REFERENCES

1. Lu, S.; Zhang, S.; Liu, Q.; et al. Recent advances in novel materials for photocatalytic carbon dioxide reduction. Carbon. Neutralization. 2024, 3, 142-68.

2. Feng, D.; Li, Z.; Guo, H.; et al. Conjugated polyimides modified self-supported carbon electrodes for electrochemical conversion of CO2 to CO. Energy. Mater. 2024, 4, 400069.

3. Zheng, Z.; Wu, C.; Gu, Q.; Konstantinov, K.; Wang, J. Research progress and future perspectives on rechargeable Na-O2 and Na-CO2 batteries. Energy. Environ. Mater. 2021, 4, 158-77.

4. Nyhus, A. H.; Yliruka, M.; Shah, N.; Chachuat, B. Green ethylene production in the UK by 2035: a techno-economic assessment. Energy. Environ. Sci. 2024, 17, 1931-49.

5. Ramadhany, P.; Luong, Q.; Zhang, Z.; et al. State of play of critical mineral-based catalysts for electrochemical E-refinery to synthetic fuels. Adv. Mater. 2024, 36, e2405029.

6. Fang, W.; Lu, R.; Li, F. M.; et al. Low-coordination nanocrystalline copper-based catalysts through theory-guided electrochemical restructuring for selective CO2 reduction to ethylene. Angew. Chem. Int. Ed. 2024, 63, e202319936.

7. Xu, C.; Dong, Y.; Zhao, H.; Lei, Y. CO2 conversion toward real-world applications: electrocatalysis versus CO2 batteries. Adv. Funct. Mater. 2023, 33, 2300926.

8. Dong, Y.; Yan, C.; Zhao, H.; Lei, Y. Recent advances in 2D heterostructures as advanced electrode materials for potassium-ion batteries. Small. Struct. 2022, 3, 2100221.

9. Aslam, M. K.; Wang, H.; Chen, S.; Li, Q.; Duan, J. Progress and perspectives of metal (Li, Na, Al, Zn and K)-CO2 batteries. Mater. Today. Energy. 2023, 31, 101196.

10. Zou, J.; Liang, G.; Zhang, F.; Zhang, S.; Davey, K.; Guo, Z. Revisiting the role of discharge products in Li-CO2 batteries. Adv. Mater. 2023, 35, e2210671.

11. Ampelli, C.; Tavella, F.; Giusi, D.; Ronsisvalle, A. M.; Perathoner, S.; Centi, G. Electrode and cell design for CO2 reduction: a viewpoint. Catal. Today. 2023, 421, 114217.

12. Li, X.; Zhang, K.; Li, Z.; et al. Rational design of covalent organic frameworks as gas diffusion layers for multi-atmosphere lithium-air batteries. Angew. Chem. Int. Ed. 2023, 62, e202217869.

13. Wang, Z.; Sun, C.; Lu, L.; Jiao, L. Recent progress and perspectives of solid state Na-CO2 batteries. Batteries 2023, 9, 36.

14. Song, W.; Xiao, C.; Ding, J.; et al. Review of carbon support coordination environments for single metal atom electrocatalysts (SACS). Adv. Mater. 2024, 36, e2301477.

15. Wang, Y.; Chu, F.; Zeng, J.; et al. Single atom catalysts for fuel cells and rechargeable batteries: principles, advances, and opportunities. ACS. Nano. 2021, 15, 210-39.

16. Shah, S. S. A.; Najam, T.; Bashir, M. S.; Peng, L.; Nazir, M. A.; Javed, M. S. Single-atom catalysts for next-generation rechargeable batteries and fuel cells. Energy. Storage. Mate. 2022, 45, 301-22.

17. Lin, J.; Song, W.; Xiao, C.; et al. A comprehensive overview of the electrochemical mechanisms in emerging alkali metal-carbon dioxide batteries. Carbon. Energy. 2023, 5, e313.

18. Liu, W.; Cai, C.; Zhang, Z.; et al. Advancements in metal-CO2 battery technology: a comprehensive overview. Nano. Energy. 2024, 129, 109998.

19. Douka, A. I.; Yang, H.; Huang, L.; et al. Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 2021, 3, e12067.

20. Xu, Y.; Gong, H.; Ren, H.; et al. Highly efficient Cu-porphyrin-based metal-organic framework nanosheet as cathode for high-rate Li-CO2 battery. Small 2022, 18, e2203917.

21. Zhao, C.; Dai, X.; Yao, T.; et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078-81.

22. Gao, S.; Li, H.; Lu, Z.; et al. Isolated FeN3 sites anchored hierarchical porous carbon nanoboxes for hydrazine-assisted rechargeable Zn-CO2 batteries with ultralow charge voltage. Carbon. Energy. 2024, e637.

