REFERENCES

1. Zheng, R.; Liu, Z.; Wang, Y.; Xie, Z.; He, M. The future of green energy and chemicals: rational design of catalysis routes. Joule 2022, 6, 1148-59.

2. Wolf, S. E.; Winterhalder, F. E.; Vibhu, V.; et al. Solid oxide electrolysis cells - current material development and industrial application. J. Mater. Chem. A. 2023, 11, 17977-8028.

3. Hartvigsen, J.; Elangovan, S.; Elwell, J.; Larsen, D. Oxygen production from mars atmosphere carbon dioxide using solid oxide electrolysis. ECS. Trans. 2017, 78, 2953-63.

4. Constantin, A. Nuclear hydrogen projects to support clean energy transition: updates on international initiatives and IAEA activities. Int. J. Hydrogen. Energy. 2024, 54, 768-79.

5. Kumar S, Lim H. An overview of water electrolysis technologies for green hydrogen production. Energy. Rep. 2022, 8, 13793-813.

6. Jolaoso, L. A.; Bello, I. T.; Ojelade, O. A.; Yousuf, A.; Duan, C.; Kazempoor, P. Operational and scaling-up barriers of SOEC and mitigation strategies to boost H2 production- a comprehensive review. Int. J. Hydrogen. Energy. 2023, 48, 33017-41.

7. Royer, S.; Duprez, D.; Can, F.; et al. Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem. Rev. 2014, 114, 10292-368.

8. Sun, C.; Alonso, J. A.; Bian, J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy. Mater. 2021, 11, 2000459.

9. Lei, L.; Zhang, J.; Yuan, Z.; Liu, J.; Ni, M.; Chen, F. Progress report on proton conducting solid oxide electrolysis cells. Adv. Funct. Mater. 2019, 29, 1903805.

10. Guan, S.; Shang, C.; Liu, Z. Resolving the temperature and composition dependence of ion conductivity for yttria-stabilized zirconia from machine learning simulation. J. Phys. Chem. C. 2020, 124, 15085-93.

11. Liu, Y.; Shao, Z.; Mori, T.; Jiang, S. P. Development of nickel based cermet anode materials in solid oxide fuel cells - now and future. Mater. Rep. Energy. 2021, 1, 100003.

12. Skafte, T. L.; Guan, Z.; Machala, M. L.; et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates. Nat. Energy. 2019, 4, 846-55.

13. Opitz, A. K.; Nenning, A.; Rameshan, C.; et al. Surface chemistry of perovskite-type electrodes during high temperature CO2 electrolysis investigated by operando photoelectron spectroscopy. ACS. Appl. Mater. Interfaces. 2017, 9, 35847-60.

14. Tang, Y.; Liu, J. Effect of anode and Boudouard reaction catalysts on the performance of direct carbon solid oxide fuel cells. Int. J. Hydrogen. Energy. 2010, 35, 11188-93.

15. Yang, Y.; Wang, Y.; Yang, Z.; Chen, Y.; Peng, S. A highly active and durable electrode with in situ exsolved Co nanoparticles for solid oxide electrolysis cells. J. Power. Sources. 2020, 478, 229082.

16. Wang, S.; Inoishi, A.; Hong, J.; et al. Ni-Fe bimetallic cathodes for intermediate temperature CO2 electrolyzers using a La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte. J. Mater. Chem. A. 2013, 1, 12455.

17. Unachukwu, I. D.; Vibhu, V.; Vinke, I. C.; Eichel, R.; de Haart, L. Electrochemical and degradation behaviour of single cells comprising Ni-GDC fuel electrode under high temperature steam- and co-electrolysis conditions. J. Power. Sources. 2023, 556, 232436.

18. Zheng, M.; Wang, S.; Yang, Y.; Xia, C. Barium carbonate as a synergistic catalyst for the H2O/CO2 reduction reaction at Ni-yttria stabilized zirconia cathodes for solid oxide electrolysis cells. J. Mater. Chem. A. 2018, 6, 2721-9.

19. Uchida, H.; Nishino, H.; Puengjinda, P.; Kakinuma, K. Remarkably improved durability of Ni-Co dispersed Samaria-doped ceria hydrogen electrodes by reversible cycling operation of solid oxide cells. J. Electrochem. Soc. 2020, 167, 134516.

20. Puengjinda, P.; Nishino, H.; Kakinuma, K.; Brito, M. E.; Uchida, H. Effect of microstructure on performance of double-layer hydrogen electrodes for reversible SOEC/SOFC. J. Electrochem. Soc. 2017, 164, F889-94.

21. Zhou, Y.; Wei, F.; Wu, H. Fe-decorated on Sm-doped CeO2 as cathodes for high-temperature CO2 electrolysis in solid oxide electrolysis cells. Electrochim. Acta. 2022, 419, 140434.

