REFERENCES

1. Harper, G.; Sommerville, R.; Kendrick, E.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75-86.

2. Liu, H.; Zhu, Z.; Yan, Q.; et al. A disordered rock salt anode for fast-charging lithium-ion batteries. Nature 2020, 585, 63-7.

3. Wang, L.; Menakath, A.; Han, F.; et al. Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat. Chem. 2019, 11, 789-96.

4. Mackanic, D. G.; Yan, X.; Zhang, Q.; et al. Decoupling of mechanical properties and ionic conductivity in supramolecular lithium ion conductors. Nat. Commun. 2019, 10, 5384.

5. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

6. Zhou, Y.; Su, M.; Yu, X.; et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Nat. Nanotechnol. 2020, 15, 224-30.

7. Vattikuti, S. V. P.; Hoang, N. C. T.; Nguyen, H.; Nguyen, T. N. H.; Shim, J.; Dang, N. N. Carbon nitride coupled Co3O4: a pyrolysis-based approach for high-performance hybrid energy storage. J. Phys. Chem. Lett. 2023, 14, 9412-23.

8. Li, L.; Liu, L.; Hu, Z.; et al. Understanding high-rate K+ -solvent Co-intercalation in natural graphite for potassium-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 12917-24.

9. Min, X.; Xiao, J.; Fang, M.; et al. Potassium-ion batteries: outlook on present and future technologies. Energy. Environ. Sci. 2021, 14, 2186-243.

10. Pang, Z.; Wang, L.; Wan, S.; et al. Wedelia chinensis-derived biomass porous carbon as anode material for high performance sodium/potassium-ion batteries. Ionics 2024, 30, 4655-64.

11. Wang, J.; Wang, B.; Lu, B. Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv. Energy. Mater. 2020, 10, 2000884.

12. Qiu, D.; Zhang, B.; Zhang, T.; Shen, T.; Zhao, Z.; Hou, Y. Sulfur-doped carbon for potassium-ion battery anode: insight into the doping and potassium storage mechanism of sulfur. ACS. Nano. 2022, 16, 21443-51.

13. Chen, Y.; Shi, X.; Lu, B.; Zhou, J. Concave engineering of hollow carbon spheres toward advanced anode material for sodium/potassiumā€ion batteries. Adv. Energy. Mater. 2022, 12, 2202851.

14. Li, Q.; Zhang, Y.; Chen, Z.; Zhang, J.; Tao, Y.; Yang, Q. Discrete graphitic crystallites promise high-rate ion intercalation for KC8 formation in potassium ion batteries. Adv. Energy. Mater. 2022, 12, 2201574.

15. Guo, Z.; Xu, Z.; Xie, F.; et al. Investigating the superior performance of hard carbon anodes in sodium-ion compared with lithium- and potassium-ion batteries. Adv. Mater. 2023, 35, e2304091.

16. Lai, Q.; Mu, J.; Liu, Z.; et al. Tunnel-type Na2Ti6O13@carbon nanowires as anode materials for low-temperature sodium-ion batteries. Batter. Supercaps. 2023, 6, e202200549.

17. Zhu, Y.; Wang, Y.; Wang, Y.; Xu, T.; Chang, P. Research progress on carbon materials as negative electrodes in sodium-and potassium-ion batteries. Carbon. Energy. 2022, 4, 1182-213.

18. Hu, Z.; Hao, J.; Shen, D.; et al. Electro-spraying/spinning: a novel battery manufacturing technology. Green. Energy. Environt. 2024, 9, 81-8.

19. Liu, Z.; Gong, Z.; He, K.; et al. Developments and prospects of carbon anode materials in potassium-ion batteries. Sci. China. Mater. 2024, 1-16.

20. Cheng, N.; Zhou, W.; Liu, J.; Liu, Z.; Lu, B. Reversible oxygen-rich functional groups grafted 3D honeycomb-like carbon anode for super-long potassium ion batteries. Nanomicro. Lett. 2022, 14, 146.

21. Li, S.; Zhu, H.; Liu, Y.; et al. Codoped porous carbon nanofibres as a potassium metal host for nonaqueous K-ion batteries. Nat. Commun. 2022, 13, 4911.

22. Wang, S. S.; Liu, Z. M.; Gao, X. W.; Wang, X. C.; Chen, H.; Luo, W. B. Layer-structured multitransition-metal oxide cathode materials for potassium-ion batteries with long cycling lifespan and superior rate capability. ACS. Appl. Mater. Interfaces. 2023, 15, 57165-73.