23. Yang, X.; Zhang, D.; Zhao, L.; et al. Upgrading cycling stability and capability of hybrid Na-CO2 batteries via tailoring reaction environment for efficient conversion CO2 to HCOOH. Adv. Energy. Mater. 2024, 14, 2304365.

24. Xu, C.; Hong, P.; Dong, Y.; et al. Multiscale defective interfaces for realizing Na-CO2 batteries with ultralong lifespan. Adv. Mater. 2024, 36, e2409533.

25. Xu, C.; Dong, Y.; Shen, Y.; et al. Fundamental understanding of nonaqueous and hybrid Na-CO2 batteries: challenges and perspectives. Small 2023, 19, e2206445.

26. Li, C.; Yuan, Y.; Yue, M.; et al. Recent advances in pristine iron triad metal-organic framework cathodes for alkali metal-ion batteries. Small 2024, 20, e2310373.

27. Tan, C.; Wang, A.; Cao, D.; et al. Unravelling the complex Na2CO3 electrochemical process in rechargeable Na-CO2 batteries. Adv. Energy. Mater. 2023, 13, 2204191.

28. Liu, Y.; Mao, R.; Chen, B.; et al. Atomic design of bidirectional electrocatalysts for reversible Li-CO2 batteries. Mater. Today. 2023, 63, 120-36.

29. Chen, H.; Li, X.; Xue, H.; et al. Recent advances in the mechanism and catalyst design in the research of aprotic, photo-assisted, and solid-state Li-CO2 batteries. Inorg. Chem. Front. 2024, 11, 5833-57.

30. Xie, Z.; Zhang, X.; Zhang, Z.; Zhou, Z. Metal-CO2 batteries on the road: CO2 from contamination gas to energy source. Adv. Mater. 2017, 29, 1605891.

31. Jaradat, A.; Ncube, M. K.; Papailias, I.; et al. Fast charge-transfer rates in Li-CO2 batteries with a coupled cation-electron transfer process. Adv. Energy. Mater. 2024, 14, 2303467.

32. Xu, C.; Fang, X.; Zhan, J.; Chen, J.; Liang, F. Progress for Metal-CO2 batteries: mechanism and advanced materials. Prog. Chem. 2020, 32, 836.

33. Xu, C.; Wang, H.; Zhan, J.; Kang, Y.; Liang, F. Engineering NH3-induced 1D self-assembly architecture with conductive polymer for advanced hybrid Na-CO2 batteries via morphology modulation. J. Power. Sources. 2022, 520, 230909.

34. Hou, Y.; Wang, J.; Liu, L.; et al. Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries. Adv. Funct. Mater. 2017, 27, 1700564.

35. Zou, L.; Zhong, F.; Liu, J.; et al. Understanding Li2c2o4 stabilization in reversible Li-Co2 batteries via Li+ solvation structure and Mo2+ active sites. 2024.

36. Zhou, J.; Li, X.; Yang, C.; et al. A quasi-solid-state flexible fiber-shaped Li-CO2 battery with low overpotential and high energy efficiency. Adv. Mater. 2019, 31, e1804439.

37. Wang, Y.; Ji, G.; Song, L.; Wang, X.; Xu, J. A highly reversible lithium-carbon dioxide battery based on soluble oxalate. ACS. Energy. Lett. 2023, 8, 1026-34.

38. Jayan, R.; Islam, M. M. Understanding catalytic mechanisms and cathode interface kinetics in nonaqueous Mg-CO2 batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 45895-904.

39. Yang, C.; Guo, K.; Yuan, D.; Cheng, J.; Wang, B. Unraveling reaction mechanisms of Mo2C as cathode catalyst in a Li-CO2 battery. J. Am. Chem. Soc. 2020, 142, 6983-90.

40. Jian, T.; Ma, W.; Hou, J.; Ma, J.; Xu, C.; Liu, H. From Ru to RuAl intermetallic/Ru heterojunction: Enabling high reversibility of the CO2 redox reaction in Li-CO2 battery based on lowered interface thermodynamic energy barrier. Nano. Energy. 2023, 118, 108998.

41. Hu, J.; Yang, C.; Guo, K. Understanding the electrochemical reaction mechanisms of precious metals Au and Ru as cathode catalysts in Li-CO2 batteries. J. Mater. Chem. A. 2022, 10, 14028-40.

42. Gupta, D.; Mao, J.; Guo, Z. Bifunctional catalysts for co2 reduction and O2 evolution: a pivotal for aqueous rechargeable Zn-CO2 batteries. Adv. Mater. 2024, 36, e2407099.