22. Kumari, N.; Tiwari, P. K.; Haider, M. A.; Basu, S. Electrochemical performance of infiltrated Cu-GDC and Cu-PDC cathode for CO2 electrolysis in a solid oxide cell. ECS. Trans. 2017, 78, 3329-37.

23. Lu, L.; Liu, W.; Wang, J.; et al. Long-term stability of carbon dioxide electrolysis in a large-scale flat-tube solid oxide electrolysis cell based on double-sided air electrodes. Appl. Energy. 2020, 259, 114130.

24. Ding, S.; Li, M.; Pang, W.; et al. A-site deficient perovskite with nano-socketed Ni-Fe alloy particles as highly active and durable catalyst for high-temperature CO2 electrolysis. Electrochim. Acta. 2020, 335, 135683.

25. Deka, D. J.; Kim, J.; Gunduz, S.; Ferree, M.; Co, A. C.; Ozkan, U. S. Temperature-induced changes in the synthesis gas composition in a high-temperature H2O and CO2 co-electrolysis system. Appl. Catal. A. Gen. 2020, 602, 117697.

26. Jin, C.; Yang, C.; Zhao, F.; Cui, D.; Chen, F. La0.75Sr0.25Cr0.5Mn0.5O3 as hydrogen electrode for solid oxide electrolysis cells. Int. J. Hydrogen. Energy. 2011, 36, 3340-6.

27. Lay, E.; Gauthier, G.; Dessemond, L. Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC anode or SOEC cathode materials. Solid. State. Ion. 2011, 189, 91-9.

28. Li, Y.; Gan, Y.; Wang, Y.; Xie, K.; Wu, Y. Composite cathode based on Ni-loaded La0.75Sr0.25Cr0.5Mn0.5O3-δ for direct steam electrolysis in an oxide-ion-conducting solid oxide electrolyzer. Int. J. Hydrogen. Energy. 2013, 38, 10196-207.

29. Ruan, C.; Xie, K.; Yang, L.; Ding, B.; Wu, Y. Efficient carbon dioxide electrolysis in a symmetric solid oxide electrolyzer based on nanocatalyst-loaded chromate electrodes. Int. J. Hydrogen. Energy. 2014, 39, 10338-48.

30. Falcón, H.; Barbero, J. A.; Alonso, J. A.; Martínez-lope, M. J.; Fierro, J. L. G. SrFeO3-δ perovskite oxides:  chemical features and performance for methane combustion. Chem. Mater. 2002, 14, 2325-33.

31. Zhu, C.; Hou, S.; Hou, L.; Xie, K. Perovskite SrFeO3-δ decorated with Ni nanoparticles for high temperature carbon dioxide electrolysis. Int. J. Hydrogen. Energy. 2018, 43, 17040-7.

32. Ishihara, T.; Wu, K.; Wang, S. (Invited) High temperature CO2 electrolysis on La(Sr)Fe(Mn)O3 oxide cathode by using LaGaO3 based electrolyte. ECS. Trans. 2015, 66, 197-205.

33. Zhang, W.; Wei, J.; Yin, F.; Sun, C. Recent advances in carbon-resistant anodes for solid oxide fuel cells. Mater. Chem. Front. 2023, 7, 1943-91.

34. Li, Y.; Wu, G.; Ruan, C.; et al. Composite cathode based on doped vanadate enhanced with loaded metal nanoparticles for steam electrolysis. J. Power. Sources. 2014, 253, 349-59.

35. Pudmich, G. Chromite/titanate based perovskites for application as anodes in solid oxide fuel cells. Solid. State. Ion. 2000, 135, 433-8.

36. Li, Y.; Zhou, J.; Dong, D.; et al. Composite fuel electrode La0.2Sr0.8TiO3-δ-Ce0.8Sm0.2O2-δ for electrolysis of CO2 in an oxygen-ion conducting solid oxide electrolyser. Phys. Chem. Chem. Phys. 2012, 14, 15547-53.

37. Yang, L.; Xie, K.; Xu, S.; et al. Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis. Dalton. Trans. 2014, 43, 14147-57.

38. He, B.; Zhao, L.; Song, S.; Liu, T.; Chen, F.; Xia, C. Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 2012, 159, B619-26.

39. Xi, X.; Liu, J.; Luo, W.; et al. Unraveling the enhanced kinetics of Sr2Fe1+xMo1-xO6-δ electrocatalysts for high-performance solid oxide cells. Adv. Energy. Mater. 2021, 11, 2102845.

40. Ge, B.; Ma, J.; Ai, D.; Deng, C.; Lin, X.; Xu, J. Sr2FeNbO6 applied in solid oxide electrolysis cell as the hydrogen electrode: kinetic studies by comparison with Ni-YSZ. Electrochim. Acta. 2015, 151, 437-46.