23. Shao, Y.; Yang, Q.; Zhang, Y.; et al. A universal method for regulating carbon microcrystalline structure for high-capacity sodium storage: binding energy as descriptor. ACS. Nano. 2023, 17, 24012-21.

24. Mu, J.; Zhao, Z.; Gao, X.; et al. Bimetallic PdFe3 nano-alloy with tunable electron configuration for boosting electrochemical nitrogen fixation. Adv. Energy. Mater. 2024, 14, 2303558.

25. Xiao, Y.; Wang, P.; Yin, Y.; et al. A layered-tunnel intergrowth structure for high-performance sodium-ion oxide cathode. Adv. Energy. Mater. 2018, 8, 1800492.

26. Hu, Z.; Geng, C.; Wang, L.; Lv, W.; Yang, Q. Revisiting the roles of carbon in the catalysis of lithium-sulfur batteries. Adv. Energy. Sustain. Res. 2024, 5, 2300148.

27. Ke, C.; Shao, R.; Zhang, Y.; et al. Synergistic engineering of heterointerface and architecture in new-type ZnS/Sn heterostructures in situ encapsulated in nitrogen-doped carbon toward high-efficient lithium-ion storage. Adv. Funct. Mater. 2022, 32, 2205635.

28. Yang, T.; Fang, M.; Liu, J.; et al. Ultranarrow bandgap Se-deficient bimetallic selenides for high performance alkali metal-ion batteries. Adv. Funct. Mater. 2022, 32, 2205880.

29. Zhao, L.; Gao, X.; Mu, J.; et al. Durable integrated K-metal anode with enhanced mass transport through potassiphilic porous interconnected mediator. Adv. Funct. Mater. 2023, 33, 2304292.

30. Chu, Y.; Zhang, J.; Zhang, Y.; et al. Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective. Adv. Mater. 2023, 35, e2212186.

31. Zhang, L.; Wang, R.; Liu, Z.; et al. Porous organic polymer with hierarchical structure and limited volume expansion for ultrafast and highly durable sodium storage. Adv. Mater. 2023, 35, e2210082.

32. Zhang, W.; Huang, R.; Yan, X.; et al. Carbon electrode materials for advanced potassium-ion storage. Angew. Chem. Int. Ed. 2023, 62, e202308891.

33. Bian, Y.; Gao, X.; Zhao, L.; Liu, Z.; Gu, Q.; Luo, W. Enhanced polysulfides adsorption and conversion for high coulombic efficiency sodiumā€ion batteries. Batter. Supercaps. 2023, 6, e202300227.

34. Liu, S.; Jia, K.; Yang, J.; et al. Encapsulating flower-like MoS2 nanosheets into interlayer of nitrogen-doped graphene for high-performance lithium-ion storage. Chem. Eng. J. 2023, 475, 146181.

35. Cao, J.; Zhang, K.; Yang, J.; Gu, Z.; Wu, X. Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chin. Chem. Lett. 2024, 35, 109304.

36. Wang, H.; Chen, H.; Chen, C.; et al. Tea-derived carbon materials as anode for high-performance sodium ion batteries. Chin. Chem. Lett. 2023, 34, 107465.

37. Han, X.; Gu, L.; Sun, Z.; et al. Manipulating charge-transfer kinetics and a flow-domain LiF-rich interphase to enable high-performance microsized silicon-silver-carbon composite anodes for solid-state batteries. Energy. Environ. Sci. 2023, 16, 5395-408.

38. Zhong, L.; Qiu, X.; Yang, S.; Sun, S.; Chen, L.; Zhang, W. Supermolecule-regulated synthesis strategy of general biomass-derived highly nitrogen-doped carbons toward potassium-ion hybrid capacitors with enhanced performances. Energy. Storage. Mater. 2023, 61, 102887.

39. Zhao, L.; Gao, X.; Gu, Q.; et al. Realizing a dendrite-free metallic-potassium anode using reactive prewetting chemistry. eScience 2024, 4, 100201.

40. Wang, M.; Liu, Q.; Wu, G.; Ma, J.; Tang, Y. Coral-like and binder-free carbon nanowires for potassium dual-ion batteries with superior rate capability and long-term cycling life. Green. Energy. Environ. 2023, 8, 548-58.

41. Chen, Z.; Wu, Y.; Liu, X.; Zhang, Y.; Yang, L.; Li, H. Bi/Bi3Se4 nanoparticles embedded in hollow porous carbon nanorod: high rate capability material for potassium-ion batteries. J. Energy. Chem. 2023, 81, 462-71.