43. Pan, Q.; Ma, X.; Wang, H.; et al. Approaching splendid catalysts for Li-CO2 battery from the theory to practical designing: a review. Adv. Mater. 2024, 36, e2406905.

44. Guo, W.; Wang, Y.; Yi, Q.; et al. Research progress of aqueous Zn-CO2 battery: design principle and development strategy of a multifunctional catalyst. Front. Energy. Res. 2023, 11, 1194674.

45. Mu, X.; Pan, H.; He, P.; Zhou, H. Li-CO2 and Na-CO2 Batteries: toward greener and sustainable electrical energy storage. Adv. Mater. 2020, 32, e1903790.

46. Cheng, Y.; Wang, Y.; Chen, B.; et al. Routes to bidirectional cathodes for reversible aprotic alkali metal-CO2 batteries. Adv. Mater. 2024, 36, e2410704.

47. Yue, J.; Zhang, J.; Tong, Y.; et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nat. Chem. 2021, 13, 1061-9.

48. Liang, Y.; Yao, Y. Designing modern aqueous batteries. Nat. Rev. Mater. 2023, 8, 109-22.

49. Gao, S.; Liu, Y.; Xie, Z.; et al. Metal-free bifunctional ordered mesoporous carbon for reversible Zn-CO2 batteries. Small. Methods. 2021, 5, e2001039.

50. Joseph, S.; Singh, G.; Lee, J. M.; et al. Hierarchical carbon structures from soft drink for multi-functional energy applications of Li-ion battery, Na-ion battery and CO2 capture. Carbon 2023, 210, 118085.

51. Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19-29.

52. Xiao, X.; Zhang, Z.; Tan, P. Unveiling the mysteries of operating voltages of lithium-carbon dioxide batteries. Proc. Natl. Acad. Sci. USA. 2023, 120, e2217454120.

53. Xu, L.; Liu, W.; Liu, K. Single atom environmental catalysis: influence of supports and coordination environments. Adv. Funct. Mater. 2023, 33, 2304468.

54. Liang, S.; Huang, L.; Gao, Y.; Wang, Q.; Liu, B. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism. Adv. Sci. 2021, 8, e2102886.

55. Sarkar, A.; Dharmaraj, V. R.; Yi, C. H.; et al. Recent advances in rechargeable metal-CO2 batteries with nonaqueous electrolytes. Chem. Rev. 2023, 123, 9497-564.

56. Han, J.; Xu, Q.; Rong, J.; et al. Molecular engineering of porous Fe-N-C catalyst with sulfur incorporation for boosting CO2 reduction and Zn-CO2 battery. Adv. Sci. 2024, 11, e2407063.

57. Sun, X.; Mu, X.; Zheng, W.; et al. Binuclear Cu complex catalysis enabling Li-CO2 battery with a high discharge voltage above 3.0 V. Nat. Commun. 2023, 14, 536.

58. Ci, L.; Song, L.; Jin, C.; et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430-5.

59. Yang, S.; Qiao, Y.; He, P.; et al. A reversible lithium-CO2 battery with Ru nanoparticles as a cathode catalyst. Energy. Environ. Sci. 2017, 10, 972-8.

60. Guo, L.; Li, B.; Thirumal, V.; Song, J. Advanced rechargeable Na-CO2 batteries enabled by a ruthenium@porous carbon composite cathode with enhanced Na2CO3 reversibility. Chem. Commun. 2019, 55, 7946-9.

61. Xiao, X.; Tan, P.; Zhu, X.; Dai, Y.; Cheng, C.; Ni, M. Investigation on the discharge and charge behaviors of Li-CO2 batteries with carbon nanotube electrodes. ACS. Sustain. Chem. Eng. 2020, 8, 9742-50.

62. Sun, J.; Lu, Y.; Yang, H.; Han, M.; Shao, L.; Chen, J. Rechargeable Na-CO2 batteries starting from cathode of Na2CO3 and carbon nanotubes. Research 2018, 2018, 6914626.

63. Kong, Y.; Gong, H.; Song, L.; Jiang, C.; Wang, T.; He, J. Nano-sized Au particle-modified carbon nanotubes as an effective and stable cathode for Li-CO2 batteries. Eur. J. Inorg. Chem. 2021, 2021, 590-6.

64. Yoo, E.; Zhou, H. Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS. Nano. 2011, 5, 3020-6.

65. Xiao, J.; Mei, D.; Li, X.; et al. Hierarchically porous graphene as a lithium-air battery electrode. Nano. Lett. 2011, 11, 5071-8.

66. Zhang, Z.; Zhang, Q.; Chen, Y.; et al. The first introduction of graphene to rechargeable Li-CO2 batteries. Angew. Chem. Int. Ed. 2015, 127, 6650-3.