41. Zhang, L.; Sun, W.; Xu, C.; et al. Two-fold improvement in chemical adsorption ability to achieve effective carbon dioxide electrolysis. Appl. Catal. B. Environ. 2022, 317, 121754.

42. Kamlungsua, K.; Su, P. Moisture-dependent electrochemical characterization of Ba0.2Sr1.8Fe1.5Mo0.5O6-δ as the fuel electrode for solid oxide electrolysis cells (SOECs). Electrochim. Acta. 2020, 355, 136670.

43. Li, Y.; Li, Y.; Wan, Y.; et al. Perovskite oxyfluoride electrode enabling direct electrolyzing carbon dioxide with excellent electrochemical performances. Adv. Energy. Mater. 2019, 9, 1803156.

44. Sengodan, S.; Choi, S.; Jun, A.; et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 2015, 14, 205-9.

45. Lu, C.; Niu, B.; Yi, W.; Ji, Y.; Xu, B. Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x = 0, 0.2, 0.4) for solid oxide fuel cells and solid oxide electrolysis cells. Electrochim. Acta. 2020, 358, 136916.

46. Qi, W.; Zhang, Y.; Cui, J.; Shu, X.; Wang, Y.; Wu, Y. In-situ constructing NiO nanoplatelets network on La0.75Sr0.25Mn0.5Cr0.5O3-δ electrode with enhanced steam electrolysis. Int. J. Hydrogen. Energy. 2017, 42, 5657-66.

47. Xu, S.; Chen, S.; Li, M.; Xie, K.; Wang, Y.; Wu, Y. Composite cathode based on Fe-loaded LSCM for steam electrolysis in an oxide-ion-conducting solid oxide electrolyser. J. Power. Sources. 2013, 239, 332-40.

48. Xu, S.; Dong, D.; Wang, Y.; Doherty, W.; Xie, K.; Wu, Y. Perovskite chromates cathode with resolved and anchored nickel nano-particles for direct high-temperature steam electrolysis. J. Power. Sources. 2014, 246, 346-55.

49. Yang, X.; Sun, K.; Ma, M.; et al. Achieving strong chemical adsorption ability for efficient carbon dioxide electrolysis. Appl. Catal. B. Environ. 2020, 272, 118968.

50. Hosoi, K.; Hagiwara, H.; Ida, S.; Ishihara, T. La0.8Sr0.2FeO3-δ as fuel electrode for solid oxide reversible cells using LaGaO3-based oxide electrolyte. J. Phys. Chem. C. 2016, 120, 16110-7.

51. Tian, Y.; Liu, Y.; Jia, L.; et al. A novel electrode with multifunction and regeneration for highly efficient and stable symmetrical solid oxide cell. J. Power. Sources. 2020, 475, 228620.

52. Choi, J.; Park, S.; Han, H.; et al. Highly efficient CO2 electrolysis to CO on Ruddlesden-Popper perovskite oxide with in situ exsolved Fe nanoparticles. J. Mater. Chem. A. 2021, 9, 8740-8.

53. Shin, T. H.; Myung, J. H.; Verbraeken, M.; Kim, G.; Irvine, J. T. Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor. Faraday. Discuss. 2015, 182, 227-39.

54. Zhang, L.; Zhu, X.; Cao, Z.; et al. Pr and Ti co-doped strontium ferrite as a novel hydrogen electrode for solid oxide electrolysis cell. Electrochim. Acta. 2017, 232, 542-9.

55. Liu, S.; Liu, Q.; Luo, J. CO2 -to-CO conversion on layered perovskite with in situ exsolved Co-Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells. J. Mater. Chem. A. 2016, 4, 17521-8.

56. Tan, T.; Wang, Z.; Qin, M.; et al. In situ exsolution of core-shell structured NiFe/FeOx nanoparticles on Pr0.4Sr1.6(NiFe)1.5Mo0.5O6-δ for CO2 electrolysis. Adv. Funct. Mater. 2022, 32, 2202878.

57. Wang, S.; Deng, S.; Hao, Z.; Hu, X.; Zheng, Y. Ca/Cu cdoped SmFeO3 as a fuel electrode material for direct electrolysis of CO2 in SOECs. Fuel. Cells. 2020, 20, 682-9.

58. Zhang, J.; Xie, K.; Wei, H.; et al. In situ formation of oxygen vacancy in perovskite Sr0.95Ti0.8Nb0.1M0.1O3 (M = Mn, Cr) toward efficient carbon dioxide electrolysis. Sci. Rep. 2014, 4, 7082.

