REFERENCES
1. Mao, Y.; Miyazaki, T.; Sakai, K.; Gong, J.; Zhu, M.; Ito, H. A 3D printable thermal energy storage crystalline gel using mask-projection stereolithography. Polymers 2018, 10, 1117.
2. Salyan, S.; Suresh, S. Liquid metal gallium laden organic phase change material for energy storage: an experimental study. Int. J. Hydrogen. Energy. 2018, 43, 2469-83.
3. Krašna, M.; Klemenčič, E.; Kutnjak, Z.; Kralj, S. Phase-changing materials for thermal stabilization and thermal transport. Energy 2018, 162, 554-63.
4. Zhang, H.; Sun, Q.; Yuan, Y.; Cao, X. Porosity reduction of polyethylene glycol phase change materials by using nanoscale thermal-energy-conducting medium during crystallization process. J. Appl. Polym. Sci. 2017, 134, 45446.
5. Zhu, Q.; Ong, P. J.; Goh, S. H. A.; et al. Recent advances in graphene-based phase change composites for thermal energy storage and management. Nano. Mater. Sci. 2024, 6, 115-38.
6. Wu, W. Y.; Yeo, G. M. D.; Wang, S.; Liu, Z.; Loh, X. J.; Zhu, Q. Recent progress in polyethylene-enhanced organic phase change composite materials for energy management. Chem. Asian. J. 2023, 18, e202300391.
7. Wu, W.; Yeap, I. S. R.; Wang, S.; et al. Advancements in sustainable phase change materials: valorizing waste for eco-friendly applications. Mater. Today. Chem. 2024, 39, 102163.
8. Lee, J. J. C.; Hayat, N. N. A.; Soo, X. Y. D.; et al. Upcycling of PET plastics into diethyl terephthalate for applications as phase change materials in energy harvesting. J. Energy. Storage. 2023, 73, 109084.
9. Prieto, C.; Cabeza, L. F.; Pavón-moreno, M. C.; Palomo, E. Thermal energy storage for direct steam generation concentrating solar power plants: concept and materials selection. J. Energy. Storage. 2024, 83, 110618.
10. Kumar, A.; Sahoo, U.; Rathod, B. K. J. Solar thermal power plant with thermal energy storage; 2021. pp. 31-80.
11. Ismail, K.; Henrı́quez, J. Thermally effective windows with moving phase change material curtains. Appl. Therm. Eng. 2001, 21, 1909-23.
12. Zhu, N.; Ma, Z.; Wang, S. Dynamic characteristics and energy performance of buildings using phase change materials: a review. Energy. Convers. Manag. 2009, 50, 3169-81.
13. Ong, P. J.; Lum, Y. Y.; Soo, X. Y. D.; et al. Integration of phase change material and thermal insulation material as a passive strategy for building cooling in the tropics. Constr. Build. Mater. 2023, 386, 131583.
14. Bui, V.; Liu, H.; Low, Y.; et al. Evaluation of building glass performance metrics for the tropical climate. Energy. Build. 2017, 157, 195-203.
15. Png, Z. M.; Soo, X. Y. D.; Chua, M. H.; Ong, P. J.; Xu, J.; Zhu, Q. Triazine derivatives as organic phase change materials with inherently low flammability. J. Mater. Chem. A. 2022, 10, 3633-41.
16. Alawadhi, E. M. 10 - The design, properties, and performance of concrete masonry blocks with phase change materials. In: Eco-Efficient Masonry Bricks and Blocks. 2015, Elsevier. p. 231-48.
17. Roy, U.; Pant, H. K. Chapter 9 - Current progress in heat exchangers with phase change materials (PCMs): a comprehensive investigation. In: Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers. Elsevier; 2020. pp. 219-30.
18. Şahan, N.; Fois, M.; Paksoy, H. Improving thermal conductivity phase change materials-a study of paraffin nanomagnetite composites. Solar. Energy. Mater. Solar. Cells. 2015, 137, 61-7.
19. Tebaldi, M. L.; Belardi, R. M.; Montoro, S. R. Chapter 8 - Polymers with nano-encapsulated functional polymers: encapsulated phase change materials. In: Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems; 2016, pp. 155-69.
20. Hameed, G.; Ghafoor, M. A.; Yousaf, M.; et al. Low temperature phase change materials for thermal energy storage: Current status and computational perspectives. Sustain. Energy. Technol. Assess. 2022, 50, 101808.
21. Cárdenas, B.; León, N. High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques. Renew. Sustain. Energy. Rev. 2013, 27, 724-37.
22. Reddy, V. J.; Ghazali, M. F.; Kumarasamy, S. Advancements in phase change materials for energy-efficient building construction: a comprehensive review. J. Energy. Storage. 2024, 81, 110494.
23. Klemenčič, E.; Slavinec, M. Liquid crystals as phase change materials for thermal stabilization. Adv. Cond. Matter. Phys. 2018, 2018, 1-8.
24. Rojas, E.; Bayón, R.; Zarza, E. Liquid crystals: a different approach for storing latent energy in a DSG plant. Energy. Procedia. 2015, 69, 1014-22.
