REFERENCES
1. Choudhury, S.; Tu, Z.; Nijamudheen, A.; et al. Stabilizing polymer electrolytes in high-voltage lithium batteries. Nat. Commun. 2019, 10, 3091.
2. Cui, S.; Wu, X.; Yang, Y.; et al. Heterostructured gel polymer electrolyte enabling long-cycle quasi-solid-state lithium metal batteries. ACS. Energy. Lett. 2022, 7, 42-52.
3. Wu, F.; Chen, Z.; Fang, S.; Zuo, W.; Kim, G.; Passerini, S. The role of ionic liquids in resolving the interfacial chemistry for (quasi-) solid-state batteries. Energy. Storage. Mater. 2023, 63, 103062.
4. Li, W.; Li, H.; Liu, J.; et al. Systematic safety evaluation of quasi-solid-state lithium batteries: a case study. Energy. Environ. Sci. 2023, 16, 5444-53.
5. Wang, Z.; Wang, Y.; Shen, L.; et al. Towards durable practical lithium-metal batteries: advancing the feasibility of poly-DOL-based quasi-solid-state electrolytes via a novel nitrate-based additive. Energy. Environ. Sci. 2023, 16, 4084-92.
6. Pan, J.; Zhao, P.; Yao, H.; Hu, L.; Fan, H. J. Inert filler selection strategies in Li-ion gel polymer electrolytes. ACS. Appl. Mater. Interfaces. 2024, 16, 48706-12.
7. Yao, M.; Ruan, Q.; Yu, T.; Zhang, H.; Zhang, S. Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. Energy. Storage. Mater. 2022, 44, 93-103.
8. Zhang, T.; Li, J.; Li, X.; et al. A silica-reinforced composite electrolyte with greatly enhanced interfacial lithium-ion transfer kinetics for high-performance lithium metal batteries. Adv. Mater. 2022, 34, e2205575.
9. Li, L.; Wang, J.; Zhang, L.; Duan, H.; Deng, Y.; Chen, G. Rational design of a heterogeneous double-layered composite solid electrolyte via synergistic strategies of asymmetric polymer matrices and functional additives to enable 4.5 V all-solid-state lithium batteries with superior performance. Energy. Storage. Mater. 2022, 45, 1062-73.
10. Qiu, G.; Shi, Y.; Huang, B. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano. Res. 2022, 15, 5153-60.
11. Wang, Q.; Su, Y.; Zhu, W.; et al. Achieving stable interface for lithium metal batteries using fluoroethylene carbonate-modified garnet-type Li6.4La3Zr1.4Ta0.6O12 composite electrolyte. Electrochim. Acta. 2023, 446, 142063.
12. Shen, C.; Feng, W.; Yu, Y.; et al. In situ polymerization inhibiting electron localization in hybrid electrolyte for room-temperature solid-state lithium metal batteries. Adv. Energy. Mater. 2024, 14, 2304511.
13. Boaretto, N.; Meabe, L.; Lindberg, S.; et al. Hybrid ceramic polymer electrolytes enabling long cycling in practical 1 Ah-class high-voltage solid-state batteries with Li metal anode. Adv. Funct. Mater. 2024, 34, 2404564.
14. Boaretto, N.; Meabe, L.; Martinez-ibañez, M.; Armand, M.; Zhang, H. Review-polymer electrolytes for rechargeable batteries: from nanocomposite to nanohybrid. J. Electrochem. Soc. 2020, 167, 070524.
15. Marchiori, C. F. N.; Carvalho, R. P.; Ebadi, M.; Brandell, D.; Araujo, C. M. Understanding the electrochemical stability window of polymer electrolytes in solid-state batteries from atomic-scale modeling: the role of Li-ion salts. Chem. Mater. 2020, 32, 7237-46.
16. Chen, L.; Venkatram, S.; Kim, C.; Batra, R.; Chandrasekaran, A.; Ramprasad, R. Electrochemical stability window of polymeric electrolytes. Chem. Mater. 2019, 31, 4598-604.
17. Bao, D.; Tao, Y.; Zhong, Y.; et al. High-performance dual-salt plastic crystal electrolyte enabled by succinonitrile-regulated porous polymer host. Adv. Funct. Mater. 2023, 33, 2213211.
18. Barbosa, J. C.; Pinto, R. S.; Correia, D. M.; et al. Effect of fluorinated polymer matrix type in the performance of solid polymer electrolytes based on ionic liquids for solid-state lithium-ion batteries. Chem. Eng. J. 2023, 478, 147388.