67. Ye, F.; Gong, L.; Long, Y.; et al. Topological defect-rich carbon as a metal-free cathode catalyst for high-performance Li-CO2 batteries. Adv. Energy. Mater. 2021, 11, 2101390.

68. Yuan, C.; Li, H.; Jiang, Y.; et al. Tuning the activity of N-doped carbon for CO2 reduction via in situ encapsulation of nickel nanoparticles into nano-hybrid carbon substrates. J. Mater. Chem. A. 2019, 7, 6894-900.

69. Song, A.; Cao, L.; Yang, W.; et al. In situ construction of nitrogen-doped graphene with surface-grown carbon nanotubes as a multifactorial synergistic catalyst for oxygen reduction. Carbon 2019, 142, 40-50.

70. Gottlieb, E.; Matyjaszewski, K.; Kowalewski, T. Polymer-based synthetic routes to carbon-based metal-free catalysts. Adv. Mater. 2019, 31, e1804626.

71. Dong, Y.; Zhang, Q.; Tian, Z.; et al. Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction. Adv. Mater. 2020, 32, e2001300.

72. Tan, G.; Chong, L.; Amine, R.; et al. Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic N-doping Cobalt@Graphene multiple-capsule heterostructures. Nano. Lett. 2017, 17, 2959-66.

73. Li, Y.; Zhou, J.; Zhang, T.; et al. Highly surface-wrinkled and N-doped CNTs anchored on metal wire: a novel fiber-shaped cathode toward high-performance flexible Li-CO2 batteries. Adv. Funct. Mater. 2019, 29, 1808117.

74. Xu, C.; Zhang, K.; Zhang, D.; et al. Reversible hybrid sodium-CO2 batteries with low charging voltage and long-life. Nano. Energy. 2020, 68, 104318.

75. Xu, C.; Zhan, J.; Wang, H.; Kang, Y.; Liang, F. Dense binary Fe-Cu sites promoting CO2 utilization enable highly reversible hybrid Na-CO2 batteries. J. Mater. Chem. A. 2021, 9, 22114-28.

76. Chen, B.; Wang, D.; Zhang, B.; et al. Engineering the active sites of graphene catalyst: from CO2 activation to activate Li-CO2 batteries. ACS. Nano. 2021, 15, 9841-50.

77. Li, X.; Qi, G.; Zhang, J.; Cheng, J.; Wang, B. Artificial solid-electrolyte interphase and bamboo-like N-doped carbon nanotube enabled highly rechargeable K-CO2 batteries. Adv. Funct. Mater. 2022, 32, 2105029.

78. Ma, G.; Ning, G.; Wei, Q. S-doped carbon materials: synthesis, properties and applications. Carbon 2022, 195, 328-40.

79. Sun, T.; Huang, F.; Liu, J.; et al. Strengthened d-p orbital-hybridization of single atoms with sulfur species induced bidirectional catalysis for lithium-sulfur batteries. Adv. Funct. Mater. 2023, 33, 2306049.

80. Dong, C.; Ma, C.; Zhou, C.; et al. Engineering d-p orbital hybridization with P, S Co-coordination asymmetric configuration of single atoms toward high-rate and long-cycling lithium-sulfur battery. Adv. Mater. 2024, 36, e2407070.

81. Wang, G.; Liu, M.; Jia, J.; et al. Nitrogen and sulfur co-doped carbon nanosheets for electrochemical reduction of CO2. ChemCatChem 2020, 12, 2203-8.

82. Huang, K.; Li, R.; Qi, H.; et al. Regulating adsorption of intermediates via the sulfur modulating dual-atomic sites for boosting CO2 RR. ACS. Catal. 2024, 14, 8889-98.

83. Zhang, Z.; Bai, W.; Wang, K.; Chen, J. Electrocatalyst design for aprotic Li-CO2 batteries. Energy. Environ. Sci. 2020, 13, 4717-37.

84. Balu, S.; Hanan, A.; Venkatesvaran, H.; Chen, S.; Yang, T. C.; Khalid, M. Recent progress in surface-defect engineering strategies for electrocatalysts toward electrochemical CO2 reduction: a review. Catalysts 2023, 13, 393.

85. Wang, Y.; Cheng, Y.; Chen, B.; et al. p-band regulation guides the free-standing porous carbon electrode for efficient Na-CO2 batteries. Energy. Storage. Mater. 2024, 71, 103655.

86. Song, L.; Hu, C.; Xiao, Y.; et al. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts. Nano. Energy. 2020, 71, 104595.

87. Qie, L.; Lin, Y.; Connell, J. W.; Xu, J.; Dai, L. Highly rechargeable lithium-CO2 batteries with a boron- and nitrogen-codoped holey-graphene cathode. Angew. Chem. Int. Ed. 2017, 56, 6970-4.