25. Lagerwall, S. T. On some important chapters in the history of liquid crystals. Liq. Cryst. 2013, 40, 1698-729.
28. Huang, Y.; Gui, S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC. Adv. 2018, 8, 6978-87.
29. P, P.; Malik, P.; Supreet; Kumar, A.; Castagna, R.; Singh, G. Recent advances and future perspectives on nanoparticles-controlled alignment of liquid crystals for displays and other photonic devices. Crit. Rev. Solid. State. Mater. Sci. 2023, 48, 57-92.
30. Jung, J.; Park, H.; Jung, H. Y.; et al. Recent progress in liquid crystal devices and materials of TFT-LCDs. J. Soc. Inf. Display. 2024, 25, 121-42.
31. Chen, H. W.; Lee, J. H.; Lin, B. Y.; Chen, S.; Wu, S. T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light. Sci. Appl. 2018, 7, 17168.
32. Wang, D.; Liu, C.; Lin, S.; Wang, Q. Holographic display technology based on liquid crystal device. J. Soc. Inf. Display. 2020, 28, 136-47.
33. Carlton, R. J.; Hunter, J. T.; Miller, D. S.; et al. Chemical and biological sensing using liquid crystals. Liq. Cryst. Rev. 2013, 1, 29-51.
34. Popov, P.; Mann, E. K.; Jákli, A. Thermotropic liquid crystal films for biosensors and beyond. J. Mater. Chem. B. 2017, 5, 5061-78.
35. Pani, I.; Sil, S.; Pal, S. K. Liquid crystal biosensors: a new therapeutic window to point-of-care diagnostics. Langmuir 2023, 39, 909-17.
36. Bayón, R.; Coco, S.; Barcenilla, M.; et al. Feasibility of storing latent heat with liquid crystals. Proof of concept at lab scale. Appl. Sci. 2016, 6, 121.
37. Lee, J. J. C.; Sugiarto, S.; Ong, P. J.; et al. Lignin-g-polycaprolactone as a form-stable phase change material for thermal energy storage application. J. Energy. Storage. 2022, 56, 106118.
38. Soo, X. Y. D.; Muiruri, J. K.; Yeo, J. C. C.; et al. Polyethylene glycol/polylactic acid block co-polymers as solid-solid phase change materials. SmartMat 2023, 4, e1188.
39. Ong, P. J.; Png, Z. M.; Debbie, S. X. Y.; et al. Surface modification of microencapsulated phase change materials with nanostructures for enhancement of their thermal conductivity. Mater. Chem. Phys. 2022, 277, 125438.
40. Jin, O. P.; Leow, Y.; Yun Debbie Soo, X.; et al. Valorization of spent coffee grounds: a sustainable resource for bio-based phase change materials for thermal energy storage. Waste. Manag. 2023, 157, 339-47.
41. Ong, P. J.; Goh, S. H. A.; Leow, Y.; et al. Valorization of coconut peat to develop a novel shape-stabilized phase change material for thermal energy storage. J. Clean. Prod. 2024, 446, 141468.
42. Yu, P.; Zheng, J.; He, Z.; Wang, D.; Zhang, H. Energy saving phase change energy storage thermochromic liquid crystal display. Opt. Mater. 2023, 142, 113999.
43. Zhou, L.; Liu, S.; Miao, X.; et al. Advancements and applications of liquid crystal/polymer composite films. ACS. Mater. Lett. 2023, 5, 2760-75.
44. Mac, F. N.; Schrettl, S.; Tito, N. B.; et al. Reversible microscale assembly of nanoparticles driven by the phase transition of a thermotropic liquid crystal. ACS. Nano. 2023, 17, 9906-18.
45. Li, G.; Zhang, X.; Wang, J.; Fang, J. From anisotropic graphene aerogels to electron- and photo-driven phase change composites. J. Mater. Chem. A. 2016, 4, 17042-9.
46. Zhao, Y.; Zheng, J.; Zhao, Y.; et al. Multi-field driven thermochromic films with phase change energy storage properties. Dyes. Pigments. 2023, 208, 110759.
47. Sheng, M.; Li, J.; Jiang, X.; et al. Biomimetic solid-liquid transition structural dye-doped liquid crystal/phase-change-material microcapsules designed for wearable bistable electrochromic fabric. ACS. Appl. Mater. Interfaces. 2021, 13, 33282-90.
48. Ye, Y.; Guo, L.; Zhong, T. A review of developments in polymer stabilized liquid crystals. Polymers 2023, 15, 2962.
49. Shibaev, V. P.; Bobrovsky, A. Y. Liquid crystalline polymers: development trends and photocontrollable materials. Russ. Chem. Rev. 2017, 86, 1024-72.
50. Lyu, X.; Xiao, A.; Shi, D.; et al. Liquid crystalline polymers: Discovery, development, and the future. Polymer 2020, 202, 122740.
51. Shen, W.; Li, G. Recent progress in liquid crystal-based smart windows: materials, structures, and design. Laser. Photonics. Rev. 2023, 17, 2200207.
52. Collyer, A. A. Liquid crystal polymers: from structures to applications. London, New York: Elsevier; 1992.
53. Shibaev, V. P.; Platé, N. A. Thermotropic liquid-crystalline polymers with mesogenic side groups. In: Platé, N. A.; editors, Liquid Crystal Polymers II/III. Berlin Heidelberg: Springer; 1984, pp. 173-252.