19. Agnihotri, T.; Ahmed, S. A.; Tamilarasan, E. B.; et al. Anion-trapping composite gel electrolyte for safer and more stable anode-free lithium-metal batteries. Chem. Eng. J. 2024, 484, 149608.
20. Deshmukh, S. P.; Das, R.; Kundu, D. Unraveling the underlying structural & transport mechanism of lithium-ion within Lithium bis(trifluoromethanesulfonyl)imide subjected to organic & inorganic matrix based Eutectogel. J. Power. Sources. 2024, 600, 234270.
21. Duan, H.; You, Y.; Wang, G.; et al. Lithium-ion charged polymer channels flattening lithium metal anode. Nanomicro. Lett. 2024, 16, 78.
22. Gai, Q.; Zhao, T.; Ma, J.; Wang, C.; Gao, H.; Li, L. An in-situ bicomponent polymeric matrix solid electrolyte for solid-state Lithium metal batteries with extended cycling-life. J. Energy. Storage. 2024, 80, 110150.
23. Lin, Y.; Wu, L.; Zhan, Y.; et al. Self-assembly formation of solid-electrolyte interphase in gel polymer electrolytes for high performance lithium metal batteries. Energy. Storage. Mater. 2023, 61, 102868.
24. Lv, Q.; Jing, Y.; Wang, B.; et al. Multilayer asymmetric solid polymer electrolyte with modified interface for high-voltage solid-state Li metal batteries. Energy. Storage. Mater. 2024, 65, 103122.
25. Li, Z.; Zhang, S.; Jiang, Z.; Cai, D.; Gu, C.; Tu, J. Deep eutectic solvent-immobilized PVDF-HFP eutectogel as solid electrolyte for safe lithium metal battery. Mater. Chem. Phys. 2021, 267, 124701.
26. Zhang, J.; Sun, B.; Huang, X.; Chen, S.; Wang, G. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety. Sci. Rep. 2014, 4, 6007.
27. Bai, M.; Tang, X.; Zhang, M.; et al. An in-situ polymerization strategy for gel polymer electrolyte Si||Ni-rich lithium-ion batteries. Nat. Commun. 2024, 15, 5375.
28. Jiang, X.; Liu, F.; Bai, M.; et al. Breaking solvation dominance of phosphate via dipole-dipole chemistry in gel polymer electrolyte. ACS. Energy. Lett. 2024, 9, 3369-79.
29. Li, X.; Li, Z.; Zhang, W.; et al. Flame-retardant in-situ formed gel polymer electrolyte with different valance states of phosphorus structures for high-performance and fire-safety lithium-ion batteries. Chem. Eng. J. 2024, 490, 151568.
30. Pan, J.; Zhang, Y.; Wang, J.; et al. A quasi-double-layer solid electrolyte with adjustable interphases enabling high-voltage solid-state batteries. Adv. Mater. 2022, 34, e2107183.
31. Shi, J.; Nguyen, H.; Chen, Z.; et al. Nanostructured block copolymer single-ion conductors for low-temperature, high-voltage and fast charging lithium-metal batteries. Energy. Mater. 2023, 3, 300036.
32. Cho, Y.; Le, M. A.; Hoang, H. A.; Kim, D. Flexible and hyper ion-conductive LATP-embedded semi-interpenetrating polymer network electrolyte membrane for solid-state lithium battery. J. Energy. Storage. 2024, 92, 112295.
33. Steinle, D.; Chen, Z.; Nguyen, H.; et al. Single-ion conducting polymer electrolyte for Li||LiNi0.6Mn0.2Co0.2O2 batteries - impact of the anodic cutoff voltage and ambient temperature. J. Solid. State. Electrochem. 2022, 26, 97-102.
34. Dong, X.; Mayer, A.; Liu, X.; Passerini, S.; Bresser, D. Single-ion conducting multi-block copolymer electrolyte for lithium-metal batteries with high mass loading NCM811 cathodes. ACS. Energy. Lett. 2023, 8, 1114-21.
35. Dong, X.; Chen, Z.; Gao, X.; et al. Stepwise optimization of single-ion conducting polymer electrolytes for high-performance lithium-metal batteries. J. Energy. Chem. 2023, 80, 174-81.
36. Sun, Q.; Wang, S.; Ma, Y.; et al. Li-ion transfer mechanism of gel polymer electrolyte with sole fluoroethylene carbonate solvent. Adv. Mater. 2023, 35, e2300998.