88. Kaur, S.; Kumar, M.; Gupta, D.; et al. Efficient CO2 utilization and sustainable energy conversion via aqueous Zn-CO2 batteries. Nano. Energy. 2023, 109, 108242.

89. Gao, M.; Li, C.; Wang, R.; Xiao, S.; Guo, Z.; Wang, Y. Noble metal catalysts for metal-air batteries: from nano-level to atom-level. Next. Mater. 2024, 2, 100126.

90. Yu, A.; Liu, S.; Zhang, W.; Yang, Y. Molten salt electrolytic CO2-derived carbon-based nanomaterials for energy storage and electrocatalysis: a review. ACS. Appl. Nano. Mater. 2024, 7, 27960-78.

91. Wang, F.; Shang, S.; Li, Z.; Zhang, Z.; Chu, K. Selective urea electrosynthesis from nitrate and CO2 on isolated copper alloyed ruthenium. ACS. Energy. Lett. 2024, 9, 4624-32.

92. Liu, Z.; Ma, J.; Guo, Y.; Hong, M.; Sun, R. Photocatalytic CO2 reduction integrated with biomass selective oxidation via single-atom Ru and P dual sites on carbon nitride. Appl. Catal. B. Environ. 2024, 342, 123429.

93. Qiao, Y.; Yi, J.; Wu, S.; et al. Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage. Joule 2017, 1, 359-70.

94. Lin, J.; Ding, J.; Wang, H.; et al. Boosting energy efficiency and stability of Li-CO2 batteries via synergy between Ru atom clusters and single-atom Ru-N4 sites in the electrocatalyst cathode. Adv. Mater. 2022, 34, e2200559.

95. Thoka, S.; Tsai, C. M.; Tong, Z.; et al. Comparative study of Li-CO2 and Na-CO2 batteries with Ru@CNT as a cathode catalyst. ACS. Appl. Mater. Interfaces. 2021, 13, 480-90.

96. Zhao, J.; Xu, X.; Chen, J.; et al. Ultrafine Ru nanoparticles anchored on N-doped mesoporous hollow carbon spheres as a highly efficient bifunctional catalyst for Li-CO2 batteries. J. Power. Sources. 2024, 607, 234577.

97. Lian, Z.; Lu, Y.; Wang, C.; et al. Single-atom Ru implanted on Co3O4 nanosheets as efficient dual-catalyst for Li-CO2 batteries. Adv. Sci. 2021, 8, 2102550.

98. Xu, C.; Qiu, J.; Dong, Y.; et al. Dual-functional electrode promoting dendrite-free and CO2 utilization enabled high-reversible symmetric Na-CO2 batteries. Energy. Environ. Mater. 2024, 7, e12626.

99. Chen, S.; Yang, K.; Zhu, H.; et al. Rational catalyst structural design to facilitate reversible Li-CO2 batteries with boosted CO2 conversion kinetics. Nano. Energy. 2023, 117, 108872.

100. Rho, Y.; Yoo, Y. J.; Ryu, W. Research trends on minimizing the size of noble metal catalysts for Li-CO2 batteries: from nanoparticle to single atom. Korean. J. Chem. Eng. 2023, 40, 461-72.

101. Najafli, E.; Ratso, S.; Foroozan, A.; Noor, N.; Higgins, D. C.; Kruusenberg, I. Functionalization of CO2-derived carbon support as a pathway to enhancing the oxygen reduction reaction performance of Pt electrocatalysts. Energy. Fuels. 2024, 38, 15601-10.

102. Chen, Z.; Yuan, M.; Tang, Z.; Zhu, H.; Zeng, G. Magnetron sputtering of platinum on nitrogen-doped polypyrrole carbon nanotubes as an efficient and stable cathode for lithium-carbon dioxide batteries. Phys. Chem. Chem. Phys. 2023, 25, 7662-8.

103. Zhang, P. F.; Zhuo, H. Y.; Dong, Y. Y.; et al. Pt nanoparticles confined in a 3D porous FeNC matrix as efficient catalysts for rechargeable Li-CO2/O2 batteries. ACS. Appl. Mater. Interfaces. 2023, 15, 2940-50.

104. Xing, Y.; Yang, Y.; Li, D.; et al. Crumpled Ir nanosheets fully covered on porous carbon nanofibers for long-life rechargeable lithium-CO2 batteries. Adv. Mater. 2018, 30, e1803124.

105. Gu, Y.; Liu, B.; Zeng, X.; et al. A flexible Li-CO2 batteries with enhanced cycling stability enabled by a IrO2/carbon fiber self-standing cathode. Electrochim. Acta. 2023, 443, 141951.