54. Park, G. T.; Chang, J. H.; Lim, A. R. Thermotropic liquid crystalline polymers with various alkoxy side groups: thermal properties and molecular dynamics. Polymers 2019, 11, 992.
55. Zeng, L.; Li, R.; Chen, P.; Xu, J.; Liu, P. Synthesis and characterization of thermotropic liquid crystalline polyarylate with ether ether ketone segments in the main chain. J. Appl. Polym. Sci. 2016, 133, app.43800.
56. Sadeghi, G. Energy storage on demand: thermal energy storage development, materials, design, and integration challenges. Energy. Storage. Mater. 2022, 46, 192-222.
57. Konuklu, Y.; Ostry, M.; Paksoy, H. O.; Charvat, P. Review on using microencapsulated phase change materials (PCM) in building applications. Energy. Build. 2015, 106, 134-55.
58. Pielichowska, K.; Pielichowski, K. Phase change materials for thermal energy storage. Prog. Mater. Sci. 2014, 65, 67-123.
59. Sharshir, S. W.; Joseph, A.; Elsharkawy, M.; et al. Thermal energy storage using phase change materials in building applications: A review of the recent development. Energy. Build. 2023, 285, 112908.
60. Jayathunga, D.; Karunathilake, H.; Narayana, M.; Witharana, S. Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review. Renew. Sustain. Energy. Rev. 2024, 189, 113904.
61. Gu, H.; Chen, Y.; Yao, X.; Huang, L.; Zou, D. Review on heat pump (HP) coupled with phase change material (PCM) for thermal energy storage. Chem. Eng. J. 2023, 455, 140701.
62. Freeman, T. B.; Foster, K. E.; Troxler, C. J.; et al. Advanced materials and additive manufacturing for phase change thermal energy storage and management: a review. Adv. Energy. Mater. 2023, 13, 2204208.
63. Sheikh, Y.; Hamdan, M. O.; Sakhi, S. A review on micro-encapsulated phase change materials (EPCM) used for thermal management and energy storage systems: fundamentals, materials, synthesis and applications. J. Energy. Storage. 2023, 72, 108472.
64. Liu, C.; Xiao, T.; Zhao, J.; et al. Polymer engineering in phase change thermal storage materials. Renew. Sustain. Energy. Rev. 2023, 188, 113814.
65. Esteves, C.; Ramou, E.; Porteira, A. R. P.; Barbosa, A. J. M.; Roque, A. C. A. Seeing the unseen: the role of liquid crystals in gas-sensing technologies. Adv. Opt. Mater. 2020, 8, 1902117.
66. Nesterkina, M.; Kravchenko, I.; Hirsch, A. K. H.; Lehr, C. M. Thermotropic liquid crystals in drug delivery: a versatile carrier for controlled release. Eur. J. Pharm. Biopharm. 2024, 200, 114343.
67. Zhang, Z.; Yang, X.; Zhao, Y.; Ye, F.; Shang, L. Liquid crystal materials for biomedical applications. Adv. Mater. 2023, 35, e2300220.
68. Wang, Z.; Xu, T.; Noel, A.; Chen, Y. C.; Liu, T. Applications of liquid crystals in biosensing. Soft. Matter. 2021, 17, 4675-702.
69. Zhang, W.; Froyen, A. A. F.; Schenning, A. P. H. J.; Zhou, G.; Debije, M. G.; de Haan, L. T. Temperature-responsive photonic devices based on cholesteric liquid crystals. Adv. Photon. Res. 2021, 2, 2100016.
70. Yin, K.; Hsiang, E. L.; Zou, J.; et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light. Sci. Appl. 2022, 11, 161.
71. Yu, C.; Konlan, J.; Li, G. Energy harvesting and electricity production through dissolved carbon dioxide by connecting two form-stable phase change materials. J. Mater. Chem. A. 2024, 12, 7943-55.
72. Rea, J. E.; Oshman, C. J.; Olsen, M. L.; et al. Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage. Appl. Energy. 2018, 217, 143-52.
73. Cao, J.; Sim, Y.; Tan, X. Y.; et al. Upcycling silicon photovoltaic waste into thermoelectrics. Adv. Mater. 2022, 34, e2110518.
74. Zheng, J.; Solco, S. F. D.; Wong, C. J. E.; et al. Integrating recyclable polymers into thermoelectric devices for green electronics. J. Mater. Chem. A. 2022, 10, 19787-96.
75. Zhu, Q.; Yildirim, E.; Wang, X.; et al. Effect of substituents in sulfoxides on the enhancement of thermoelectric properties of PEDOT:PSS: experimental and modelling evidence. Mol. Syst. Des. Eng. 2020, 5, 976-84.
76. Tang, T.; Kyaw, A. K. K.; Zhu, Q.; Xu, J. Water-dispersible conducting polyazulene and its application in thermoelectrics. Chem. Commun. 2020, 56, 9388-91.
77. Yemata, T. A.; Kyaw, A. K. K.; Zheng, Y.; et al. Enhanced thermoelectric performance of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) with long-term humidity stability via sequential treatment with trifluoroacetic acid. Polym. Int. 2020, 69, 84-92.
78. Cao, J.; Zheng, J.; Liu, H.; et al. Flexible elemental thermoelectrics with ultra-high power density. Mater. Today. Energy. 2022, 25, 100964.