42. Wang, D.; Liu, Z.; Gao, X.; Gu, Q.; Zhao, L.; Luo, W. Massive anionic fluorine substitution two-dimensional Ī“-MnO2 nanosheets for high-performance aqueous zinc-ion battery. J. Energy. Storage. 2023, 72, 108740.

43. Wang, J.; Liu, Z.; Zhou, J.; Han, K.; Lu, B. Insights into metal/metalloid-based alloying anodes for potassium ion batteries. ACS. Mater. Lett. 2021, 3, 1572-98.

44. Liu, Z.; Peng, W.; Xu, Z.; et al. Molybdenum disulfide-coated lithium vanadium fluorophosphate anode: experiments and first-principles calculations. ChemSusChem 2016, 9, 2122-8.

45. Mu, J.; Liu, Z.; Lai, Q.; et al. An industrial pathway to emerging presodiation strategies for increasing the reversible ions in sodium-ion batteries and capacitors. Energy. Mater. 2022, 2, 200043.

46. Mao, J.; Wang, C.; Lyu, Y.; et al. Organic electrolyte design for practical potassium-ion batteries. J. Mater. Chem. A. 2022, 10, 19090-106.

47. Li, J.; Mu, J.; Liu, Z.; et al. Boosting potassium-based dual ion battery with high energy density and long lifespan by red phosphorous. J. Power. Sources. 2023, 571, 233054.

48. Zhou, M.; Tian, X.; Sun, Y.; et al. Pillar effect boosting the electrochemical stability of prussian blue-polypyrrole for potassium ion batteries. Nano. Res. 2023, 16, 6326-33.

49. Wang, F.; Zhang, J.; Lu, H.; et al. Production of gas-releasing electrolyte-replenishing Ah-scale zinc metal pouch cells with aqueous gel electrolyte. Nat. Commun. 2023, 14, 4211.

50. Zhao, Y.; Kang, Y.; Wozny, J.; et al. Recycling of sodium-ion batteries. Nat. Rev. Mater. 2023, 8, 623-34.

51. Cai, M.; Zhang, H.; Zhang, Y.; et al. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci. Bull. 2022, 67, 933-45.

52. Shao, Y.; Cui, Y.; Wang, C.; et al. Initiating fluorine chemistry in polycyclic aromatic hydrocarbon-derived carbon for new cluster-mode Na storage with superhigh capacity. Small 2023, 19, e2300107.

53. Liu, Z.; Wang, J.; Ding, H.; Chen, S.; Yu, X.; Lu, B. Carbon nanoscrolls for aluminum battery. ACS. Nano. 2018, 12, 8456-66.

54. Liu, Z.; Wang, J.; Jia, X.; et al. Graphene armored with a crystal carbon shell for ultrahigh-performance potassium ion batteries and aluminum batteries. ACS. Nano. 2019, 13, 10631-42.

55. Shen, D.; Liu, Z.; Fan, L.; Lu, B. Organic phosphomolybdate: a high capacity cathode for potassium ion batteries. Chem. Commun. 2020, 56, 12753-6.

56. Wang, J.; Zhang, G.; Liu, Z.; et al. Li3V(MoO4)3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano. Energy. 2018, 44, 272-8.

57. Liu, Z.; Wang, J.; Lu, B. Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries. Sci. Bull. 2020, 65, 1242-51.

58. Yu, W.; Ge, J.; Hu, Y.; et al. Hybrid high-performance aqueous batteries with potassium-based cathode||zinc metal anode. Sci. China. Mater. 2023, 66, 923-31.

59. Cao, W.; Zhang, E.; Wang, J.; et al. Potato derived biomass porous carbon as anode for potassium ion batteries. Electrochim. Acta. 2019, 293, 364-70.

60. Yang, M.; Kong, Q.; Feng, W.; Yao, W. N/O double-doped biomass hard carbon material realizes fast and stable potassium ion storage. Carbon 2021, 176, 71-82.

61. Wang, X.; Zhao, J.; Yao, D.; et al. Bio-derived hierarchically porous heteroatoms dopedcarbon as anode for high performance potassium-ion batteries. J. Electroanal. Chem. 2020, 871, 114272.

62. Xu, B.; Qi, S.; Li, F.; et al. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin. Chem. Lett. 2020, 31, 217-22.

63. Gao, C.; Wang, Q.; Luo, S.; et al. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power. Sources. 2019, 415, 165-71.