59. Zhang, S.; Wang, H.; Yang, T.; et al. Advanced oxygen-electrode-supported solid oxide electrochemical cells with Sr(Ti, Fe)O3-δ-based fuel electrodes for electricity generation and hydrogen production. J. Mater. Chem. A. 2020, 8, 25867-79.

60. Gao, X.; Ye, L.; Xie, K. Voltage-driven reduction method to optimize in-situ exsolution of Fe nanoparticles at Sr2Fe1.5+xMo0.5O6-δ interface. J. Power. Sources. 2023, 561, 232740.

61. He, F.; Hou, M.; Zhu, F.; et al. Building efficient and durable hetero-interfaces on a perovskite-based electrode for electrochemical CO2 reduction. Adv. Energy. Mater. 2022, 12, 2202175.

62. Sun, X.; Ye, Y.; Zhou, M.; et al. Layered-perovskite oxides with in situ exsolved Co-Fe alloy nanoparticles as highly efficient electrodes for high-temperature carbon dioxide electrolysis. J. Mater. Chem. A. 2022, 10, 2327-35.

63. Hauch, A.; Küngas, R.; Blennow, P.; et al. Recent advances in solid oxide cell technology for electrolysis. Science 2020, 370, eaba6118.

64. Jiang, S. P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review. J. Mater. Sci. 2008, 43, 6799-833.

65. Tietz, F.; Sebold, D.; Brisse, A.; Schefold, J. Degradation phenomena in a solid oxide electrolysis cell after 9000 h of operation. J. Power. Sources. 2013, 223, 129-35.

66. Su, C.; Lü, Z.; Wang, C.; et al. Effects of a YSZ porous layer between electrolyte and oxygen electrode in solid oxide electrolysis cells on the electrochemical performance and stability. Int. J. Hydrogen. Energy. 2019, 44, 14493-9.

67. Song, Y.; Zhang, X.; Zhou, Y.; et al. Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode. J. Energy. Chem. 2019, 35, 181-7.

68. Mahata, A.; Datta, P.; Basu, R. N. Synthesis and characterization of Ca doped LaMnO3 as potential anode material for solid oxide electrolysis cells. Ceram. Int. 2017, 43, 433-8.

69. Tian, Y.; Li, J.; Liu, Y.; et al. Preparation and properties of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ as novel oxygen electrode for reversible solid oxide electrochemical cell. Int. J. Hydrogen. Energy. 2018, 43, 12603-9.

70. Laguna-Bercero, M. A.; Monzón, H.; Larrea, A.; Orera, V. M. Improved stability of reversible solid oxide cells with a nickelate-based oxygen electrode. J. Mater. Chem. A. 2016, 4, 1446-53.

71. Gu, X.; Nikolla, E. Design of ruddlesden-popper oxides with optimal surface oxygen exchange properties for oxygen reduction and evolution. ACS. Catal. 2017, 7, 5912-20.

72. Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Pikalova, E. Y.; Bronin, D. I.; Zaikov, Y. P. Reversible solid oxide fuel cell for power accumulation and generation. Russ. J. Electrochem. 2018, 54, 644-9.

73. Men, H. J.; Tian, N.; Qu, Y. M.; Wang, M.; Zhao, S.; Yu, J. Improved performance of a lanthanum strontium manganite-based oxygen electrode for an intermediate-temperature solid oxide electrolysis cell realized via ionic conduction enhancement. Ceram. Int. 2019, 45, 7945-9.

74. Zhang, S.; Wang, H.; Lu, M. Y.; Li, C.; Li, C.; Barnett, S. A. Electrochemical performance and stability of SrTi0.3Fe0.6Co0.1O3-δ infiltrated La0.8Sr0.2MnO3Zr0.92Y0.16O2-δ oxygen electrodes for intermediate-temperature solid oxide electrochemical cells. J. Power. Sources. 2019, 426, 233-41.

75. Yan, J.; Zhao, Z.; Shang, L.; Ou, D.; Cheng, M. Co-synthesized Y-stabilized Bi2O3 and Sr-substituted LaMnO3 composite anode for high performance solid oxide electrolysis cell. J. Power. Sources. 2016, 319, 124-30.

76. Peng, X.; Tian, Y.; Liu, Y.; et al. An efficient symmetrical solid oxide electrolysis cell with LSFM-based electrodes for direct electrolysis of pure CO2. J. Co2. Util. 2020, 36, 18-24.

77. Fan, H.; Zhang, Y.; Han, M. Infiltration of La0.6Sr0.4FeO3-δ nanoparticles into YSZ scaffold for solid oxide fuel cell and solid oxide electrolysis cell. J. Alloys. Compd. 2017, 723, 620-6.