106. Wu, G.; Li, X.; Zhang, Z.; et al. Design of ultralong-life Li-CO2 batteries with IrO2 nanoparticles highly dispersed on nitrogen-doped carbon nanotubes. J. Mater. Chem. A. 2020, 8, 3763-70.

107. Ma, W.; Liu, X.; Li, C.; et al. Rechargeable Al-CO2 batteries for reversible utilization of CO2. Adv. Mater. 2018, 30, e1801152.

108. Bagchi, D.; Sarkar, S.; Singh, A. K.; Vinod, C. P.; Peter, S. C. Potential- and time-dependent dynamic nature of an oxide-derived PdIn nanocatalyst during electrochemical CO2 reduction. ACS. Nano. 2022, 16, 6185-96.

109. Zhuang, Q.; Hu, C.; Zhu, W.; et al. Facile synthesis of MnO/NC nanohybrids toward high-efficiency ORR for zinc-air battery. RSC. Adv. 2024, 14, 24031-8.

110. Yang, M.; Liu, S.; Sun, J.; et al. Highly dispersed Bi clusters for efficient rechargeable Zn-CO2 batteries. Appl. Catal. B. Environ. 2022, 307, 121145.

111. Naik, K. M.; Kumar, C. A.; Sharma, C. S. Nano-interface engineering of NiFe2O4/MoS2/MWCNTs heterostructure catalyst as cathodes in the long-life reversible Li-CO2 mars batteries. Chem. Eng. J. 2024, 490, 151729.

112. Peng, M.; Ci, S.; Shao, P.; Cai, P.; Wen, Z. Cu3P/C nanocomposites for efficient electrocatalytic CO2 reduction and Zn-CO2 battery. J. Nanosci. Nanotechnol. 2019, 19, 3232-6.

113. Zheng, W.; Yang, J.; Chen, H.; et al. Atomically defined undercoordinated active sites for highly efficient CO2 electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.

114. Liu, Y.; Shu, P.; Zhang, M.; et al. Uncovering the geometry activity of spinel oxides in Li-CO2 battery reactions. ACS. Energy. Lett. 2024, 9, 2173-81.

115. Xu, C.; Zhan, J.; Wang, Z.; et al. Biomass-derived highly dispersed Co/Co9S8 nanoparticles encapsulated in S, N-co-doped hierarchically porous carbon as an efficient catalyst for hybrid Na-CO2 batteries. Mater. Today. Energy. 2021, 19, 100594.

116. Liu, B.; Sun, Y.; Liu, L.; Xu, S.; Yan, X. Advances in manganese-based oxides cathodic electrocatalysts for Li-air batteries. Adv. Funct. Mater. 2018, 28, 1704973.

117. Bai, L.; Duan, Z.; Wen, X.; Si, R.; Guan, J. Atomically dispersed manganese-based catalysts for efficient catalysis of oxygen reduction reaction. App. Catal. B. Environ. 2019, 257, 117930.

118. Wang, H.; Yang, Y.; Liu, J.; et al. The role of manganese-based catalyst in electrocatalytic water splitting: recent research and progress. Mater. Today. Phy. 2023, 36, 101169.

119. Liu, L.; Shen, S.; Zhao, N.; et al. Revealing the indispensable role of in situ electrochemically reconstructed Mn(II)/Mn(III) in improving the performance of lithium-carbon dioxide batteries. Adv. Mater. 2024, 36, e2403229.

120. Wang, S.; Wang, L.; Wang, D.; Li, Y. Recent advances of single-atom catalysts in CO2 conversion. Energy. Environ. Sci. 2023, 16, 2759-803.

121. Dai, Y.; Li, H.; Wang, C.; et al. Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion. Nat. Commun. 2023, 14, 3382.

122. Zhang, Y.; Johannessen, B.; Zhang, P.; Gong, J.; Ran, J.; Qiao, S. Z. Reversed Electron transfer in dual single atom catalyst for boosted photoreduction of CO2. Adv. Mater. 2023, 35, e2306923.

123. Miao, K.; Qin, J.; Yang, J.; Kang, X. Synergy of Ni nanoclusters and single atom site: size effect on the performance of electrochemical CO2 reduction reaction and rechargeable Zn-CO2 batteries. Adv. Funct. Mater. 2024, 34, 2316824.

124. Li, H.; Pan, F.; Qin, C.; Wang, T.; Chen, K. Porous organic polymers-based single-atom catalysts for sustainable energy-related electrocatalysis. Adv. Energy. Mater. 2023, 13, 2301378.

