REFERENCES
1. Moutet, J.; El-Assaad, T. H.; Kaur, R.; Mills, D. D.; Gianetti, T. L. Designing the next generation of symmetrical organic redox flow batteries using helical carbocations. Energy. Mater. 2024, 4, 400024.
2. Zhang, J.; Lejarazu-Larrañaga, A.; Yang, F.; et al. Tailoring porous structure in non-ionic polymer membranes using multiple templates for low-cost iron-lead single-flow batteries. Energy. Mater. 2024, 4, 400042.
3. Fan, H.; Liu, K.; Zhang, X.; et al. Spatial structure regulation towards armor-clad five-membered pyrroline nitroxides catholyte for long-life aqueous organic redox flow batteries. eScience 2024, 4, 100202.
4. Zuo, L. L.; Ma, Q.; Li, S. C.; et al. Highly thermal conductive separator with in-built phosphorus stabilizer for superior Ni-rich cathode based lithium metal batteries. Adv. Energy. Mater. 2021, 11, 2003285.
5. Li, H.; Fan, H.; Hu, B.; Hu, L.; Chang, G.; Song, J. Spatial structure regulation: a rod-shaped viologen enables long lifetime in aqueous redox flow batteries. Angew. Chem. Int. Ed. 2021, 60, 26971-7.
6. Fan, H.; Wu, W.; Ravivarma, M.; et al. Mitigating ring-opening to develop stable TEMPO catholytes for pH-neutral all-organic redox flow batteries. Adv. Funct. Mater. 2022, 32, 2203032.
7. Duan, Y.; Li, B.; Yang, K.; et al. Ultrahigh energy and power density in Ni-Zn aqueous battery via superoxide-activated three-electron transfer. Nanomicro. Lett. 2024, 17, 79.
8. Li, Z.; Lu, Y. C. Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv. Mater. 2020, 32, e2002132.
9. Zhao, C. X.; Liu, J. N.; Li, B. Q.; et al. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries. Adv. Funct. Mater. 2020, 30, 2003619.
10. Huang, Y.; Li, L.; Xiong, L.; et al. Electrodes with metal-based electrocatalysts for redox flow batteries in a wide pH range. Prog. Energy. 2023, 5, 022002.
11. Amini, K.; Gostick, J.; Pritzker, M. D. Metal and metal oxide electrocatalysts for redox flow batteries. Adv. Funct. Mater. 2020, 30, 1910564.
12. Li, Z.; Weng, G.; Zou, Q.; Cong, G.; Lu, Y. C. A high-energy and low-cost polysulfide/iodide redox flow battery. Nano. Energy. 2016, 30, 283-92.
13. Ma, D.; Hu, B.; Wu, W.; et al. Highly active nanostructured CoS2/CoS heterojunction electrocatalysts for aqueous polysulfide/iodide redox flow batteries. Nat. Commun. 2019, 10, 3367.
14. Xia, Y.; Ouyang, M.; Yufit, V.; et al. A cost-effective alkaline polysulfide-air redox flow battery enabled by a dual-membrane cell architecture. Nat. Commun. 2022, 13, 2388.
15. Ai, F.; Wang, Z.; Lai, N. C.; Zou, Q.; Liang, Z.; Lu, Y. C. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat. Energy. 2022, 7, 417-26.
16. Amini, K.; Kerr, E. F.; George, T. Y.; et al. An extremely stable, highly soluble monosubstituted anthraquinone for aqueous redox flow batteries. Adv. Funct. Mater. 2023, 33, 2211338.
17. Carrington, M. E.; Sokołowski, K.; Jónsson, E.; et al. Associative pyridinium electrolytes for air-tolerant redox flow batteries. Nature 2023, 623, 949-55.
18. Feng, R.; Chen, Y.; Zhang, X.; et al. Proton-regulated alcohol oxidation for high-capacity ketone-based flow battery anolyte. Joule 2023, 7, 1609-22.
19. Hu, M.; Wu, W.; Luo, J.; Liu, T. L. Desymmetrization of viologen anolytes empowering energy dense, ultra stable flow batteries toward long-duration energy storage. Adv. Energy. Mater. 2022, 12, 2202085.
20. Jing, Y.; Zhao, E. W.; Goulet, M. A.; et al. In situ electrochemical recomposition of decomposed redox-active species in aqueous organic flow batteries. Nat. Chem. 2022, 14, 1103-9.
21. Na, M.; Singh, V.; Choi, R. H.; Kim, B. G.; Byon, H. R. Zn glutarate protective layers in situ form on Zn anodes for Zn redox flow batteries. Energy. Storage. Mater. 2023, 57, 195-204.