79. Dong, J.; Suwardi, A.; Tan, X. Y.; et al. Challenges and opportunities in low-dimensional thermoelectric nanomaterials. Mater. Today. 2023, 66, 137-57.
80. Glatzmaier, G. C.; Rea, J.; Olsen, M. L.; et al. Solar thermoelectricity via advanced latent heat storage: a cost-effective small-scale CSP application. AIP Conf Proc 2017;1850:030019.
82. Labeeb, A. M.; Ibrahim, S. A.; Ward, A. A.; Abd-el-messieh, S. L. Polymer/liquid crystal nanocomposites for energy storage applications. Polym. Eng. Sci. 2020, 60, 2529-40.
83. Bayón, R.; Rojas, E. Liquid crystals: a new approach for latent heat storage: ‘Always liquid’ phase change materials for energy storage in DSG. Int. J. Energy. Res. 2013, 37, 1737-42.
84. Dominguez-Candela, I.; Zulkhairi, I.; Pintre, I.; et al. Light-responsive bent-core liquid crystals as candidates for energy conversion and storage. J. Mater. Chem. C. 2022, 10, 18200-12.
85. Gupta, M.; Ashy; Abhinand Krishna, K. M. Sunlight driven E - Z isomerization of liquid crystals based on hexahydroxytriphenylene nano-templates for enhanced solid-state solar thermal energy storage. J. Mater. Chem. A. 2024, 12, 27373-80.
86. Kinyanjui, M. J.; Chee, C. Y. J.; Yun, D. S. X.; et al. Recent advances of sustainable Short-chain length polyhydroxyalkanoates (Scl-PHAs) - Plant biomass composites. Eur. Polym. J. 2023, 187, 111882.
87. Soo, X. Y. D.; Jia, L.; Lim, Q. F.; et al. Hydrolytic degradation and biodegradation of polylactic acid electrospun fibers. Chemosphere 2024, 350, 141186.
88. Muiruri, J. K.; Chuan, Y. J. C.; Zhu, Q.; Ye, E.; Loh, X. J.; Li, Z. Sustainable mycelium-bound biocomposites: design strategies, materials properties, and emerging applications. ACS. Sustain. Chem. Eng. 2023, 11, 6801-21.
89. Chua, M. H.; Toh, S. H. G.; Ong, P. J.; et al. Towards modulating the colour hues of isoindigo-based electrochromic polymers through variation of thiophene-based donor groups. Polym. Chem. 2022, 13, 967-81.
91. Liu, Y.; Chen, J.; Qi, Y.; et al. Cross-linked liquid crystalline polybenzoxazines bearing cholesterol-based mesogen side groups. Polymer 2018, 145, 252-60.
92. Cai, F.; Song, T.; Yang, B.; Lv, X.; Zhang, L.; Yu, H. Enhancement of solar thermal fuel by microphase separation and nanoconfinement of a block copolymer. Chem. Mater. 2021, 33, 9750-9.
93. Yu, Z.; Feng, D.; Feng, Y.; Zhang, X. Thermal conductivity and energy storage capacity enhancement and bottleneck of shape-stabilized phase change composites with graphene foam and carbon nanotubes. Compos. Part. A. Appl. Sci. Manuf. 2022, 152, 106703.
94. Belinson, M.; Groulx, D. Numerical study of a latent heat storage system’s performance as a function of the phase change material’s thermal conductivity. Appl. Sci. 2024, 14, 3318.
95. Ye, W.; Jamshideasli, D.; Khodadadi, J. M. Improved performance of latent heat energy storage systems in response to utilization of high thermal conductivity fins. Energies 2023, 16, 1277.
96. Dhaidan, N. S.; Khodadadi, J. M. Improved performance of latent heat energy storage systems utilizing high thermal conductivity fins: a review. J. Renew. Sustain. Energy. 2017, 9, 034103.
97. Agarwal, A.; Sarviya, R. Characterization of commercial grade paraffin wax as latent heat storage material for solar dryers. Mater. Today. Proc. 2017, 4, 779-89.
98. Zalba, B.; Marı́n, J. M.; Cabeza, L. F.; Mehling, H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251-83.
99. Bharathiraja, R.; Ramkumar, T.; Selvakumar, M. Studies on the thermal characteristics of nano-enhanced paraffin wax phase change material (PCM) for thermal storage applications. J. Energy. Storage. 2023, 73, 109216.
100. Konuklu, Y.; Unal, M.; Paksoy, H. O. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Solar. Energy. Mater. Solar. Cells. 2014, 120, 536-42.
101. Sivasamy, P.; Harikrishnan, S.; Jayavel, R.; Hussain, S. I.; Kalaiselvam, S.; Lu, L. Preparation and thermal characteristics of caprylic acid based composite as phase change material for thermal energy storage. Mater. Res. Express. 2019, 6, 105051.
102. Xiong, T.; Ok, Y. S.; Dissanayake, P. D.; et al. Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles. Sci. Total. Environ. 2022, 827, 154341.
103. Liu, P.; Gu, X.; Bian, L.; Cheng, X.; Peng, L.; He, H. Thermal properties and enhanced thermal conductivity of capric acid/diatomite/carbon nanotube composites as form-stable phase change materials for thermal energy storage. ACS. Omega. 2019, 4, 2964-72.