125. Zhang, W.; Zhang, J.; Wang, N.; et al. Two-electron redox chemistry via single-atom catalyst for reversible zinc-air batteries. Nat. Sustain. 2024, 7, 463-73.

126. Bao, Y.; Xiao, J.; Huang, Y.; et al. Regulating spin polarization via axial nitrogen traction at Fe-N5 sites enhanced electrocatalytic CO2 reduction for Zn-CO2 batteries. Angew. Chem. Int. Ed. 2024, 63, e202406030.

127. Xu, Y.; Gong, H.; Song, L.; et al. A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li-CO2 batteries. Mater. Today. Energy. 2022, 25, 100967.

128. Zhu, K.; Li, X.; Choi, J.; et al. Single-Atom Cadmium-N4 sites for rechargeable Li-CO2 batteries with high capacity and ultra-long lifetime. Adv. Funct. Mater. 2023, 33, 2213841.

129. Li, J.; Chen, L.; Hao, Y.; et al. Asymmetric coordinated single-atom Pd sites for high performance CO2 electroreduction and Zn-CO2 battery. Chem. Eng. J. 2023, 461, 141865.

130. Sun, X.; Hou, Z.; He, P.; Zhou, H. Recent advances in rechargeable Li-CO2 batteries. Energy. Fuels. 2021, 35, 9165-86.

131. Li, S.; Dong, Y.; Zhou, J.; et al. Carbon dioxide in the cage: manganese metal-organic frameworks for high performance CO2 electrodes in Li-CO2 batteries. Energy. Environ. Sci. 2018, 11, 1318-25.

132. Li, S.; Liu, Y.; Zhou, J.; et al. Monodispersed MnO nanoparticles in graphene-an interconnected N-doped 3D carbon framework as a highly efficient gas cathode in Li-CO2 batteries. Energy. Environ. Sci. 2019, 12, 1046-54.

133. Li, W.; Zhang, M.; Sun, X.; et al. Boosting a practical Li-CO2 battery through dimerization reaction based on solid redox mediator. Nat. Commun. 2024, 15, 803.

134. Lu, M.; Zhang, M.; Liu, J.; et al. Covalent organic framework based functional materials: important catalysts for efficient CO2 utilization. Angew. Chem. Int. Ed. 2022, 134, e202200003.

135. Sun, C.; Sheng, D.; Wang, B.; Feng, X. Covalent organic frameworks for extracting water from air. Angew. Chem. Int. Ed. 2023, 135, e202303378.

136. Nguyen, H. L.; Gropp, C.; Hanikel, N.; Möckel, A.; Lund, A.; Yaghi, O. M. Hydrazine-hydrazide-linked covalent organic frameworks for water harvesting. ACS. Cent. Sci. 2022, 8, 926-32.

137. Li, X.; Wang, H.; Chen, Z.; et al. Covalent-organic-framework-based Li-CO2 batteries. Adv. Mater. 2019, 31, e1905879.

138. Zhang, Y.; Zhong, R. L.; Lu, M.; et al. Single Metal site and versatile transfer channel merged into covalent organic frameworks facilitate high-performance Li-CO2 batteries. ACS. Cent. Sci. 2021, 7, 175-82.

139. Lin, R.; Chen, B. Hydrogen-bonded organic frameworks: chemistry and functions. Chem 2022, 8, 2114-35.

140. Yin, Q.; Alexandrov, E. V.; Si, D. H.; et al. Metallization-prompted robust porphyrin-based hydrogen-bonded organic frameworks for photocatalytic CO2 reduction. Angew. Chem. Int. Ed. 2022, 61, e202115854.

141. Lin, Z. J.; Mahammed, S. A. R.; Liu, T. F.; Cao, R. Multifunctional porous hydrogen-bonded organic frameworks: current status and future perspectives. ACS. Cent. Sci. 2022, 8, 1589-608.

142. Karmakar, A.; Illathvalappil, R.; Anothumakkool, B.; et al. Hydrogen-bonded organic frameworks (HOFs): a new class of porous crystalline proton-conducting materials. Angew. Chem. Int. Ed. 2016, 55, 10667-71.

143. Yang, Y.; Li, L.; Lin, R. B.; et al. Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nat. Chem. 2021, 13, 933-9.

144. Zhang, Z.; Ye, Y.; Xiang, S.; Chen, B. Exploring multifunctional hydrogen-bonded organic framework materials. ACC. Chem. Res. 2022, 55, 3752-66.

145. Chen, L.; Yuan, Z.; Zhang, H.; et al. A flexible hydrogen-bonded organic framework constructed from a tetrabenzaldehyde with a carbazole N-H binding site for the highly selective recognition and separation of acetone. Angew. Chem. Int. Ed. 2022, 61, e202213959.

