REFERENCES

1. Achakulwisut, P.; Erickson, P.; Guivarch, C.; Schaeffer, R.; Brutschin, E.; Pye, S. Global fossil fuel reduction pathways under different climate mitigation strategies and ambitions. Nat. Commun. 2023, 14, 5425.

2. Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, e1800561.

3. Grey, C. P.; Hall, D. S. Prospects for lithium-ion batteries and beyond-a 2030 vision. Nat. Commun. 2020, 11, 6279.

4. Degen, F.; Winter, M.; Bendig, D.; Tübke, J. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nat. Energy. 2023, 8, 1284-95.

5. Liang, Y.; Yao, Y. Designing modern aqueous batteries. Nat. Rev. Mater. 2023, 8, 109-22.

6. Ahn, H.; Kim, D.; Lee, M.; Nam, K. W. Challenges and possibilities for aqueous battery systems. Commun. Mater. 2023, 4, 367.

7. Fu, Q.; Wu, X.; Luo, X.; et al. High-voltage aqueous Mg-ion batteries enabled by solvation structure reorganization. Adv. Funct. Mater. 2022, 32, 2110674.

8. Li, R.; Yu, J.; Chen, F.; Su, Y.; Chan, K. C.; Xu, Z. High-power and ultrastable aqueous calcium-ion batteries enabled by small organic molecular crystal anodes. Adv. Funct. Mater. 2023, 33, 2214304.

9. Liu, Y. N.; Yang, J. L.; Gu, Z. Y.; et al. Entropy-regulated cathode with low strain and constraint phase-change toward ultralong-life aqueous Al-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202316925.

10. Zhang, T.; Tang, Y.; Guo, S.; et al. Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy. Environ. Sci. 2020, 13, 4625-65.

11. Zhou, T.; Gao, G. V2O5-based cathodes for aqueous zinc ion batteries: mechanisms, preparations, modifications, and electrochemistry. Nano. Energy. 2024, 127, 109691.

12. Zhang, N.; Ji, Y.; Wang, J.; Wang, P.; Zhu, Y.; Yi, T. Understanding of the charge storage mechanism of MnO2-based aqueous zinc-ion batteries: reaction processes and regulation strategies. J. Energy. Chem. 2023, 82, 423-63.

13. Li, Y.; Zhao, J.; Hu, Q.; et al. Prussian blue analogs cathodes for aqueous zinc ion batteries. Mater. Today. Energy. 2022, 29, 101095.

14. Li, Z.; Tan, J.; Wang, Y.; et al. Building better aqueous Zn-organic batteries. Energy. Environ. Sci. 2023, 16, 2398-431.

15. Li, C.; Wang, L.; Zhang, J.; et al. Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy. Storage. Mater. 2022, 44, 104-35.

16. Hao, J.; Li, X.; Zeng, X.; Li, D.; Mao, J.; Guo, Z. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy. Environ. Sci. 2020, 13, 3917-49.

17. Cao, J.; Zhang, D.; Zhang, X.; Zeng, Z.; Qin, J.; Huang, Y. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy. Environ. Sci. 2022, 15, 499-528.

18. Yan, C.; Xu, R.; Xiao, Y.; et al. Toward critical electrode/electrolyte interfaces in rechargeable batteries. Adv. Funct. Mater. 2020, 30, 1909887.

19. Jiang, L.; Li, D.; Xie, X.; et al. Electric double layer design for Zn-based batteries. Energy. Storage. Mater. 2023, 62, 102932.

20. Bockris, J. M.; Devanathan, M.; Müller, K. On the structure of charged interfaces. Proc. R. Soc. Lond. A. 1963, 274, 55-79.

21. Nakamura, M.; Sato, N.; Hoshi, N.; Sakata, O. Outer helmholtz plane of the electrical double layer formed at the solid electrode-liquid interface. Chemphyschem 2011, 12, 1430-4.

22. Read, J. Characterization of the lithium/oxygen organic electrolyte battery. J. Electrochem. Soc. 2002, 149, A1190.

23. Ye, Z.; Cao, Z.; Lam, C. M. O.; et al. Advances in Zn-ion batteries via regulating liquid electrolyte. Energy. Storage. Mater. 2020, 32, 290-305.