104. Sari, A.; Kaygusuz, K. Thermal performance of palmitic acid as a phase change energy storage material. Energy. Convers. Manag. 2002, 43, 863-76.
105. Wang, J.; Xie, H.; Xin, Z.; Li, Y. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon 2010, 48, 3979-86.
106. Faden, M.; Höhlein, S.; Wanner, J.; König-Haagen, A.; Brüggemann, D. Review of thermophysical property data of octadecane for phase-change studies. Materials 2019, 12, 2974.
107. Nguyen, G. T.; Hwang, H. S.; Lee, J.; Cha, D. A.; Park, I. n-octadecane/fumed silica phase change composite as building envelope for high energy efficiency. Nanomaterials 2021, 11, 566.
108. Tyagi, V. V.; Buddhi, D. PCM thermal storage in buildings: a state of art. Renew. Sustain. Energy. Rev. 2007, 11, 1146-66.
109. Sathyamurthy, R. Silver (Ag) based nanoparticles in paraffin wax as thermal energy storage for stepped solar still - An experimental approach. Solar. Energy. 2023, 262, 111808.
110. Mehling, H.; Cabeza, L. F. Heat transfer basics. In: Heat and cold storage with PCM. Berlin, Heidelberg: Springer; 2008.
111. Prabhu, B.; Valan, A. V. Stability analysis of TiO2-Ag nanocomposite particles dispersed paraffin wax as energy storage material for solar thermal systems. Renew. Energy. 2020, 152, 358-67.
112. Dixit, P.; Vennapusa, J. R.; Parvate, S.; Singh, J.; Dasari, A.; Chattopadhyay, S. Thermal buffering performance of a propyl palmitate/expanded perlite-based form-stable composite: experiment and numerical modeling in a building model. Energy. Fuels. 2021, 35, 2704-16.
113. Shi, J.; Ger, M.; Liu, Y.; et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives. Carbon 2013, 51, 365-72.
114. Hirano, S.; Saitoh, T. S.; Oya, M.; Yamazaki, M. Temperature dependence of thermophysical properties of disodium hydrogenphosphate dodecahydrate. J. Thermophys. Heat. Transfer. 2001, 15, 340-6.
115. Xiao, X.; Zhang, P.; Li, M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage. Int. J. Therm. Sci. 2014, 81, 94-105.
116. Ndukwu, M. C.; Bennamoun, L. Potential of integrating Na2SO4·10H2O pellets in solar drying system. Dry. Technol. 2018, 36, 1017-30.
117. Tao, W.; Kong, X.; Bao, A.; Fan, C.; Zhang, Y. Preparation and phase change performance of graphene oxide and silica composite Na2SO4·10H2O phase change materials (PCMs) as thermal energy storage materials. Materials 2020, 13, 5186.
118. Hasnain, S. Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. Energy. Convers. Manag. 1998, 39, 1127-38.
119. Zhang, L.; Zhou, K.; Wei, Q.; et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage. Appl. Energy. 2019, 233-4, 208-19.
120. Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. A review on phase change energy storage: materials and applications. Energy. Convers. Manag. 2004, 45, 1597-615.
121. Dong, K.; Sheng, N.; Zou, D.; Wang, C.; Yi, X.; Nomura, T. High anisotropic thermal conductivity, long durability form-stable phase change composite enhanced by a carbon fiber network structure. Crystals 2021, 11, 230.
122. Ling, Z.; Liu, J.; Wang, Q.; Lin, W.; Fang, X.; Zhang, Z. MgCl2·6H2O-Mg(NO3)2·6H2O eutectic/SiO2 composite phase change material with improved thermal reliability and enhanced thermal conductivity. Solar. Energy. Mater. Solar. Cells. 2017, 172, 195-201.
123. Mao, J.; Hou, P.; Liu, R.; Chen, F.; Dong, X. Preparation and thermal properties of SAT-CMC-DSP/EG composite as phase change material. Appl. Therm. Eng. 2017, 119, 585-92.
124. Williams, J. D.; Peterson, G. P. A review of thermal property enhancements of low-temperature nano-enhanced phase change materials. Nanomaterials 2021, 11, 2578.
125. Li, M. A nano-graphite/paraffin phase change material with high thermal conductivity. Appl. Energy. 2013, 106, 25-30.
126. Jebasingh B, Valan Arasu A. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications. Energy. Storage. Mater. 2020, 24, 52-74.
127. Shahid, U. B.; Abdala, A. A critical review of phase change material composite performance through Figure-of-Merit analysis: graphene vs boron nitride. Energy. Storage. Mater. 2021, 34, 365-87.
128. Shao, L.; Raghavan, A.; Kim, G.; et al. Figure-of-merit for phase-change materials used in thermal management. Int. J. Heat. Mass. Transfer. 2016, 101, 764-71.
129. Tripathi, P. M.; Marconnet, A. M. A new thermal management figure of merit for design of thermal energy storage with phase change materials. Int. J. Heat. Mass. Transfer. 2024, 220, 124952.