78. Vibhu, V.; Vinke, I. C.; Zaravelis, F.; et al. Performance and degradation of electrolyte-supported single cell composed of Mo-Au-Ni/GDC fuel electrode and LSCF oxygen electrode during high temperature steam electrolysis. Energies 2022, 15, 2726.

79. Sar, J.; Schefold, J.; Brisse, A.; Djurado, E. Durability test on coral Ce0.9Gd0.1O2-δ-La0.6Sr0.4Co0.2Fe0.8O3-δ with La0.6Sr0.4Co0.2Fe0.8O3-δ current collector working in SOFC and SOEC modes. Electrochim. Acta. 2016, 201, 57-69.

80. Yang, Z.; Wang, N.; Ma, C.; et al. Co-electrolysis of H2O-CO2 in a solid oxide electrolysis cell with symmetrical La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ electrode. J. Electroanal. Chem. 2019, 836, 107-11.

81. Cao, Z.; Wei, B.; Miao, J.; et al. Efficient electrolysis of CO2 in symmetrical solid oxide electrolysis cell with highly active La0.3Sr0.7Fe0.7Ti0.3O3 electrode material. Electrochem. Commun. 2016, 69, 80-3.

82. Dey, S.; Mukhopadhyay, J.; Lenka, R. K.; et al. Synthesis and characterization of Nanocrystalline Ba0.6Sr0.4Co0.8Fe0.2O3 for application as an efficient anode in solid oxide electrolyser cell. Int. J. Hydrogen. Energy. 2020, 45, 3995-4007.

83. Meng, X.; Shen, Y.; Xie, M.; et al. Novel solid oxide cells with SrCo0.8Fe0.1Ga0.1O3-δ oxygen electrode for flexible power generation and hydrogen production. J. Power. Sources. 2016, 306, 226-32.

84. Zhao, Z.; Qi, H.; Tang, S.; et al. A highly active and stable hybrid oxygen electrode for reversible solid oxide cells. Int. J. Hydrogen. Energy. 2021, 46, 36012-22.

85. Ni, C.; Irvine, J. T. Calcium manganite as oxygen electrode materials for reversible solid oxide fuel cell. Faraday. Discuss. 2015, 182, 289-305.

86. Li, J.; Zhong, C.; Meng, X.; et al. Sr2Fe1.5Mo0.5O6-δ-Zr0.84Y0.16O2-δ materials as oxygen electrodes for solid oxide electrolysis cells. Fuel. Cells. 2014, 14, 1046-9.

87. Tong, X.; Zhou, F.; Yang, S.; Zhong, S.; Wei, M.; Liu, Y. Performance and stability of Ruddlesden-Popper La2NiO4+δ oxygen electrodes under solid oxide electrolysis cell operation conditions. Ceram. Int. 2017, 43, 10927-33.

88. Ren, C.; Gan, Y.; Yang, C.; Lee, M.; Green, R. D.; Xue, X. Fabrication and characterization of microtubular solid oxide cells for CO2/CO redox operations. J. Appl. Electrochem. 2018, 48, 959-71.

89. Danilov, N.; Lyagaeva, J.; Vdovin, G.; Pikalova, E.; Medvedev, D. Electricity/hydrogen conversion by the means of a protonic ceramic electrolysis cell with Nd2NiO4+δ-based oxygen electrode. Energy. Convers. Manag. 2018, 172, 129-37.

90. Morales-Zapata, M.; Larrea, A.; Laguna-Bercero, M. Reversible operation performance of microtubular solid oxide cells with a nickelate-based oxygen electrode. Int. J. Hydrogen. Energy. 2020, 45, 5535-42.

91. Zhang, M.; Wang, E.; Mao, J.; Wang, H.; Ouyang, M.; Hu, H. Performance analysis of a metal-supported intermediate-temperature solid oxide electrolysis cell. Front. Energy. Res. 2022, 10, 888787.

92. Wu, T.; Zhang, W.; Li, Y.; et al. Micro-/nanohoneycomb solid oxide electrolysis cell anodes with ultralarge current tolerance. Adv. Energy. Mater. 2018, 8, 1802203.

93. Cao, J.; Li, Y.; Zheng, Y.; et al. A novel solid oxide electrolysis cell with micro-/nano channel anode for electrolysis at ultra-high current density over 5 A cm-2. Adv. Energy. Mater. 2022, 12, 2200899.

94. Sahu, S. K.; Panthi, D.; Soliman, I.; Feng, H.; Du, Y. Fabrication and performance of micro-tubular solid oxide cells. Energies 2022, 15, 3536.

95. Gaikwad, P. S.; Mondal, K.; Shin, Y. K.; van, D. A. C. T.; Pawar, G. Enhancing the Faradaic efficiency of solid oxide electrolysis cells: progress and perspective. NPJ. Comput. Mater. 2023, 9, 1044.