24. Kim, Y. P.; Shon, H. K.; Shin, S. K.; Lee, T. G. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry. Mass. Spectrom. Rev. 2015, 34, 237-47.

25. Yao, N.; Chen, X.; Fu, Z. H.; Zhang, Q. Applying classical, Ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem. Rev. 2022, 122, 10970-1021.

26. Huang, R.; Zhang, J.; Wang, W.; et al. Dual-anion chemistry synchronously regulating the solvation structure and electric double layer for durable Zn metal anodes. Energy. Environ. Sci. 2024, 17, 3179-90.

27. Luo, J.; Xu, L.; Zhou, Y.; et al. Regulating the inner helmholtz plane with a high donor additive for efficient anode reversibility in aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 2023, 135, e202302302.

28. Chen, F. Atomistic modelling approaches to understanding the interfaces of ionic liquid electrolytes for batteries and electrochemical devices. Curr. Opin. Electrochem. 2022, 35, 101086.

29. Wang, D.; Li, Q.; Zhao, Y.; et al. Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy. Mater. 2022, 12, 2102707.

30. Bazant, M. Z. Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. ACC. Chem. Res. 2013, 46, 1144-60.

31. Zheng, J.; Archer, L. A. Controlling electrochemical growth of metallic zinc electrodes: Toward affordable rechargeable energy storage systems. Sci. Adv. 2021, 7, eabe0219.

32. Choobar B, Hamed H, Safari M. Morphological peculiarities of the lithium electrode from the perspective of the Marcus-Hush-Chidsey model. J. Energy. Chem. 2023, 80, 452-7.

33. Gileadi, E.; Eliaz, N. The mechanism of induced codeposition of Ni-W alloys. ECS. Trans. 2007, 2, 337-49.

34. Santos, E.; Nazmutdinov, R.; Schmickler, W. Electron transfer at different electrode materials: metals, semiconductors, and graphene. Curr. Opin. Electrochem. 2020, 19, 106-12.

35. Sato, N. Electrochemistry at metal and semiconductor electrodes. Elsevier; 1998. Available from: https://www.sciencedirect.com/book/9780444828064/electrochemistry-at-metal-and-semiconductor-electrodes [Last accessed on 9 Jan 2024]

36. Grahame, D. C. Electrode processes and the electrical double layer. Annu. Rev. Phys. Chem. 1955, 6, 337-58.

37. Gileadi, E. Can an electrode reaction occur without electron transfer across the metal/solution interface? Chem. Phys. Lett. 2004, 393, 421-4.

38. Bangle, R. E.; Schneider, J.; Piechota, E. J.; Troian-Gautier, L.; Meyer, G. J. Electron transfer reorganization energies in the electrode-electrolyte double layer. J. Am. Chem. Soc. 2020, 142, 674-9.

39. Zhang, X.; Zhang, L.; Jia, X.; Song, W.; Liu, Y. Design strategies for aqueous zinc metal batteries with high zinc utilization: from metal anodes to anode-free structures. Nanomicro. Lett. 2024, 16, 75.

40. Doughty, D. H. Li ion battery abuse tolerance testing-an overview. 2006. Available from: https://www.osti.gov/servlets/purl/1725924 [Last accessed on 9 Jan 2024]

41. Dubarry, M.; Devie, A. Battery durability and reliability under electric utility grid operations: representative usage aging and calendar aging. J. Energy. Storage. 2018, 18, 185-95.

42. Xiao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426-7.

43. Xu, X.; Jiao, X.; Kapitanova, O. O.; et al. Diffusion limited current density: a watershed in electrodeposition of lithium metal anode. Adv. Energy. Mater. 2022, 12, 2200244.

44. Cogswell, D. A. Quantitative phase-field modeling of dendritic electrodeposition. Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. 2015, 92, 011301.

45. Li, Q.; Zhao, Y.; Mo, F.; et al. Dendrites issues and advances in Zn anode for aqueous rechargeable Zn-based batteries. EcoMat 2020, 2, e12035.

46. Liu, Z.; Huang, Y.; Huang, Y.; et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 2020, 49, 180-232.

47. Zhao, J.; Zhang, J.; Yang, W.; et al. “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano. Energy. 2019, 57, 625-34.