130. Ahlers, G.; Cannell, D. S.; Berge, L. I.; Sakurai, S. Thermal conductivity of the nematic liquid crystal 4-n-pentyl-4'-cyanobiphenyl. Phys. Rev. E. Stat. Phys. Plasmas. Fluids. Relat. Interdiscip. Top. 1994, 49, 545-53.
131. Mercuri, F.; Zammit, U.; Marinelli, M. Effect of the nematic range on the critical behavior and anisotropy of the heat transport parameters at the smectic- A - nematic phase transition. Phys. Rev. E. 1998, 57, 596-602.
132. Abdulkarim-talaq, M.; Hassan, K. T.; Hameed, D. A. Improvement of thermal conductivity of novel asymmetric dimeric coumarin liquid crystal by doping with boron nitride and aluminium oxide nanoparticles. Mater. Chem. Phys. 2023, 297, 127367.
133. Collings, P. J.; Goodby, J. W. Introduction to liquid crystals: chemistry and physics. Boca Raton, FL: CRC Press; 2020.
134. Brouckaert, N.; Podoliak, N.; Orlova, T.; et al. Nanoparticle-induced property changes in nematic liquid crystals. Nanomaterials 2022, 12, 341.
135. Kashyap, B.; Saini, A.; Rastogi, A. Enhancing liquid crystal properties through nanoparticle doping: a mini review. Asian. J. Chem. 2024, 36, 543-8.
136. Orlandi, S.; Benini, E.; Miglioli, I.; Evans, D. R.; Reshetnyak, V.; Zannoni, C. Doping liquid crystals with nanoparticles. A computer simulation of the effects of nanoparticle shape. Phys. Chem. Chem. Phys. 2016, 18, 2428-41.
137. Lee, H. L.; Mohammed, I. A.; Belmahi, M.; Assouar, M. B.; Rinnert, H.; Alnot, M. Thermal and optical properties of CdS Nanoparticles in thermotropic liquid crystal monomers. Materials 2010, 3, 2069-86.
138. Montazami, R.; Spillmann, C. M.; Naciri, J.; Ratna, B. R. Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles. Sensor. Actuat. A. Phys. 2012, 178, 175-8.
139. Özgan, Ş.; Eskalen, H.; Tapkıranlı, Y. Thermal and electro-optic properties of graphene oxide-doped hexylcyanobiphenyl liquid crystal. J. Theor. Appl. Phys. 2018, 12, 169-76.
140. Mohammad, A.; Hassan, K. T.; Hameed, D. A. Liquid crystalline behaviour of new dimers containing coumarin and biphenyl moieties and enhancement of their thermal conductivity: liquid crystal-nanoparticles. Liq. Cryst. 2023, 50, 881-90.
141. Singh, S. Impact of dispersion of nanoscale particles on the properties of nematic liquid crystals. Crystals 2019, 9, 475.
142. Yeo, R. J.; Yeo, J. C. C.; Yu, T. S.; et al. Core-shell micro- and nano-structures for the modification of light-surface interactions. Adv. Opt. Mater. 2024, 12, 2301955.
143. Yeo, R.; Wu, W.; Tomczak, N.; et al. Tailoring surface reflectance through nanostructured materials design for energy-efficient applications. Mater. Today. Chem. 2023, 30, 101593.
144. Zhang, T.; Luo, T. Role of chain morphology and stiffness in thermal conductivity of amorphous polymers. J. Phys. Chem. B. 2016, 120, 803-12.
145. Soo, X. Y. D.; Muiruri, J. K.; Wu, W. Y.; et al. Bio-polyethylene and polyethylene biocomposites: an alternative toward a sustainable future. Macromol. Rapid. Commun. 2024, 45, e2400064.
146. Wang, S.; Muiruri, J. K.; Soo, X. Y. D.; et al. Bio-polypropylene and polypropylene-based biocomposites: solutions for a sustainable future. Chem. Asian. J. 2023, 18, e202200972.
147. Png, Z. M.; Wang, C.; Yeo, J. C. C.; et al. Stimuli-responsive structure-property switchable polymer materials. Mol. Syst. Des. Eng. 2023, 8, 1097-129.
148. Lv, G.; Shen, C.; Shan, N.; et al. Odd-even effect on the thermal conductivity of liquid crystalline epoxy resins. Proc. Natl. Acad. Sci. USA. 2022, 119, e2211151119.
149. Li, Y.; Gong, C.; Li, C.; et al. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films. J. Mater. Sci. Technol. 2021, 82, 250-6.
150. Koda, T.; Toyoshima, T.; Komatsu, T.; Takezawa, Y.; Nishioka, A.; Miyata, K. Ordering simulation of high thermal conductivity epoxy resins. Polym. J. 2013, 45, 444-8.
151. Zhang, Q.; Chen, G.; Wu, K.; Shi, J.; Liang, L.; Lu, M. Biphenyl liquid crystal epoxy containing flexible chain: synthesis and thermal properties. J. Appl. Polym. Sci. 2020, 137, 49143.
152. Rashidi, V.; Coyle, E. J.; Sebeck, K.; Kieffer, J.; Pipe, K. P. Thermal conductance in cross-linked polymers: effects of non-bonding interactions. J. Phys. Chem. B. 2017, 121, 4600-9.