96. Brett, D. J.; Atkinson, A.; Brandon, N. P.; Skinner, S. J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 2008, 37, 1568-78.

97. Kim, C.; Park, K.; Kalaev, D.; Nicollet, C.; Tuller, H. L. Effect of structure on oxygen diffusivity in layered oxides: a combined theoretical and experimental study. J. Mater. Chem. A. 2022, 10, 15402-14.

98. Abdullah, B. J.; Jiang, Q.; Omar, M. S. Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures. Bull. Mater. Sci. 2016, 39, 1295-302.

99. Shi, H.; Su, C.; Ran, R.; Cao, J.; Shao, Z. Electrolyte materials for intermediate-temperature solid oxide fuel cells. Prog. Nat. Sci. Mater. Int. 2020, 30, 764-74.

100. Vendrell, X.; Yadav, D.; Raj, R.; West, A. R. Influence of flash sintering on the ionic conductivity of 8 mol% yttria stabilized zirconia. J. Eur. Ceram. Soc. 2019, 39, 1352-8.

101. Mineshige, A. Preparation of dense electrolyte layer using dissociated oxygen electrochemical vapor deposition technique. Solid. State. Ion. 2004, 175, 483-5.

102. Zhang, Y.; Huang, X.; Lu, Z.; et al. Effect of starting powder on screen-printed YSZ films used as electrolyte in SOFCs. Solid. State. Ion. 2006, 177, 281-7.

103. Yu, B.; Zhang, W.; Xu, J.; Chen, J.; Luo, X.; Stephan, K. Preparation and electrochemical behavior of dense YSZ film for SOEC. Int. J. Hydrogen. Energy. 2012, 37, 12074-80.

104. Ye, L.; Xie, K. High-temperature electrocatalysis and key materials in solid oxide electrolysis cells. J. Energy. Chem. 2021, 54, 736-45.

105. Kumar C, Bauri R. Enhancing the phase stability and ionic conductivity of scandia stabilized zirconia by rare earth co-doping. J. Phys. Chem. Solids. 2014, 75, 642-50.

106. Bernadet, L.; Moncasi, C.; Torrell, M.; Tarancón, A. High-performing electrolyte-supported symmetrical solid oxide electrolysis cells operating under steam electrolysis and co-electrolysis modes. Int. J. Hydrogen. Energy. 2020, 45, 14208-17.

107. Puente-Martínez, D.; Díaz-Guillén, J.; Montemayor, S.; et al. High ionic conductivity in CeO2 SOFC solid electrolytes; effect of Dy doping on their electrical properties. Int. J. Hydrogen. Energy. 2020, 45, 14062-70.

108. Molenda, J.; Świerczek, K.; Zając, W. Functional materials for the IT-SOFC. J. Power. Sources. 2007, 173, 657-70.

109. Wang, J.; Xiao, X.; Liu, Y.; Pan, K.; Pang, H.; Wei, S. The application of CeO2-based materials in electrocatalysis. J. Mater. Chem. A. 2019, 7, 17675-702.

110. Zhang, Y.; Zhao, S.; Feng, J.; et al. Unraveling the physical chemistry and materials science of CeO2-based nanostructures. Chem 2021, 7, 2022-59.

111. Qian, J.; Gong, Z.; Wang, M.; et al. Generating an electron-blocking layer with BaMn1-xNixO3 mixed-oxide for Ce0.8Sm0.2O2-δ-based solid oxide fuel cells. Ceram. Int. 2018, 44, 12739-44.

112. Ishihara, T.; Matsuda, H.; Takita, Y. Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 1994, 116, 3801-3.

113. Yi, J. Y.; Choi, G. M. The effect of reduction atmosphere on the LaGaO3-based solid oxide fuel cell. J. Eur. Ceram. Soc. 2005, 25, 2655-9.

114. Tan, Z.; Ishihara, T. Effect of Ni-based cathodic layer on intermediate temperature tubular electrolysis cell using LaGaO3-based electrolyte thin film. J. Phys. Energy. 2020, 2, 024004.

115. Dudek, M.; Lis, B.; Rapacz-Kmita, A.; Gajek, M.; Raźniak, A.; Drożdż, E. Some observations on the synthesis and electrolytic properties of (Ba1-xCax)(M0.9Y0.1)O3, M=Ce, Zr-based samples modified with calcium. Mater. Sci. Poland. 2016, 34, 101-14.

116. Katahira, K.; Kohchi, Y.; Shimura, T.; Iwahara, H. Protonic conduction in Zr-substituted BaCeO3. Solid. State. Ion. 2000, 138, 91-8.

117. Yang, L.; Wang, S.; Blinn, K.; et al. Enhanced sulfur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science 2009, 326, 126-9.