64. Ou, H.; Pei, B.; Zhou, Y.; et al. From natural fibers to high-performance anodes: sisal hemp derived hard carbon for Na-/K-ion batteries and mechanism exploration. Small. Methods. 2025, 9, e2400839.

65. Wang, Q.; Gao, C.; Zhang, W.; et al. Biomorphic carbon derived from corn husk as a promising anode materials for potassium ion battery. Electrochim. Acta. 2019, 324, 134902.

66. Li, W.; Li, Z.; Zhang, C.; et al. Hard carbon derived from rice husk as anode material for high performance potassium-ion batteries. Solid. State. Ionics. 2020, 351, 115319.

67. Deng, Q.; Liu, H.; Zhou, Y.; et al. N-doped three-dimensional porous carbon materials derived from bagasse biomass as an anode material for K-ion batteries. J. Electroanal. Chem. 2021, 899, 115668.

68. Wu, Z.; Wang, L.; Huang, J.; et al. Loofah-derived carbon as an anode material for potassium ion and lithium ion batteries. Electrochim. Acta. 2019, 306, 446-53.

69. Wang, B.; Yuan, F.; Yu, Q.; et al. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries. Energy. Storage. Mater. 2021, 38, 329-37.

70. Yuan, X.; Zhu, B.; Feng, J.; Wang, C.; Cai, X.; Qin, R. Biomass bone-derived, N/P-doped hierarchical hard carbon for high-energy potassium-ion batteries. Mater. Res. Bull. 2021, 139, 111282.

71. Zhang, K.; He, Q.; Xiong, F.; et al. Active sites enriched hard carbon porous nanobelts for stable and high-capacity potassium-ion storage. Nano. Energy. 2020, 77, 105018.

72. Wang, D. C.; Yu, H. Y.; Qi, D.; Wu, Y.; Chen, L.; Li, Z. Confined chemical transitions for direct extraction of conductive cellulose nanofibers with graphitized carbon shell at low temperature and pressure. J. Am. Chem. Soc. 2021, 143, 11620-30.

73. Hao, R.; Lan, H.; Kuang, C.; Wang, H.; Guo, L. Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 2018, 128, 224-30.

74. Zheng, J.; Yu, K.; Wang, X.; Liang, J.; Liang, C. Nitrogen self-doped porous carbon based on sunflower seed hulls as excellent double anodes for potassium/sodium ion batteries. Diam. Relat. Mater. 2023, 131, 109593.

75. Xu, L.; Gong, Z.; Zhang, C.; Li, N.; Tang, Z.; Du, J. A mushroom derived biomass carbon as high-stability anode for potassium ion battery. J. Alloys. Compd. 2023, 934, 167820.

76. Lian, X.; Sun, Z.; Mei, Q.; et al. Biomass template derived boron/oxygen Co-doped carbon particles as advanced anodes for potassium-ion batteries. Energy. Environ. Mater. 2022, 5, 344-52.

77. Sun, Y.; Wu, Q.; Wang, Y.; Li, C.; Liang, X.; Xiang, H. Protein-derived 3D amorphous carbon with N, O doping as high rate and long lifespan anode for potassium ion batteries. J. Power. Sources. 2021, 512, 230530.

78. Sevilla, M.; Fuertes, A. B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry 2009, 15, 4195-203.

79. Kurniawan, F.; Wongso, M.; Ayucitra, A.; et al. Carbon microsphere from water hyacinth for supercapacitor electrode. J. Taiwan. Inst. Chem. Eng. 2015, 47, 197-201.

80. Romero-anaya, A.; Ouzzine, M.; Lillo-rĆ³denas, M.; Linares-solano, A. Spherical carbons: synthesis, characterization and activation processes. Carbon 2014, 68, 296-307.

81. Villota, S. M.; Lei, H.; Villota, E.; et al. Microwave-assisted activation of waste cocoa pod husk by H3PO4 and KOH-comparative insight into textural properties and pore development. ACS. Omega. 2019, 4, 7088-95.

82. Kaewtrakulchai, N.; Faungnawakij, K.; Eiad-Ua, A. Parametric study on microwave-assisted pyrolysis combined KOH activation of oil palm male flowers derived nanoporous carbons. Materials 2020, 13, 2876.

83. Liu, H.; Zeng, W.; Yang, Y.; Chen, J.; Zhao, Y.; Mu, S. Synchronously improved graphitization and surface area in a 3D porous carbon network as a high capacity anode material for lithium/sodium-ion batteries. J. Mater. Chem. A. 2021, 9, 1260-8.

