REFERENCES

1. Chang, J.; Wang, G.; Li, C.; et al. Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule 2023, 7, 587-602.

2. Fuku, X.; Modibedi, M. Performance of BiCu2O modified Pd/C as an anode electrocatalyst for direct ethanol fuel cell system. Catal. Today. 2024, 425, 114305.

3. Fajardo, S.; Ocón, P.; Rodríguez, J.; Pastor, E. Co supported on N and S dual-doped reduced graphene oxide as highly active oxygen-reduction catalyst for direct ethanol fuel cells. Chem. Eng. J. 2023, 461, 142053.

4. Ao, W.; Ren, H.; Cheng, C.; et al. Mesoporous PtPb nanosheets as efficient electrocatalysts for hydrogen evolution and ethanol oxidation. Angew. Chem. Int. Ed. 2023, 62, e202305158.

5. Xiao, L.; Li, G.; Yang, Z.; et al. Engineering of amorphous PtOx interface on Pt/WO3 nanosheets for ethanol oxidation electrocatalysis. Adv. Funct. Mater. 2021, 31, 2100982.

6. Yoon, Y. S.; Basumatary, P.; Kilic, M. E.; et al. Novel GaPtMnP alloy based anodic electrocatalyst with excellent catalytic features for direct ethanol fuel cells. Adv. Funct. Mater. 2022, 32, 2111272.

7. Wang, Z.; Tang, Y.; Liu, S.; et al. Energy transfer-mediated multiphoton synergistic excitation for selective C(sp3)-H functionalization with coordination polymer. Nat. Commun. 2024, 15, 8813.

8. Zhang, Y.; Liu, X.; Liu, T.; et al. Rhombohedral Pd-Sb nanoplates with Pd-terminated surface: an efficient bifunctional fuel-cell catalyst. Adv. Mater. 2022, 34, e2202333.

9. Wang, H.; Abruña, H. D. Adsorbed enolate as the precursor for the C-C bond splitting during ethanol electrooxidation on Pt. J. Am. Chem. Soc. 2023, 145, 6330-8.

10. Sun, B.; Zhong, W.; Ai, X.; Zhang, C.; Li, F.; Chen, Y. Engineering low-coordination atoms on RhPt bimetallene for 12-electron ethanol electrooxidation. Energy. Environ. Sci. 2024, 17, 2219-27.

11. Kim, K. H.; Hobold, G. M.; Steinberg, K. J.; Gallant, B. M. Confinement effects of hollow structured Pt-Rh electrocatalysts toward complete ethanol electrooxidation. ACS. Nano. 2023, 17, 14176-88.

12. Han, C.; Lyu, Y.; Wang, S.; et al. Noncovalent interactions on the electrocatalytic oxidation of ethanol on a Pt/C electrocatalyst. Carbon. Energy. 2023, 5, e339.

13. Liang, C.; Zhao, R.; Chen, T.; et al. Recent approaches for cleaving the C-C bond during ethanol electro-oxidation reaction. Adv. Sci. 2024, 11, e2308958.

14. Peng, K.; Liu, L.; Bhuvanendran, N.; Lee, S. Y.; Xu, Q.; Su, H. Efficient one-dimensional Pt-based nanostructures for methanol oxidation reaction: an overview. Int. J. Hydrogen. Energy. 2023, 48, 29497-517.

15. Yu, R.; Shao, R.; Ning, F.; et al. Electronic and geometric effects endow PtRh jagged nanowires with superior ethanol oxidation catalysis. Small 2024, 20, e2305817.

16. Wang, Q.; Zhu, R.; Deng, P.; et al. Rhodium decorated stable platinum nickel nanowires for effective ethanol oxidation reaction. Sci. China. Mater. 2023, 66, 679-85.

17. Gao, L.; Sun, T.; Chen, X.; et al. Identifying the distinct roles of dual dopants in stabilizing the platinum-nickel nanowire catalyst for durable fuel cell. Nat. Commun. 2024, 15, 508.

18. Zhao, X.; Takao, S.; Yoshida, Y.; et al. Roles of structural defects in polycrystalline platinum nanowires for enhanced oxygen reduction activity. Appl. Catal. B. Environ. 2023, 324, 122268.

19. Zhou, Z.; Zhang, H.; Feng, X.; Ma, Z.; Ma, Z.; Xue, Y. Progress of Pt and iron-group transition metal alloy catalysts with high ORR activity for PEMFCs. J. Electroanalytical. Chem. 2024, 959, 118165.

20. Liu, X.; Zhao, Z.; Liang, J.; et al. Inducing covalent atomic interaction in intermetallic Pt alloy nanocatalysts for high-performance fuel cells. Angew. Chem. Int. Ed. 2023, 62, e202302134.

21. Xia, T.; Zhao, K.; Zhu, Y.; et al. Mixed-dimensional Pt-Ni alloy polyhedral nanochains as bifunctional electrocatalysts for direct methanol fuel cells. Adv. Mater. 2023, 35, e2206508.

22. Nie, M.; Xu, Z.; Luo, L.; Wang, Y.; Gan, W.; Yuan, Q. One-pot synthesis of ultrafine trimetallic PtPdCu alloy nanoparticles decorated on carbon nanotubes for bifunctional catalysis of ethanol oxidation and oxygen reduction. J. Colloid. Interface. Sci. 2023, 643, 26-37.

23. Liu, Y.; Sheng, S.; Wu, M.; et al. Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol electrooxidation. ACS. Appl. Mater. Interfaces. 2023, 15, 3934-40.