153. Kim, G. H.; Lee, D.; Shanker, A.; et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 2015, 14, 295-300.
154. Zhang, L.; Ruesch, M.; Zhang, X.; Bai, Z.; Liu, L. Tuning thermal conductivity of crystalline polymer nanofibers by interchain hydrogen bonding. RSC. Adv. 2015, 5, 87981-6.
155. Yuan, S. J.; Peng, Z. Q.; Rong, M. Z.; Zhang, M. Q. Enhancement of intrinsic thermal conductivity of liquid crystalline epoxy through the strategy of interlocked polymer networks. Mater. Chem. Front. 2022, 6, 1137-49.
156. Singh, V.; Bougher, T. L.; Weathers, A.; et al. High thermal conductivity of chain-oriented amorphous polythiophene. Nat. Nanotechnol. 2014, 9, 384-90.
157. Leung, S. N.; Khan, M. O.; Naguib, H.; Dawson, F. Multifunctional polymer nanocomposites with uniaxially aligned liquid crystal polymer fibrils and graphene nanoplatelets. Appl. Phys. Lett. 2014, 104, 081904.
158. Liu, J.; Yang, R. Tuning the thermal conductivity of polymers with mechanical strains. Phys. Rev. B. 2010, 81, 174122.
159. Bai, L.; Zhao, X.; Bao, R.; Liu, Z.; Yang, M.; Yang, W. Effect of temperature, crystallinity and molecular chain orientation on the thermal conductivity of polymers: a case study of PLLA. J. Mater. Sci. 2018, 53, 10543-53.
160. Kim, D. G.; Kim, Y. H.; Shin, T. J.; et al. Highly anisotropic thermal conductivity of discotic nematic liquid crystalline films with homeotropic alignment. Chem. Commun. 2017, 53, 8227-30.
161. Karyappa, R.; Hashimoto, M. Chocolate-based ink three-dimensional printing (Ci3DP). Sci. Rep. 2019, 9, 14178.
162. Ghodbane, S. A.; Murthy, N. S.; Dunn, M. G.; Kohn, J. Achieving molecular orientation in thermally extruded 3D printed objects. Biofabrication 2019, 11, 045004.
163. Loskot, J.; Jezbera, D.; Loskot, R.; et al. Influence of print speed on the microstructure, morphology, and mechanical properties of 3D-printed PETG products. Polym. Test. 2023, 123, 108055.
164. Seshadri, B.; Hischier, I.; Masania, K.; Schlueter, A. 3D printed liquid crystal polymer thermosiphon for heat transfer under vacuum. Adv. Mater. Technol. 2023, 8, 2300403.
165. Luo, F.; Yang, S.; Yan, P.; et al. Orientation behavior and thermal conductivity of liquid crystal polymer composites based on three-dimensional printing. Compos. Part. A. Appl. Sci. Manuf. 2022, 160, 107059.
166. Houriet, C.; Damodaran, V.; Mascolo, C.; Gantenbein, S.; Peeters, D.; Masania, K. 3D printing of flow-inspired anisotropic patterns with liquid crystalline polymers. Adv. Mater. 2024, 36, e2307444.
167. Johann, K. S.; Böhm, F.; Kapernaum, N.; Giesselmann, F.; Bonten, C. Orientation of liquid crystalline polymers after filament extrusion and after passing through a 3D printer nozzle. ACS. Appl. Polym. Mater. 2024, 6, 10006-18.
168. Karyappa, R.; Ohno, A.; Hashimoto, M. Immersion precipitation 3D printing (ip3DP). Mater. Horiz. 2019, 6, 1834-44.
169. Karyappa, R.; Liu, H.; Zhu, Q.; Hashimoto, M. Printability of poly(lactic acid) ink by embedded 3D printing via immersion precipitation. ACS. Appl. Mater. Interfaces. 2023, 15, 21575-84.
170. Karyappa, R.; Hashimoto, M. Freeform polymer precipitation in microparticulate gels. ACS. Appl. Polym. Mater. 2021, 3, 908-19.
171. Karyappa, R.; Zhang, D.; Zhu, Q.; Ji, R.; Suwardi, A.; Liu, H. Newtonian liquid-assisted material extrusion 3D printing: progress, challenges and future perspectives. Addit. Manuf. 2024, 79, 103903.
172. Wang, S.; Ong, P. J.; Liu, S.; et al. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chem. Asian. J. 2022, 17, e202200608.
173. Zhu, H.; Mah, J. Q. J.; Wang, C. G.; et al. Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact. Mater. 2022, 18, 471-91.
174. Liu, M.; Chen, Y.; Zhu, Q.; et al. Antioxidant thermogelling formulation for burn wound healing. Chem. Asian. J. 2022, 17, e202200396.
175. Wei, F.; Cheng, B.; Chew, L. T.; et al. Grain distribution characteristics and effect of diverse size distribution on the Hall-Petch relationship for additively manufactured metal alloys. J. Mater. Res. Technol. 2022, 20, 4130-6.
176. Wu, J.; Wu, W.; Wang, S.; et al. Polymer electrolytes for flexible zinc-air batteries: recent progress and future directions. Nano. Res. 2024, 17, 6058-79.
177. Li, M.; Gong, P.; Zhang, Z.; et al. Electric-field-aligned liquid crystal polymer for doubling anisotropic thermal conductivity. Commun. Mater. 2024, 5, 455.