37. Mao, M.; Huang, B.; Li, Q.; Wang, C.; He, Y.; Kang, F. In-situ construction of hierarchical cathode electrolyte interphase for high performance LiNi0.8Co0.1Mn0.1O2/Li metal battery. Nano. Energy. 2020, 78, 105282.
38. Orue, A.; Arrese-igor, M.; Gonzalez, U.; Gómez, N.; Cid, R.; López-aranguren, P. Enhancing high-voltage solid-state lithium-metal battery performance through a stable solid-electrolyte interphase. J. Mater. Chem. A. 2024, 12, 22775-84.
39. Zhao, Q.; Chen, P.; Li, S.; Liu, X.; Archer, L. A. Solid-state polymer electrolytes stabilized by task-specific salt additives. J. Mater. Chem. A. 2019, 7, 7823-30.
40. Wang, Z.; Yang, K.; Song, Y.; et al. Polymer matrix mediated solvation of LiNO3 in carbonate electrolytes for quasi-solid high-voltage lithium metal batteries. Nano. Res. 2020, 13, 2431-7.
41. Marangon, V.; Tominaga, Y.; Hassoun, J. An alternative composite polymer electrolyte for high performances lithium battery. J. Power. Sources. 2020, 449, 227508.
42. Zhang, X.; Jia, M.; Zhang, Q.; et al. LiNO3 and TMP enabled high voltage room-temperature solid-state lithium metal battery. Chem. Eng. J. 2022, 448, 137743.
43. Wen, S.; Luo, C.; Wang, Q.; et al. Integrated design of ultrathin crosslinked network polymer electrolytes for flexible and stable all-solid-state lithium batteries. Energy. Storage. Mater. 2022, 47, 453-61.
44. Zhang, Z.; Cheng, Z.; Qiu, F.; et al. High concentration in situ polymer gel electrolyte for high performance lithium metal batteries. Chem. Commun. 2024, 60, 6276-9.
45. Wang, Q.; Ma, Y.; Wang, Y.; et al. In situ catalytic polymerization of LiNO3-containing PDOL electrolytes for high-energy quasi-solid-state lithium metal batteries. Chem. Eng. J. 2024, 484, 149757.
46. Jing, C.; Dai, K.; Liu, D.; et al. Crosslinked solubilizer enables nitrate-enriched carbonate polymer electrolytes for stable, high-voltage lithium metal batteries. Sci. Bull. 2024, 69, 209-17.
47. Cui, Z.; Hassoun, J.; Tominaga, Y. Development of polycarbonate-based electrolytes with in situ polymerized electrolyte interlayers for lithium-metal batteries. J. Energy. Storage. 2024, 79, 110175.
48. Li, P.; Zhang, H.; Lu, J.; Li, G. Low concentration sulfolane-based electrolyte for high voltage lithium metal batteries. Angew. Chem. Int. Ed. 2023, 62, e202216312.
49. Zhao, C.; Lu, Y.; Yan, K.; et al. Tailoring the chemical/electrochemical response in a quasi-solid polymer electrolyte enables the simultaneous in situ construction of superior cathodic and anodic interfaces. Adv. Energy. Mater. 2024, 14, 2304532.
50. Wang, Y.; Li, T.; Yang, X.; et al. 2D solid-electrolyte interphase built by high-concentration polymer electrolyte for highly reversible silicon anodes. Adv. Energy. Mater. 2024, 14, 2303189.
51. Ren, W.; Luo, C.; Huang, Y.; et al. Hydroxypropylmethylcellulose: functional material carrier for in-situ solid electrolyte engineering of advanced lithium metal batteries. Energy. Storage. Mater. 2023, 59, 102777.
52. Li, B.; Chao, Y.; Li, M.; et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy. Rev. 2023, 6, 147.
53. Wang, X.; Xu, L.; Li, M.; et al. LiNO3 regulated rigid-flexible-synergistic polymer electrolyte boosting high-performance Li metal batteries. Energy. Storage. Mater. 2024, 73, 103778.
54. Cui, Z.; Marangon, V.; Hassoun, J.; Tominaga, Y. Polycarbonate-based composite polymer electrolytes with Al2O3 enhanced by in situ polymerized electrolyte interlayers for all-solid-state lithium-metal batteries. J. Power. Sources. 2024, 611, 234760.