118. Rajendran, S.; Thangavel, N. K.; Ding, H.; Ding, Y.; Ding, D.; Reddy, A. L. M. Tri-doped BaCeO3-BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs). ACS. Appl. Mater. Interfaces. 2020, 12, 38275-84.

119. Li, W.; Guan, B.; Ma, L.; Tian, H.; Liu, X. Synergistic coupling of proton conductors BaZr0.1Ce0.7Y0.1Yb0.1O3-δ and La2Ce2O7 to create chemical stable, interface active electrolyte for steam electrolysis cells. ACS. Appl. Mater. Interfaces. 2019, 11, 18323-30.

120. Kim, J.; Jun, A.; Gwon, O.; et al. Hybrid-solid oxide electrolysis cell: a new strategy for efficient hydrogen production. Nano. Energy. 2018, 44, 121-6.

121. Xue, Q.; Huang, X.; Zhang, H.; Xu, H.; Zhang, J.; Wang, L. Synthesis and characterization of high ionic conductivity ScSZ core/shell nanocomposites. J. Rare. Earths. 2017, 35, 567-73.

122. Matsui, T.; Inaba, M.; Mineshige, A.; Ogumi, Z. Electrochemical properties of ceria-based oxides for use in intermediate-temperature SOFCs. Solid. State. Ion. 2005, 176, 647-54.

123. Hirano, M. Effect of Bi2O3 additives in Sc stabilized zirconia electrolyte on a stability of crystal phase and electrolyte properties. Solid. State. Ion. 2003, 158, 215-23.

124. Traina, K.; Henrist, C.; Vertruyen, B.; Cloots, R. Dense La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte for IT-SOFC’s: sintering study and electrochemical characterization. J. Alloys. Compd. 2011, 509, 1493-500.

125. Biswal, R. C.; Biswas, K. Novel way of phase stability of LSGM and its conductivity enhancement. Int. J. Hydrogen. Energy. 2015, 40, 509-18.

126. Rao, Y.; Zhong, S.; He, F.; Wang, Z.; Peng, R.; Lu, Y. Cobalt-doped BaZrO3: a single phase air electrode material for reversible solid oxide cells. Int. J. Hydrogen. Energy. 2012, 37, 12522-7.

127. Lyagaeva, J.; Danilov, N.; Vdovin, G.; et al. A new Dy-doped BaCeO3-BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells. J. Mater. Chem. A. 2016, 4, 15390-9.

128. Yang, S.; Wen, Y.; Zhang, S.; Gu, S.; Wen, Z.; Ye, X. Performance and stability of BaCe0.8-xZr0.2InxO3-δ-based materials and reversible solid oxide cells working at intermediate temperature. Int. J. Hydrogen. Energy. 2017, 42, 28549-58.

129. Yang, S.; Zhang, S.; Sun, C.; Ye, X.; Wen, Z. Lattice incorporation of Cu2+ into the BaCe0.7Zr0.1Y0.1Yb0.1O3-δ electrolyte on boosting its sintering and proton-conducting abilities for reversible solid oxide cells. ACS. Appl. Mater. Interfaces. 2018, 10, 42387-96.

130. Golkhatmi S, Asghar MI, Lund PD. A review on solid oxide fuel cell durability: latest progress, mechanisms, and study tools. Renew. Sustain. Energy. Rev. 2022, 161, 112339.

131. Park, S.; Craciun, R.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. methane oxidation. J. Electrochem. Soc. 1999, 146, 3603-5.

132. Wehrle, L.; Schmider, D.; Dailly, J.; Banerjee, A.; Deutschmann, O. Benchmarking solid oxide electrolysis cell-stacks for industrial Power-to-Methane systems via hierarchical multi-scale modelling. Appl. Energy. 2022, 317, 119143.

133. Li, T.; Wang, T.; Wei, T.; et al. Robust anode-supported cells with fast oxygen release channels for efficient and stable CO2 electrolysis at ultrahigh current densities. Small 2021, 17, e2007211.

134. Zhou, J.; Ma, Z.; Zhang, L.; et al. Study of CO2 and H2O direct co-electrolysis in an electrolyte-supported solid oxide electrolysis cell by aqueous tape casting technique. Int. J. Hydrogen. Energy. 2019, 44, 28939-46.

135. Rorato, L.; Shang, Y.; Yang, S.; et al. Understanding the Ni migration in solid oxide cell: a coupled experimental and modeling approach. J. Electrochem. Soc. 2023, 170, 034504.

136. Dasari, H. P.; Park, S.; Kim, J.; et al. Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells. J. Power. Sources. 2013, 240, 721-8.