178. Wang, M.; Wang, J.; Yang, H.; et al. Homeotropically-aligned main-chain and side-on liquid crystalline elastomer films with high anisotropic thermal conductivities. Chem. Commun. 2016, 52, 4313-6.
179. Kurabayashi, K. Anisotropic thermal energy transport in polarized liquid crystalline (LC) polymers under electric fields. Microsc. Thermophys. Eng. 2003, 7, 87-99.
180. Shin, J.; Kang, M.; Tsai, T.; Leal, C.; Braun, P. V.; Cahill, D. G. Thermally functional liquid crystal networks by magnetic field driven molecular orientation. ACS. Macro. Lett. 2016, 5, 955-60.
181. Harada, M.; Ochi, M.; Tobita, M.; et al. Thermomechanical properties of liquid-crystalline epoxy networks arranged by a magnetic field. J. Polym. Sci. B. Polym. Phys. 2004, 42, 758-65.
182. Varela-Domínguez, N.; López-Bueno, C.; López-Moreno, A.; et al. Light-induced bi-directional switching of thermal conductivity in azobenzene-doped liquid crystal mesophases. J. Mater. Chem. C. Mater. 2023, 11, 4588-94.
183. Shin, J.; Sung, J.; Kang, M.; et al. Light-triggered thermal conductivity switching in azobenzene polymers. Proc. Natl. Acad. Sci. USA. 2019, 116, 5973-8.
184. Dai, M.; Picot, O. T.; Verjans, J. M.; et al. Humidity-responsive bilayer actuators based on a liquid-crystalline polymer network. ACS. Appl. Mater. Interfaces. 2013, 5, 4945-50.
185. Lan, R.; Shen, W.; Yao, W.; Chen, J.; Chen, X.; Yang, H. Bioinspired humidity-responsive liquid crystalline materials: from adaptive soft actuators to visualized sensors and detectors. Mater. Horiz. 2023, 10, 2824-44.
186. Ji, Y.; Yang, B.; Cai, F.; Yu, H. Regulating surface topography of liquid-crystalline polymers by external stimuli. Macro. Chem. Phys. 2022, 223, 2100418.
187. Gupta, M.; Ashy. Solar thermal energy storage systems based on discotic nematic liquid crystals that can efficiently charge and discharge below 0 °C. Adv. Energy. Mater. 2024, 14, 2303845.
188. Liu, J.; Li, Z.; Lv, C.; et al. Electrocatalytic upgrading of nitrogenous wastes into value-added chemicals: a review. Mater. Today. 2024, 73, 208-59.
189. Hu, E.; Jia, B. E.; Zhu, Q.; et al. Engineering high voltage aqueous aluminum-ion batteries. Small 2024, e2309252.
190. Jia, B.; Hu, E.; Hu, Z.; et al. Laminated tin-aluminum anodes to build practical aqueous aluminum batteries. Energy. Storage. Mater. 2024, 65, 103141.
191. Yeo, R. J.; Sng, A.; Wang, C.; Tao, L.; Zhu, Q.; Bu, J. Strategies for heavy metals immobilization in municipal solid waste incineration bottom ash: a critical review. Rev. Environ. Sci. Biotechnol. 2024, 23, 503-68.
192. Wu, W. Y.; Zhang, M.; Wang, C.; Tao, L.; Bu, J.; Zhu, Q. Harnessing ash for sustainable CO2 absorption: current strategies and future prospects. Chem. Asian. J. 2024, 19, e202400180.
193. Soo, X. Y. D.; Lee, J. J. C.; Wu, W.; et al. Advancements in CO2 capture by absorption and adsorption: a comprehensive review. J. CO2. Util. 2024, 81, 102727.
194. Soo, X. Y. D.; Zhang, D.; Tan, S. Y.; et al. Ultra-high performance thermochromic polymers via a solid-solid phase transition mechanism and their applications. Adv. Mater. 2024, 36, e2405430.
195. Kalinin, D.; Abercrombie, J. The applications of machine learning in the study of liquid crystals: a review. J. Stud. Res. 2023, 12, 3983.
196. Maeda, H.; Wu, S.; Marui, R.; et al. Discovery of liquid crystalline polymers with high thermal conductivity using machine learning. ChemRxiv 2024.
197. Wu, D.; Ni, B.; Liu, Y.; Chen, S.; Zhang, H. Preparation and characterization of side-chain liquid crystal polymer/paraffin composites as form-stable phase change materials. J. Mater. Chem. A. 2015, 3, 9645-57.
198. Han, G. G. D.; Li, H.; Grossman, J. C. Optically-controlled long-term storage and release of thermal energy in phase-change materials. Nat. Commun. 2017, 8, 1446.
199. Wu, S.; Kondo, Y.; Kakimoto, M.; et al. Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. NPJ. Comput. Mater. 2019, 5, 203.
200. Zhu, M.; Song, H.; Yu, Q.; Chen, J.; Zhang, H. Machine-learning-driven discovery of polymers molecular structures with high thermal conductivity. Int. J. Heat. Mass. Transfer. 2020, 162, 120381.
201. Inokuchi, T.; Okamoto, R.; Arai, N. Predicting molecular ordering in a binary liquid crystal using machine learning. Liq. Cryst. 2020, 47, 438-48.