55. Watanabe, M. Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid. State. Ion. 1988, 28-30, 911-7.
56. Adams, B. D.; Zheng, J.; Ren, X.; Xu, W.; Zhang, J. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy. Mater. 2018, 8, 1702097.
57. Seah, M. P. Simple universal curve for the energy-dependent electron attenuation length for all materials. Surf. Interface. Anal. 2012, 44, 1353-9.
58. Fairley, N.; Fernandez, V.; Richard-plouet, M.; et al. Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. App. Surf. Sci. Adv. 2021, 5, 100112.
59. Jagger, B.; Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 2023, 7, 2228-44.
60. Orue, A.; Arrese-Igor, M.; Cid, R.; et al. High resolution XPS of organic polymers: the scienta ESCA300 database (Beamson, G.; Briggs, D.). J. Chem. Educ. 1993, 70, A25.
61. Orue, A.; Arrese-igor, M.; Cid, R.; et al. Enhancing the polymer electrolyte-Li metal interface on high-voltage solid-state batteries with Li-based additives inspired by the surface chemistry of Li7La3Zr2O12. J. Mater. Chem. A. 2022, 10, 2352-61.
62. Xue, W.; Shi, Z.; Huang, M.; et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy. Environ. Sci. 2020, 13, 212-20.
63. Wurster, V.; Engel, C.; Graebe, H.; Ferber, T.; Jaegermann, W.; Hausbrand, R. Characterization of the interfaces in LiFePO4/PEO-LiTFSI composite cathodes and to the adjacent layers. J. Electrochem. Soc. 2019, 166, A5410-20.
64. Liu, Y.; Yang, T.; Fang, R.; et al. Ultra-homogeneous dense Ag nano layer enables long lifespan solid-state lithium metal batteries. J. Energy. Chem. 2024, 96, 110-9.
65. Seki, S.; Kobayashi, Y.; Miyashiro, H.; Mita, Y.; Iwahori, T. Fabrication of high-voltage, high-capacity all-solid-state lithium polymer secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept. Chem. Mater. 2005, 17, 2041-5.
66. Sabet P, Sauer DU. Separation of predominant processes in electrochemical impedance spectra of lithium-ion batteries with nickel-manganese-cobalt cathodes. J. Power. Sources. 2019, 425, 121-9.
67. Charbonneau, V.; Lasia, A.; Brisard, G. Impedance studies of Li+ diffusion in nickel manganese cobalt oxide (NMC) during charge/discharge cycles. J. Electroanal. Chem. 2020, 875, 113944.
68. Pritzl, D.; Bumberger, A. E.; Wetjen, M.; Landesfeind, J.; Solchenbach, S.; Gasteiger, H. A. Identifying contact resistances in high-voltage cathodes by impedance spectroscopy. J. Electrochem. Soc. 2019, 166, A582-90.
69. Brug, G.; van, E. A.; Sluyters-Rehbach, M.; Sluyters, J. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. Interfacial. Electrochem. 1984, 176, 275-95.
70. Cabañero, M. M. A.; Boaretto, N.; Naylor, A. J.; et al. Are polymer-based electrolytes ready for high-voltage lithium battery applications? An overview of degradation mechanisms and battery performance. Adv. Energy. Mater. 2022, 12, 2201264.
71. Boaretto, N.; Garbayo, I.; Valiyaveettil-Sobhanraj, S.; et al. Lithium solid-state batteries: state-of-the-art and challenges for materials, interfaces and processing. J. Power. Sources. 2021, 502, 229919.
72. Chiou, M.; Borzutzki, K.; Thienenkamp, J. H.; et al. Durable fast-charging lithium metal batteries designed with cross-linked polymer electrolytes and niobate-coated cathode. J. Power. Sources. 2022, 538, 231528.
73. Chen, Y.; Lennartz, P.; Liu, K. L.; et al. Towards all-solid-state polymer batteries: going beyond PEO with hybrid concepts. Adv. Funct. Mater. 2023, 33, 2300501.
74. Zhai, P.; Qu, S.; Ahmad, N.; Hua, Z.; Shao, R.; Yang, W. Constructing nano-interlayer inhibiting interfacial degradation toward high-voltage PEO-based all-solid-state lithium batteries. Small 2024, 20, e2310547.
75. Zhang, W.; Lu, Y.; Wan, L.; et al. Engineering a passivating electric double layer for high performance lithium metal batteries. Nat. Commun. 2022, 13, 2029.
76. Jin, C.; Huang, Y.; Li, L.; et al. A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries. Nat. Commun. 2023, 14, 8269.