137. Chen, D.; Barreau, M.; Dintzer, T.; et al. Surface oxidation of Ni-cermet electrodes by CO2 and H2O and how to moderate it. J. Energy. Chem. 2022, 67, 300-8.

138. Graves, C.; Ebbesen, S. D.; Mogensen, M. Co-electrolysis of CO2 and H2O in solid oxide cells: performance and durability. Solid. State. Ion. 2011, 192, 398-403.

139. Min, K.; Sun, C. W.; Qu, W.; et al. Electrochemical properties of low-temperature solid oxide fuel cells under chromium poisoning conditions. Int. J. Green. Energy. 2009, 6, 627-37.

140. Bi, J.; Yang, S.; Zhong, S.; et al. An insight into the effects of B-site transition metals on the activity, activation effect and stability of perovskite oxygen electrodes for solid oxide electrolysis cells. J. Power. Sources. 2017, 363, 470-9.

141. Chen, K.; Hyodo, J.; Ai, N.; Ishihara, T.; Jiang, S. P. Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions. Int. J. Hydrogen. Energy. 2016, 41, 1419-31.

142. Wang, C. C.; Chen, K.; Jiang, T.; et al. Sulphur poisoning of solid oxide electrolysis cell anodes. Electrochim. Acta. 2018, 269, 188-95.

143. Riegraf, M.; Han, F.; Sata, N.; Costa, R. Intercalation of thin-film Gd-doped ceria barrier layers in electrolyte-supported solid oxide cells: physicochemical aspects. ACS. Appl. Mater. Interfaces. 2021, 13, 37239-51.

144. Laurencin, J.; Hubert, M.; Sanchez, D. F.; et al. Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ/Gd0.1Ce0.9O2-δ composite electrode operated under solid oxide electrolysis and fuel cell conditions. Electrochim. Acta. 2017, 241, 459-76.

145. Ai, N.; He, S.; Li, N.; et al. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells. J. Power. Sources. 2018, 384, 125-35.

146. Kim, J.; Ji, H.; Dasari, H. P.; et al. Degradation mechanism of electrolyte and air electrode in solid oxide electrolysis cells operating at high polarization. Int. J. Hydrogen. Energy. 2013, 38, 1225-35.

147. Laguna-Bercero, M.; Campana, R.; Larrea, A.; Kilner, J.; Orera, V. Electrolyte degradation in anode supported microtubular yttria stabilized zirconia-based solid oxide steam electrolysis cells at high voltages of operation. J. Power. Sources. 2011, 196, 8942-7.

148. Zakaria, Z.; Kamarudin, S. K. Advanced modification of scandia-stabilized zirconia electrolytes for solid oxide fuel cells application- A review. Int. J. Energy. Res. 2021, 45, 4871-87.

149. Laguna-bercero, M. Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J. Power. Sources. 2012, 203, 4-16.

150. Zhang, Z.; Guan, C.; Xie, L.; Wang, J. Design and analysis of a novel opposite trapezoidal flow channel for solid oxide electrolysis cell stack. Energies 2023, 16, 159.

151. Yao, Y.; Ma, Y.; Wang, C.; et al. A cofuel channel microtubular solid oxide fuel/electrolysis cell. Appl. Energy. 2022, 327, 120010.

152. Park, S.; Sammes, N. M.; Song, K.; Kim, T.; Chung, J. Monolithic flat tubular types of solid oxide fuel cells with integrated electrode and gas channels. Int. J. Hydrogen. Energy. 2017, 42, 1154-60.

153. Houaijia, A.; Breuer, S.; Thomey, D.; et al. Solar hydrogen by high-temperature electrolysis: flowsheeting and experimental analysis of a tube-type receiver concept for superheated steam production. Energy. Procedia. 2014, 49, 1960-9.

154. Kong, R.; Zhang, R.; Li, H.; Wu, Y.; Sun, Z.; Sun, Z. A new pathway to produce hydrogen with CO capture from blast furnace gas via SOFC-SOEC integration. Energy. Convers. Manag. 2022, 271, 116278.

155. Xu, H.; Maroto-Valer, M. M.; Ni, M.; Cao, J.; Xuan, J. Low carbon fuel production from combined solid oxide CO2 co-electrolysis and Fischer-Tropsch synthesis system: a modelling study. Appl. Energy. 2019, 242, 911-8.

156. Xu, Y.; Cai, S.; Chi, B.; Tu, Z. Numerical study on improved mass and heat transfer performance in a solid oxide electrolysis cell with sine wave flow field. Int. J. Hydrogen. Energy. 2024.

157. Li, Y.; Zhang, L.; Yu, B.; Zhu, J.; Wu, C. CO2 high-temperature electrolysis technology toward carbon neutralization in the chemical industry. Engineering 2023, 21, 101-14.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/