
60. Pereira, R.; Sarode, K. K.; Rafie, A.; Fafarman, A.; Kalra, V. In-operando FTIR study on the redox behavior of sulfurized polyacrylonitrile as cathode material for Li-S batteries. J. Phys. Chem. C. 2023, 127, 19356-65.
61. Lee, T. H.; Jung, J. G.; Kim, Y. J.; et al. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew. Chem. Int. Ed. 2021, 60, 13081-8.
62. Du, Y.; Sun, G.; Li, Y.; et al. Pre-oxidation of lignin precursors for hard carbon anode with boosted lithium-ion storage capacity. Carbon 2021, 178, 243-55.
63. He, X.; Larson, J. M.; Bechtel, H. A.; Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. Nat. Commun. 2022, 13, 1398.
64. Wen, Z.; Zhao, Z.; Li, L.; et al. Study on the interfacial mechanism of bisalt polyether electrolyte for lithium metal batteries. Adv. Funct. Mater. 2022, 32, 2109184.
65. Lipinski, G.; Jeong, K.; Moritz, K.; et al. Application of Raman spectroscopy for sorption analysis of functionalized porous materials. Adv. Sci. 2022, 9, e2105477.
66. Tharrault, M.; Desgué, E.; Carisetti, D.; et al. Raman spectroscopy of monolayer to bulk PtSe2 exfoliated crystals. 2D. Mater. 2024, 11, 6.
67. Cao, G.; An, F. Effectiveness of the elastic moduli characterization of graphene or other 2D materials via Raman spectroscopy. Diam. Relat. Mater. 2024, 146, 111201.
68. Matsuda, Y.; Kuwata, N.; Okawa, T.; Dorai, A.; Kamishima, O.; Kawamura, J. In situ Raman spectroscopy of LixCoO2 cathode in Li/Li3PO4/LiCoO2 all-solid-state thin-film lithium battery. Solid. State. Ion. 2019, 335, 7-14.
69. Cheng, X. Q.; Li, H. J.; Zhao, Z. X.; Wang, Y. Z.; Wang, X. M. The use of in-situ Raman spectroscopy in investigating carbon materials as anodes of alkali metal-ion batteries. New. Carbon. Mater. 2021, 36, 93-105.
70. Freudiger, C. W.; Min, W.; Saar, B. G.; et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 2008, 322, 1857-61.
71. Prince, R. C.; Frontiera, R. R.; Potma, E. O. Stimulated raman scattering: from bulk to nano. Chem. Rev. 2017, 117, 5070-94.
72. Min, W.; Freudiger, C. W.; Lu, S.; Xie, X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 2011, 62, 507-30.
73. Aliyah, K.; Appel, C.; Lazaridis, T.; et al. Operando scanning small-/wide-angle X-ray scattering for polymer electrolyte fuel cells: investigation of catalyst layer saturation and membrane hydration- capabilities and challenges. ACS. Appl. Mater. Interfaces. 2024, 16, 25938-52.
74. Liang, Y.; Zheng, T.; Sun, K.; et al. Operando study insights into lithiation/delithiation processes in a poly(ethylene oxide) electrolyte of all-solid-state lithium batteries by grazing-incidence X-ray scattering. ACS. Appl. Mater. Interfaces. 2024, 16, 33307-15.
75. Xu, M.; Liang, S.; Shi, H.; et al. High-strength MOF-based polymer electrolytes with uniform ionic flow for lithium dendrite suppression. Small 2024, 20, e2406007.
76. Liu, X.; Wang, D.; Liu, G.; et al. Distinct charge dynamics in battery electrodes revealed by in situ and operando soft X-ray spectroscopy. Nat. Commun. 2013, 4, 2568.
77. Zhao, L.; Xiao, C.; Yao, Y.; Jin, X. Measurement of nanoscale film thickness using neutron depth profiling technique. ACS. Appl. Mater. Interfaces. 2023, 15, 35639-47.
78. Lv, S.; Gao, J.; Liu, Y.; Zhao, Y.; Cheng, J.; Li, Z. Neutron depth profiling study on 6lithium and 10boron contents of nuclear graphite. J. Nucl. Sci. and. Technol. 2021, 58, 1018-24.
79. Möller, S.; Schwab, C.; Seidlmayer, S.; et al. The Li battery digital twin - combining 4D modelling, electro-chemistry, neutron, and ion-beam techniques. J. Power. Sources. 2024, 610, 234681.
80. Liu, D. X.; Wang, J.; Pan, K.; et al. In situ quantification and visualization of lithium transport with neutrons. Angew. Chem. Int. Ed. 2014, 53, 9498-502.
81. Persson, K.; Sethuraman, V. A.; Hardwick, L. J.; et al. Lithium diffusion in graphitic carbon. J. Phys. Chem. Lett. 2010, 1, 1176-80.
82. Lyons, D. J.; Weaver, J. L.; Co, A. C. Considerations in applying neutron depth profiling (NDP) to Li-ion battery research. J. Mater. Chem. A. 2022, 10, 2336-51.
83. Liu, M.; Cheng, Z.; Qian, K.; Verhallen, T.; Wang, C.; Wagemaker, M. Efficient Li-metal plating/stripping in carbonate electrolytes using a LiNO3-gel polymer electrolyte, monitored by operando neutron depth profiling. Chem. Mater. 2019, 31, 4564-74.
