REFERENCES
1. Zhu, Y.; He, X.; Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS. Appl. Mater. Interfaces. 2015, 7, 23685-93.
2. Diederichsen, K. M.; Mcshane, E. J.; Mccloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS. Energy. Lett. 2017, 2, 2563-75.
3. Li, J.; Ma, C.; Chi, M.; Liang, C.; Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy. Mater. 2015, 5, 1401408.
4. Takada, K. Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power. Sources. 2018, 394, 74-85.
5. Fuller, T. F.; Doyle, M.; Newman, J. Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 1994, 141, 1.
6. Wu, J. F.; Pang, W. K.; Peterson, V. K.; Wei, L.; Guo, X. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 12461-8.
7. Jia, L.; Zhu, J.; Zhang, X.; Guo, B.; Du, Y.; Zhuang, X. Li-solid electrolyte interfaces/interphases in all-solid-state Li batteries. Electrochem. Energy. Rev. 2024, 7, 12.
8. Li, B.; Chao, Y.; Li, M.; et al. A review of solid electrolyte interphase (SEI) and dendrite formation in lithium batteries. Electrochem. Energy. Rev. 2023, 6, 7.
9. Zhang, J.; Wang, C.; Zheng, M.; et al. Rational design of air-stable and intact anode-electrolyte interface for garnet-type solid-state batteries. Nano. Energy. 2022, 102, 107672.
10. Rettenwander, D.; Blaha, P.; Laskowski, R.; et al. DFT study of the role of Al3+ in the fast ion-conductor Li7-3xAl3+xLa3Zr2O12 garnet. Chem. Mater. 2014, 26, 2617-23.
11. El-Shinawi, H.; Paterson, G. W.; Maclaren, D. A.; Cussen, E. J.; Corr, S. A. Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets. J. Mater. Chem. A. 2017, 5, 319-29.
12. Wagner, R.; Redhammer, G. J.; Rettenwander, D.; et al. Fast Li-ion-conducting garnet-related Li7-3xFexLa3Zr2O12 with uncommon I4̅3d structure. Chem. Mater. 2016, 28, 5943-51.
13. Wu, J. F.; Chen, E. Y.; Yu, Y.; et al. Gallium-Doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS. Appl. Mater. Interfaces. 2017, 9, 1542-52.
14. Deviannapoorani, C.; Shankar, L. S.; Ramakumar, S.; Murugan, R. Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12. Ionics 2016, 22, 1281-9.
15. Rangasamy, E.; Wolfenstine, J.; Allen, J.; Sakamoto, J. The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte. J. Power. Sources. 2013, 230, 261-6.
16. Ohta, S.; Kobayashi, T.; Asaoka, T. High lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x, Nbx)O12 (x=0-2). J. Power. Sources. 2011, 196, 3342-5.
17. Thompson, T.; Sharafi, A.; Johannes, M. D.; et al. A tale of two sites: on defining the carrier concentration in garnet-based ionic conductors for advanced Li batteries. Adv. Energy. Mater. 2015, 5, 1500096.
18. Mukhopadhyay, S.; Thompson, T.; Sakamoto, J.; et al. Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem. Mater. 2015, 27, 3658-65.
19. Dhivya, L.; Murugan, R. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet. ACS. Appl. Mater. Interfaces. 2014, 6, 17606-15.
20. Inada, R.; Yasuda, S.; Tojo, M.; Tsuritani, K.; Tojo, T.; Sakurai, Y. Development of lithium-stuffed garnet-type oxide solid electrolytes with high ionic conductivity for application to all-solid-state batteries. Front. Energy. Res. 2016, 4, 28.
21. Chen, C.; Sun, Y.; He, L.; et al. Microstructural and electrochemical properties of Al- and Ga-doped Li7La3Zr2O12 garnet solid electrolytes. ACS. Appl. Energy. Mater. 2020, 3, 4708-19.
22. Cao, Z.; Cao, X.; Liu, X.; et al. Effect of Sb-Ba codoping on the ionic conductivity of Li7La3Zr2O12 ceramic. Ceram. Int. 2015, 41, 6232-6.
23. Meesala, Y.; Liao, Y. K.; Jena, A.; et al. An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li7La3Zr2O12. J. Mater. Chem. A. 2019, 7, 8589-601.
24. Murugan, R.; Thangadurai, V.; Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778-81.
25. Zhang, J.; Li, J.; Zhai, H.; Tan, G.; Tang, X. One-step processing of soft electrolyte/metallic lithium interface for high-performance solid-state lithium batteries. ACS. Appl. Energy. Mater. 2020, 3, 6139-45.
26. Ihrig, M.; Mishra, T. P.; Scheld, W. S.; et al. Li7La3Zr2O12 solid electrolyte sintered by the ultrafast high-temperature method. J. Eur. Ceram. Soc. 2021, 41, 6075-9.
27. Zhu, Y.; Zhang, J.; Li, W.; Xue, Y.; Yang, J.; Li, S. Realization of superior ionic conductivity by manipulating the atomic rearrangement in Al-doped Li7La3Zr2O12. Ceram. Int. 2023, 49, 10462-70.
28. Cronau, M.; Szabo, M.; König, C.; Wassermann, T. B.; Roling, B. How to measure a reliable ionic conductivity? The stack pressure dilemma of microcrystalline sulfide-based solid electrolytes. ACS. Energy. Lett. 2021, 6, 3072-7.
29. Lee, C.; Han, S. Y.; Lewis, J. A.; et al. Stack pressure measurements to probe the evolution of the lithium-solid-state electrolyte interface. ACS. Energy. Lett. 2021, 6, 3261-9.
30. Hosokawa, H.; Takeda, A.; Inada, R.; Sakurai, Y. Tolerance for Li dendrite penetration in Ta-doped Li7La3Zr2O12 solid electrolytes sintered with Li2.3C0.7B0.3O3 additive. Mater. Lett. 2020, 279, 128481.
31. Janani, N.; Ramakumar, S.; Kannan, S.; Murugan, R. Optimization of lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7La3Zr2O12. J. Am. Ceram. Soc. 2015, 98, 2039-46.
32. Ni, K. H.; Chen, Z. L.; Li, C. C. Densification and stress distribution within the sintered structure of ceramic electrolytes for all-solid-state Li-ion batteries. Acta. Mater. 2024, 275, 120057.
33. Shen, F.; Guo, W.; Zeng, D.; et al. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS. Appl. Mater. Interfaces. 2020, 12, 30313-9.
34. Xu, B.; Li, W.; Duan, H.; et al. Li3PO4-added garnet-type Li6.5La3Zr1.5Ta0.5O12 for Li-dendrite suppression. J. Power. Sources. 2017, 354, 68-73.
35. Yamada, H.; Ito, T.; Hongahally, B. R. Sintering mechanisms of high-performance garnet-type solid electrolyte densified by spark plasma sintering. Electrochim. Acta. 2016, 222, 648-56.
36. Zhang, H.; Wu, Y.; Zhu, J.; et al. Fusing Ta-doped Li7La3Zr2O12 grains using nanoscale Y2O3 sintering aids for high-performance solid-state lithium batteries. Nanoscale 2024, 16, 14871-8.