24. Carvalho, L. L.; Tanaka, A. A.; Colmati, F. Palladium-platinum electrocatalysts for the ethanol oxidation reaction: comparison of electrochemical activities in acid and alkaline media. J. Solid. State. Electrochem. 2018, 22, 1471-81.

25. Qian, K.; Hao, F.; Wei, S.; et al. Synthesis of well-dispersed Pt-Pd nanoparticles stabilized by silsesquioxanes with enhanced catalytic activity for formic acid electrooxidation. J. Solid. State. Electrochem. 2017, 21, 297-304.

26. Luo, W.; Zhou, H.; Fu, C.; Huang, Z.; Gao, N.; Kuang, Y. Preparation and characterization of porous sponge-like Pd@Pt nanotubes with high catalytic activity for ethanol oxidation. Mater. Lett. 2016, 173, 43-6.

27. Zhang, Y.; Shu, G.; Shang, Z.; et al. Electronic and coordination effect of PtPd nanoflower alloys for the methanol electrooxidation reaction. ACS. Sustain. Chem. Eng. 2023, 11, 8958-67.

28. Li, B.; Zhang, H.; Kaelin, J.; et al. Carbon-supported and shape-controlled PtPd nanocrystal synthesis in flowing deep eutectic solvents for the methanol oxidation reaction. ACS. Appl. Nano. Mater. 2023, 6, 3184-90.

29. Ding, K.; Wang, Y.; Yang, H.; et al. Electrocatalytic activity of multi-walled carbon nanotubes-supported PtxPdy catalysts prepared by a pyrolysis process toward ethanol oxidation reaction. Electrochim. Acta. 2013, 100, 147-56.

30. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.

31. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B. Condens. Matter. 1994, 50, 17953-79.

32. Lee, Y.; Ko, A.; Kim, D.; Han, S.; Park, K. Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells. RSC. Adv. 2012, 2, 1119-25.

33. Bai, Z.; Luo, J.; Ming, D.; Wang, C.; Xu, H.; Ye, W. High active and durable N-doped carbon spheres-supported flowerlike PtPd nanoparticles for electrochemical oxidation of liquid alcohols. Electrochim. Acta. 2020, 356, 136794.

34. Ying, J.; Xiao, Y.; Chen, J.; et al. Fractal design of hierarchical PtPd with enhanced exposed surface atoms for highly catalytic activity and stability. Nano. Lett. 2023, 23, 7371-8.

35. Cheng, Y.; Shen, P. K.; Saunders, M.; Jiang, S. P. Core-shell structured PtRuCox nanoparticles on carbon nanotubes as highly active and durable electrocatalysts for direct methanol fuel cells. Electrochim. Acta. 2015, 177, 217-26.

36. Shao, C.; Cui, Y.; Zhang, L.; et al. Boosting propane purification on Pt/ZrOSO4 nanoflowers: insight into the roles of different sulfate species in synergy with Pt. Sep. Purif. Technol. 2023, 304, 122367.

37. Ho, V. T.; Pan, C. J.; Rick, J.; Su, W. N.; Hwang, B. J. Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: high-performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 11716-24.

38. Ando, F.; Gunji, T.; Tanabe, T.; et al. Enhancement of the oxygen reduction reaction activity of pt by tuning Its d-band center via transition metal oxide support interactions. ACS. Catal. 2021, 11, 9317-32.

39. Li, J.; Chen, Y.; Bai, R.; et al. Construction of Pd/Ni2P-Ni foam nanosheet array electrode by in-situ phosphatization-electrodeposition strategy for synergistic electrocatalytic hydrodechlorination. Chem. Eng. J. 2022, 435, 134932.

40. Chen, H.; Shuang, H.; Lin, W.; et al. Tuning interfacial electronic properties of palladium oxide on vacancy-abundant carbon nitride for low-temperature dehydrogenation. ACS. Catal. 2021, 11, 6193-9.

41. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732-5.

42. Xu, X.; Zhang, X.; Sun, H.; et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem. Int. Ed. 2014, 53, 12522-7.

43. Zhao, Z. L.; Wang, Q.; Du, H.; Liang, T.; An, H. M.; Li, C. M. Sub-15 nm Pd@PtCu concave octahedron with enriched atomic steps as enhanced oxygen reduction electrocatalyst. J. Power. Sources. 2019, 434, 226742.

44. Hu, S.; Li, X.; Ali, A.; Zhang, X.; Kang, S. P. Large-scale synthesis of porous Pt nanospheres/three-dimensional graphene hybrid materials as a highly active and stable electrocatalyst for oxygen reduction reaction. ChemistrySelect 2021, 6, 2080-4.

45. Wang, M.; Liu, X.; Wu, X. Realizing efficient electrochemical overall water electrolysis through hierarchical CoP@NiCo-LDH nanohybrids. Nano. Energy. 2023, 114, 108681.

46. Yang, Y.; Wang, Y.; He, H. L.; et al. Covalently connected Nb4N5-xOx-MoS2 heterocatalysts with desired electron density to boost hydrogen evolution. ACS. Nano. 2020, 14, 4925-37.

47. He, D.; Song, X.; Li, W.; et al. Active electron density modulation of Co3O4-based catalysts enhances their oxygen evolution performance. Angew. Chem. Int. Ed. 2020, 59, 6929-35.

48. Luo, S.; Zhang, L.; Liao, Y.; et al. A tensile-strained Pt-Rh single-atom alloy remarkably boosts ethanol oxidation. Adv. Mater. 2021, 33, e2008508.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/