48. Wang, Y.; Liang, B.; Zhu, J.; et al. Manipulating electric double layer adsorption for stable solid-electrolyte interphase in 2.3 Ah Zn-pouch cells. Angew. Chem. Int. Ed. 2023, 135, e202302583.

49. Liang, G.; Zhu, J.; Yan, B.; et al. Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy. Environ. Sci. 2022, 15, 1086-96.

50. Yang, Q.; Li, L.; Hussain, T.; et al. Stabilizing interface pH by N-modified graphdiyne for dendrite-free and high-rate aqueous Zn-ion batteries. Angew. Chem. Int. Ed. 2022, 134, e202112304.

51. Palacín, M. R.; de Guibert, A. Why do batteries fail? Science 2016, 351, 1253292.

52. Liu, B.; Yuan, X.; Li, Y. Colossal capacity loss during calendar aging of Zn battery chemistries. ACS. Energy. Lett. 2023, 8, 3820-8.

53. Li, Q.; Wang, Y.; Mo, F.; et al. Calendar life of Zn batteries based on Zn anode with Zn powder/current collector structure. Adv. Energy. Mater. 2021, 11, 2003931.

54. Belov, D.; Yang, M. Failure mechanism of Li-ion battery at overcharge conditions. J. Solid. State. Electrochem. 2008, 12, 885-94.

55. Ji, W.; Huang, H.; Huang, X.; et al. A redox-active organic cation for safer high energy density Li-ion batteries. J. Mater. Chem. A. 2020, 8, 17156-62.

56. Huang, J.; Azimi, N.; Cheng, L.; et al. An organophosphine oxide redox shuttle additive that delivers long-term overcharge protection for 4 V lithium-ion batteries. J. Mater. Chem. A. 2015, 3, 10710-4.

57. Ji, W.; Huang, H.; Zheng, D.; et al. A redox-active organic cation for safer metallic lithium-based batteries. Energy. Storage. Mater. 2020, 32, 185-90.

58. Odom, S. A.; Ergun, S.; Poudel, P. P.; Parkin, S. R. A fast, inexpensive method for predicting overcharge performance in lithium-ion batteries. Energy. Environ. Sci. 2014, 7, 760-7.

59. Ren, D.; Feng, X.; Lu, L.; He, X.; Ouyang, M. Overcharge behaviors and failure mechanism of lithium-ion batteries under different test conditions. Appl. Energy. 2019, 250, 323-32.

60. Weng, W.; Huang, J.; Shkrob, I. A.; Zhang, L.; Zhang, Z. Redox shuttles with axisymmetric scaffold for overcharge protection of lithium-ion batteries. Adv. Energy. Mater. 2016, 6, 1600795.

61. Wang, F.; Zhang, J.; Lu, H.; et al. Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat. Commun. 2023, 14, 4211.

62. Wang, F.; Tseng, J.; Liu, Z.; et al. A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function. Adv. Mater. 2020, 32, e2000287.

63. Li, M.; Li, Z.; Wang, X.; et al. Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy. Environ. Sci. 2021, 14, 3796-839.

64. Yang, F.; Yuwono, J. A.; Hao, J.; et al. Understanding H2 evolution electrochemistry to minimize solvated water impact on zinc-anode performance. Adv. Mater. 2022, 34, e2206754.

65. Cao, L.; Li, D.; Hu, E.; et al. Solvation structure design for aqueous Zn metal batteries. J. Am. Chem. Soc. 2020, 142, 21404-9.

66. Li, T. C.; Lim, Y.; Li, X. L.; et al. A universal additive strategy to reshape electrolyte solvation structure toward reversible Zn storage. Adv. Energy. Mater. 2022, 12, 2103231.

67. Zhang, Q.; Ma, Y.; Lu, Y.; et al. Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J. Am. Chem. Soc. 2022, 144, 18435-43.

68. Zhang, Q.; Ma, Y.; Lu, Y.; et al. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 2021, 60, 23357-64.

69. Jiang, L.; Zhou, Y.; Jiang, Y.; et al. Unique solvation structure induced by anionic Cl in aqueous zinc ion batteries. Heliyon 2024, 10, e30592.