84. Mortensen, K.; Borger, A. L.; Kirkensgaard, J. J. K.; Huang, Q.; Hassager, O.; Almdal, K. Small-angle neutron scattering study of the structural relaxation of elongationally oriented, moderately stretched three-arm star polymers. Phys. Rev. Lett. 2021, 127, 177801.
85. Sun, R.; Melton, M.; Safaie, N.; et al. Molecular view on mechanical reinforcement in polymer nanocomposites. Phys. Rev. Lett. 2021, 126, 117801.
86. Terban, M. W.; Billinge, S. J. L. Structural analysis of molecular materials using the pair distribution function. Chem. Rev. 2022, 122, 1208-72.
87. Chen, X. C.; Soulen, C.; Burdette-trofimov, M. K.; et al. Origin of rate limitations in solid-state polymer batteries from constrained segmental dynamics within the cathode. Cell. Rep. Phys. Sci. 2023, 4, 101538.
88. Yang, J.; Mo, F.; Hu, J.; et al. Revealing the dynamic evolution of Li filaments within solid electrolytes by operando small-angle neutron scattering. Appl. Phys. Lett. 2022, 121, 163901.
89. Teusner, M.; Mata, J.; Sharma, N. In situ synthesis of Cu(II) dicarboxylate metal organic frameworks (MOFs) and their application as battery materials. Phys. Chem. Chem. Phys. 2023, 25, 12684-93.
90. Hou, X.; Wang, R.; He, X.; et al. Stabilizing the solid-electrolyte interphase with polyacrylamide for high-voltage aqueous lithium-ion batteries. Angew. Chem. Int. Ed. 2021, 60, 22812-7.
91. Bao, W.; Fan, W.; Luo, J.; et al. Imidazolium-type poly(ionic liquid) endows the composite polymer electrolyte membrane with excellent interface compatibility for all- solid-state lithium metal batteries. ACS. Appl. Mater. Interfaces. 2022, 14, 55664-73.
92. Lin, W.; Zheng, X.; Ma, S.; Ji, K.; Wang, C.; Chen, M. Quasi-solid polymer electrolyte with multiple lithium-ion transport pathways by in situ thermal-initiating polymerization. ACS. Appl. Mater. Interfaces. 2023, 15, 8128-37.
93. Ebadi, M.; Costa, L. T.; Araujo, C. M.; Brandell, D. Modelling the polymer electrolyte/Li-metal interface by molecular dynamics simulations. Electrochim. Acta. 2017, 234, 43-51.
94. Wu, L. T.; Nachimuthu, S.; Brandell, D.; Jiang, J. C. Prediction of SEI formation in all-solid-state batteries: computational insights from PCL-based polymer electrolyte decomposition on lithium-metal. Batteries. Supercaps. 2022, 5, e202200088.
95. Cao, X.; Lu, Y.; Chen, Z.; Zhao, X.; Wang, F. Phase-field investigation of dendrite suppression strategies for all-solid-state lithium metal batteries. J. Energy. Storage. 2024, 99, 113309.
96. Jiang, W.; Wang, Z.; Hu, L.; Wang, Y.; Ma, Z. Simulations of dendrite and crack and their interactions in solid electrolyte by phase field method. J. Energy. Storage. 2024, 86, 111126.
97. Wang, W.; Wang, J.; Lin, C.; Ruan, H. Modeling of void-mediated cracking and lithium penetration in all-solid-state batteries. Adv. Funct. Mater. 2023, 33, 2303484.
98. Geng, X. B.; Li, D. G.; Xu, B. Mechanical stress-thermodynamic phase-field simulation of lithium dendrite growth in solid electrolyte battery. Acta. Phys. Sin. 2023, 72, 220201.
99. Daru, J.; Forbert, H.; Behler, J.; Marx, D. Coupled cluster molecular dynamics of condensed phase systems enabled by machine learning potentials: liquid water benchmark. Phys. Rev. Lett. 2022, 129, 226001.
100. Perumanath, S.; Chubynsky, M. V.; Pillai, R.; Borg, M. K.; Sprittles, J. E. Rolling and sliding modes of nanodroplet spreading: molecular simulations and a continuum approach. Phys. Rev. Lett. 2023, 131, 164001.
101. Zhu, Y.; Lao, Z.; Zhang, M.; et al. A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries. Nat. Commun. 2024, 15, 3914.
102. Zhao, W.; Wang, S.; Zhou, L.; Du, X. Reducing interfacial thermal resistance between polyethylene oxide-based solid-state polymer electrolyte and lithium anode by using IVA group two-dimensional materials: a molecular dynamics study. Int. J. Heat. Mass. Transf. 2024, 219, 124864.
103. Zhao, L.; Wang, Q. J.; Zhang, X.; et al. Laplace-Fourier transform solution to the electrochemical kinetics of a symmetric lithium cell affected by interface conformity. J. Power. Sources. 2022, 531, 231305.
104. Zhang, X.; Luo, C.; Menga, N.; Zhang, H.; Li, Y.; Zhu, S. Contact mechanics modeling for pressure and polymer selections in solid-state batteries. 2022. Available from: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4277267 [Last accessed on 16 Jan 2025].