22. Park, M.; Beh, E. S.; Fell, E. M.; et al. A high voltage aqueous zinc-organic hybrid flow battery. Adv. Energy. Mater. 2019, 9, 1900694.
23. Xiang, W.; Yang, M.; Ding, M.; et al. Alkaline Zn-Mn aqueous flow batteries with ultrahigh voltage and energy density. Energy. Storage. Mater. 2023, 61, 102894.
24. Yuan, Z.; Li, X. Perspective of alkaline zinc-based flow batteries. Sci. China. Chem. 2024, 67, 260-75.
25. Zhu, Y.; Liang, G.; Cui, X.; et al. Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy. Environ. Sci. 2024, 17, 369-85.
26. Dong, N.; Zhang, F.; Pan, H. Towards the practical application of Zn metal anodes for mild aqueous rechargeable Zn batteries. Chem. Sci. 2022, 13, 8243-52.
27. Yu, H.; Chen, D.; Ni, X.; et al. Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries. Energy. Environ. Sci. 2023, 16, 2684-95.
28. Zhou, S.; Meng, X.; Chen, Y.; et al. Zinc-ion anchor induced highly reversible Zn anodes for high performance Zn-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202403050.
29. Xu, D.; Ren, X.; Li, H.; et al. Chelating additive regulating Zn-ion solvation chemistry for highly efficient aqueous zinc-metal battery. Angew. Chem. Int. Ed. 2024, 63, e202402833.
30. Qin, R.; Wang, Y.; Yao, L.; et al. Progress in interface structure and modification of zinc anode for aqueous batteries. Nano. Energy. 2022, 98, 107333.
31. Yuan, L.; Hao, J.; Kao, C. C.; et al. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy. Environ. Sci. 2021, 14, 5669-89.
32. Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119-42.
33. Zhao, Z.; Wang, R.; Peng, C.; et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 2021, 12, 6606.
34. Dai, Y.; Lu, R.; Zhang, C.; et al. Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat. Catal. 2024, 7, 776-84.
35. Han, D.; Wang, Z.; Lu, H.; et al. A self-regulated interface toward highly reversible aqueous zinc batteries. Adv. Energy. Mater. 2022, 12, 2102982.
36. Bayaguud, A.; Luo, X.; Fu, Y.; Zhu, C. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS. Energy. Lett. 2020, 5, 3012-20.
37. Zhang, Q.; Ma, Y.; Lu, Y.; et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 2020, 11, 4463.
38. Geng, L.; Meng, J.; Wang, X.; et al. Organic-solvent-free primary solvation shell for low-temperature aqueous zinc batteries. Chem 2025, 11, 102302.
39. Gamsey, S.; Miller, A.; Olmstead, M. M.; et al. Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and α-hydroxycarboxylates. J. Am. Chem. Soc. 2007, 129, 1278-86.
40. Xie, F.; Li, H.; Wang, X.; et al. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy. Mater. 2021, 11, 2003419.
41. Kumari, N.; Chhabra, T.; Kumar, S.; Krishnan, V. Nanoarchitectonics of sulfonated biochar from pine needles as catalyst for conversion of biomass derived chemicals to value added products. Catal. Commun. 2022, 168, 106467.
42. Cao, F.; Wang, T.; Ji, X. Enhanced visible photocatalytic activity of tree-like ZnO/CuO nanostructure on Cu foam. Appl. Surf. Sci. 2019, 471, 417-24.
43. Zhang, J.; Jiang, G.; Xu, P.; et al. An all-aqueous redox flow battery with unprecedented energy density. Energy. Environ. Sci. 2018, 11, 2010-5.
44. Weng, G. M.; Li, Z.; Cong, G.; Zhou, Y.; Lu, Y. C. Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy. Environ. Sci. 2017, 10, 735-41.
45. Xie, C.; Li, T.; Deng, C.; Song, Y.; Zhang, H.; Li, X. A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy. Environ. Sci. 2020, 13, 135-43.
46. Jin, S.; Shao, Y.; Gao, X.; et al. Designing interphases for practical aqueous zinc flow batteries with high power density and high areal capacity. Sci. Adv. 2022, 8, eabq4456.
47. Luo, J.; Hu, B.; Hu, M.; Wu, W.; Liu, T. L. An energy-dense, powerful, robust bipolar zinc-ferrocene redox-flow battery. Angew. Chem. Int. Ed. 2022, 61, e202204030.
48. Yang, M.; Xu, Z.; Xiang, W.; et al. High performance and long cycle life neutral zinc-iron flow batteries enabled by zinc-bromide complexation. Energy. Storage. Mater. 2022, 44, 433-40.