70. Miao, L.; Wang, R.; Di, S.; et al. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes. ACS. Nano. 2022, 16, 9667-78.

71. Cao, L.; Li, D.; Pollard, T.; et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 2021, 16, 902-10.

72. Li, Y.; Yu, Z.; Huang, J.; Wang, Y.; Xia, Y. Constructing solid electrolyte interphase for aqueous zinc batteries. Angew. Chem. Int. Ed. 2023, 135, e202309957.

73. Li, D.; Cao, L.; Deng, T.; Liu, S.; Wang, C. Design of a solid electrolyte interphase for aqueous Zn batteries. Angew. Chem. Int. Ed. 2021, 60, 13035-41.

74. Wang, G.; Zhang, Q. K.; Zhang, X. Q.; et al. Electrolyte additive for interfacial engineering of lithium and zinc metal anodes. Adv. Energy. Mater. 2024, 2304557.

75. Dong, Y.; Miao, L.; Ma, G.; et al. Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries. Chem. Sci. 2021, 12, 5843-52.

76. Xie, D.; Sang, Y.; Wang, D. H.; et al. ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2023, 62, e202216934.

77. Chu, Y.; Zhang, S.; Wu, S.; Hu, Z.; Cui, G.; Luo, J. In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy. Environ. Sci. 2021, 14, 3609-20.

78. Li, Y.; Yao, H.; Liu, X.; Yang, X.; Yuan, D. Roles of electrolyte additive in Zn chemistry. Nano. Res. 2023, 16, 9179-94.

79. Yao, R.; Qian, L.; Sui, Y.; et al. A versatile cation additive enabled highly reversible zinc metal anode. Adv. Energy. Mater. 2022, 12, 2102780.

80. Qiu, M.; Sun, P.; Wang, Y.; Ma, L.; Zhi, C.; Mai, W. Anion-trap engineering toward remarkable crystallographic reorientation and efficient cation migration of Zn ion batteries. Angew. Chem. Int. Ed. 2022, 61, e202210979.

81. Wang, H.; Ye, W.; Yin, B.; et al. Modulating cation migration and deposition with xylitol additive and oriented reconstruction of hydrogen bonds for stable zinc anodes. Angew. Chem. Int. Ed. 2023, 62, e202218872.

82. Yang, Y.; Li, Y.; Zhu, Q.; Xu, B. Optimal molecular configuration of electrolyte additives enabling stabilization of zinc anodes. Adv. Funct. Mater. 2024, 34, 2316371.

83. Zhao, Y.; Wei, M.; Tan, L. L.; et al. Manipulating the host-guest chemistry of cucurbituril to propel highly reversible zinc metal anodes. Small 2024, 20, e2308164.

84. Han, M. C.; Zhang, J. H.; Yu, C. Y.; et al. Constructing dynamic anode/electrolyte interfaces coupled with regulated solvation structures for long-term and highly reversible zinc metal anodes. Angew. Chem. Int. Ed. 2024, 63, e202403695.

85. Dong, J.; Su, L.; Peng, H.; et al. Spontaneous molecule aggregation for nearly single-ion conducting sol electrolyte to advance aqueous zinc metal batteries: the case of tetraphenylporphyrin. Angew. Chem. Int. Ed. 2024, 63, e202401441.

86. Wu, Q.; McDowell, M. T.; Qi, Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 2023, 145, 2473-84.

87. Huang, C.; Zhao, X.; Hao, Y.; et al. Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes. Energy. Environ. Sci. 2023, 16, 1721-31.

88. Huang, C.; Huang, F.; Zhao, X.; et al. Rational design of sulfonamide-based additive enables stable solid electrolyte interphase for reversible Zn metal anode. Adv. Funct. Mater. 2023, 33, 2210197.

89. Lin, Y.; Mai, Z.; Liang, H.; Li, Y.; Yang, G.; Wang, C. Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy. Environ. Sci. 2023, 16, 687-97.

90. Shen, Z.; Mao, J.; Yu, G.; et al. Electrocrystallization regulation enabled stacked hexagonal platelet growth toward highly reversible zinc anodes. Angew. Chem. Int. Ed. 2023, 62, e202218452.