84. Li, D.; Ren, X.; Ai, Q.; et al. Facile fabrication of nitrogen-doped porous carbon as superior anode material for potassium-ion batteries. Adv. Energy. Mater. 2018, 8, 1802386.

85. Pham, H. D.; Mahale, K.; Hoang, T. M. L.; Mundree, S. G.; Gomez-Romero, P.; Dubal, D. P. Dual carbon potassium-ion capacitors: biomass-derived graphene-like carbon nanosheet cathodes. ACS. Appl. Mater. Interfaces. 2020, 12, 48518-25.

86. Deng, W.; He, X.; Zhang, L.; Wang, J.; Chen, C. Highly graphitic N-doped biomass-derived hard carbon with a low operating potential for potassium-ion batteries. Energy. Tech. 2021, 9, 2100644.

87. Zhu, Z.; Zhong, W.; Zhang, Y.; et al. Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries. Carbon. Energy. 2021, 3, 541-53.

88. Chen, J.; Chen, G.; Zhao, S.; et al. Robust biomass-derived carbon frameworks as high-performance anodes in potassium-ion batteries. Small 2023, 19, e2206588.

89. Li, H.; Cheng, Z.; Zhang, Q.; et al. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano. Lett. 2018, 18, 7407-13.

90. Nanjundan, A. K.; Gaddam, R. R.; Farokh, N. A. H.; et al. Potassium-ion storage in cellulose-derived hard carbon: the role of functional groups. Batteries. Supercaps. 2020, 3, 953-60.

91. Han, C.; Chen, G.; Ma, Y.; et al. Strategies towards inhibition of aluminum current collector corrosion in lithium batteries. Energy. Mater. 2023, 3, 300049.

92. Yang, L.; Chen, J.; Park, S.; Wang, H. Recent progress on metal-organic framework derived carbon and their composites as anode materials for potassium-ion batteries. Energy. Mater. 2023, 3, 300042.

93. Su, C.; Gao, X.; Liu, K.; et al. An intellectual property analysis: advances and commercialization of low-dimensional carbon materials in batteries. Energy. Mater. 2024, 4, 400048.

94. Zhao, L.; Gao, X.; Ren, T.; et al. Regulating ion transport behaviors toward dendrite-free potassium metal batteries: recent advances and perspectives. Rare. Met. 2024, 43, 1435-60.

95. Deng, T.; Fan, X.; Chen, J.; et al. Layered P2-type K0.65Fe0.5Mn0.5O2 microspheres as superior cathode for high-energy potassium-ion batteries. Adv. Funct. Mater. 2018, 28, 1800219.

96. Liu, Z.; Li, S.; Mu, J.; et al. Element-tailored quenching methods: phase-defective K0.5Mn1-xCrxO2 cathode materials for potassium ion batteries. Mater. Today. Chem. 2024, 40, 102251.

97. Weng, J.; Duan, J.; Sun, C.; et al. Construction of hierarchical K0.7Mn0.7Mg0.3O2 microparticles as high capacity & long cycle life cathode materials for low-cost potassium-ion batteries. Chem. Eng. J. 2020, 392, 123649.

98. Choi, J. U.; Kim, J.; Jo, J. H.; et al. Facile migration of potassium ions in a ternary P3-type K0.5[Mn0.8Fe0.1Ni0.1]O2 cathode in rechargeable potassium batteries. Energy. Storage. Mater. 2020, 25, 714-23.

99. Zhao, S.; Li, G.; Zhang, B.; et al. Technological roadmap for potassium-ion hybrid capacitors. Joule 2024, 8, 922-43.

100. Zarrabeitia, M.; Carretero-gonzƔlez, J.; Leskes, M.; et al. Could potassium-ion batteries become a competitive technology? Energy. Mater. 2023, 3, 300046.

101. Sada, K.; Darga, J.; Manthiram, A. Challenges and prospects of sodium-ion and potassium-ion batteries for mass production. Adv. Energy. Mater. 2023, 13, 2302321.

102. V, A.; John, B.; Td, M. Potassium-ion batteries: key to future large-scale energy storage? ACS. Appl. Energy. Mater. 2020, 3, 9478-92.

103. Mu, J.; Wang, D.; Zhou, S.; et al. MAX-derived B-doped Mo1.33C MXene for ambient electrocatalytic conversion of nitrate to ammonia. J. Mater. Chem. A. 2024, 12, 18082-8.

104. Liu, Z.; Fu, S.; Wang, S.; et al. Ultrathin carbon film as ultrafast rechargeable cathode for hybrid sodium dual-ion capacitor. Nanotechnology 2024, 35, 375601.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/