146. Guo, C.; Han, B.; Sun, W.; Cao, Y.; Zhang, Y.; Wang, Y. Hydrogen-bonded organic framework for high-performance lithium/sodium-iodine organic batteries. Angew. Chem. Int. Ed. 2022, 61, e202213276.

147. Cheng, Z.; Fang, Y.; Yang, Y.; et al. Hydrogen-bonded organic framework to upgrade cycling stability and rate capability of Li-CO2 batteries. Angew. Chem. Int. Ed. 2023, 135, e202311480.

148. Hao, X.; An, X.; Patil, A. M.; et al. Biomass-derived N-doped carbon for efficient electrocatalytic CO2 reduction to CO and Zn-CO2 batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 3738-47.

149. Chen, J.; Wang, Y.; Li, S.; et al. Porous metal current collectors for alkali metal batteries. Adv. Sci. 2022, 10, e2205695.

150. Xiao, Y.; Du, F.; Hu, C.; et al. High-performance Li-CO2 batteries from free-standing, binder-free, bifunctional three-dimensional carbon catalysts. ACS. Energy. Lett. 2020, 5, 916-21.

151. Yang, H.; Lin, Q.; Wu, Y.; et al. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano. Energy. 2020, 70, 104454.

152. Zhou, J.; Cheng, J.; Wang, B.; Peng, H.; Lu, J. Flexible metal-gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy. Environ. Sci. 2020, 13, 1933-70.

153. Chen, L.; Zhou, J.; Wang, Y.; et al. Flexible, stretchable, water-/fire-proof fiber-shaped Li-CO2 batteries with high energy density. Adv. Energy. Mater. 2023, 13, 2202933.

154. Hu, T.; Hu, Y.; Yao, T.; et al. Freestanding molybdenum carbide nanowires electrode for high specific capacity and superior rate performance Li-CO2 batteries. Energy. Storage. Mater. 2024, 72, 103740.

155. Chen, M.; Liu, Y.; Liang, X.; Wang, F.; Li, Y.; Chen, Q. Integrated carbon nanotube/MoO3 core/shell arrays as freestanding air cathodes for flexible Li-CO2 batteries. Energy. Technol. 2021, 9, 2100547.

156. Cheng, Z.; Wu, Z.; Chen, J.; et al. Mo2N-ZrO2 heterostructure engineering in freestanding carbon nanofibers for upgrading cycling stability and energy efficiency of Li-CO2 batteries. Small 2023, 19, e2301685.

157. Zhao, W.; Yang, Y.; Deng, Q.; et al. Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries. Adv. Funct. Mater. 2023, 33, 2210037.

158. Liu, L.; Qin, Y.; Zhao, H.; et al. Suppression of CO2 induced lithium anode corrosion by fluorinated functional group in quasi-solid polymer electrolyte enabling long-cycle and high-safety Li-CO2 batteries. Energy. Storage. Mater. 2023, 57, 260-8.

159. Wang, F.; Li, Y.; Xia, X.; Cai, W.; Chen, Q.; Chen, M. Metal-CO2 electrochemistry: from CO2 recycling to energy storage. Adv. Energy. Mater. 2021, 11, 2100667.

160. Zhang, P.; Chen, Z.; Shang, N.; et al. Advances in polymer electrolytes for solid-state zinc-air batteries. Mater. Chem. Front. 2023, 7, 3994-4018.

161. Xu, S.; Das, S. K.; Archer, L. A. The Li-CO2 battery: a novel method for CO2 capture and utilization. RSC. Adv. 2013, 3, 6656.

162. Zhu, K.; Li, X.; Choi, J.; et al. Single-atom cadmium-N4 sites for rechargeable Li-CO2 batteries with high capacity and ultra-long lifetime. Adv. Funct. Mater. 2023, 33, 2213841.

163. Hu, X.; Li, Z.; Zhao, Y.; et al. Quasi-solid state rechargeable Na-CO2 batteries with reduced graphene oxide Na anodes. Sci. Adv. 2017, 3, e1602396.

164. Xu, S.; Lu, Y.; Wang, H.; Abruña, H. D.; Archer, L. A. A rechargeable Na-CO2/O2 battery enabled by stable nanoparticle hybrid electrolytes. J. Mater. Chem. A. 2014, 2, 17723-9.

165. Zhang, W.; Hu, C.; Guo, Z.; Dai, L. High-performance K-CO2 batteries based on metal-free carbon electrocatalysts. Angew. Chem. Int. Ed. 2020, 59, 3470-4.

166. Sadat WI, Archer LA. The O2-assisted Al/CO2 electrochemical cell: a system for CO2 capture/conversion and electric power generation. Sci. Adv. 2016, 2, e1600968.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/