91. Ding, F.; Xu, W.; Graff, G. L.; et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 2013, 135, 4450-6.

92. Ding, Y.; Zhang, X.; Wang, T.; et al. A dynamic electrostatic shielding layer toward highly reversible Zn metal anode. Energy. Storage. Mater. 2023, 62, 102949.

93. Guo, X.; Zhang, Z.; Li, J.; et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives. ACS. Energy. Lett. 2021, 6, 395-403.

94. Xu, Y.; Zhu, J.; Feng, J.; et al. A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy. Storage. Mater. 2021, 38, 299-308.

95. Hu, Z.; Zhang, F.; Zhao, Y.; et al. A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries. Adv. Mater. 2022, 34, e2203104.

96. Wang, P.; Xie, X.; Xing, Z.; et al. Mechanistic insights of Mg2+ -electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors. Adv. Energy. Mater. 2021, 11, 2101158.

97. Jie, Z.; Xia, H.; Zhong, S. L.; et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017, 8, 845.

98. Kim, M.; Yun, D.; Jeon, J. Effect of a bromine complex agent on electrochemical performances of zinc electrodeposition and electrodissolution in Zinc-Bromide flow battery. J. Power. Sources. 2019, 438, 227020.

99. Wang, H.; Zhou, A.; Hu, X.; et al. Bifunctional dynamic adaptive interphase reconfiguration for zinc deposition modulation and side reaction suppression in aqueous zinc ion batteries. ACS. Nano. 2023, 17, 11946-56.

100. Yuan, Y.; Pu, S. D.; Pérez-Osorio, M. A.; et al. Diagnosing the electrostatic shielding mechanism for dendrite suppression in aqueous zinc batteries. Adv. Mater. 2024, 36, e2307708.

101. Li, C.; Zhang, X.; Qu, G.; et al. Highly reversible Zn metal anode securing by functional electrolyte modulation. Adv. Energy. Mater. 2024, 14, 2400872.

102. Zhang, N.; Cheng, F.; Liu, J.; et al. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

103. Ma, L.; Chen, S.; Li, H.; et al. Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co(iii) rich-electrode. Energy. Environ. Sci. 2018, 11, 2521-30.

104. Liang, J.; Zhang, H.; Wan, L.; et al. Gel polymer electrolytes based on compound cationic additives for environmentally adaptive flexible zinc-air batteries with a stable electrolyte/zinc anode interface. Energy. Storage. Mater. 2024, 71, 103677.

105. Wang, D.; Lv, D.; Liu, H.; et al. In situ formation of nitrogen-rich solid electrolyte interphase and simultaneous regulating solvation structures for advanced Zn metal batteries. Angew. Chem. Int. Ed. 2022, 61, e202212839.

106. Huang, C.; Zhao, X.; Hao, Y.; et al. Self-healing SeO2 additives enable zinc metal reversibility in aqueous ZnSO4 electrolytes. Adv. Funct. Mater. 2022, 32, 2112091.

107. Li, T. C.; Lin, C.; Luo, M.; et al. Interfacial molecule engineering for reversible Zn electrochemistry. ACS. Energy. Lett. 2023, 8, 3258-68.

108. Li, J.; Zhou, S.; Chen, Y.; et al. Self-smoothing deposition behavior enabled by beneficial potential compensating for highly reversible Zn-metal anodes. Adv. Funct. Mater. 2023, 33, 2307201.

109. Wan, J.; Wang, R.; Liu, Z.; et al. A double-functional additive containing nucleophilic groups for high-performance Zn-ion batteries. ACS. Nano. 2023, 17, 1610-21.

110. Bai, X.; Nan, Y.; Yang, K.; et al. Zn ionophores to suppress hydrogen evolution and promote uniform Zn deposition in aqueous Zn batteries. Adv. Funct. Mater. 2023, 33, 2307595.

111. Wang, Y.; Wang, Z.; Pang, W. K.; et al. Solvent control of water O-H bonds for highly reversible zinc ion batteries. Nat. Commun. 2023, 14, 2720.

112. Dong, Y.; Zhang, N.; Wang, Z.; et al. Cell-nucleus structured electrolyte for low-temperature aqueous zinc batteries. J. Energy. Chem. 2023, 83, 324-32.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/