REFERENCES

1. Armaroli, N.; Balzani, V. The future of energy supply: challenges and opportunities. Angew. Chem. Int. Ed. 2007, 46, 52-66.

2. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878-87.

3. Manthiram, A.; Vadivel, M. A.; Sarkar, A.; Muraliganth, T. Nanostructured electrode materials for electrochemical energy storage and conversion. Energy. Environ. Sci. 2008, 1, 621.

4. Wang, H.; Dai, H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088-113.

5. Luo, L. W.; Zhang, C.; Wu, X.; et al. A Zn-S aqueous primary battery with high energy and flat discharge plateau. Chem. Commun. 2021, 57, 9918-21.

6. Wang, W.; Yuan, B.; Sun, Q.; Wennersten, R. Application of energy storage in integrated energy systems - A solution to fluctuation and uncertainty of renewable energy. J. Energy. Storage. 2022, 52, 104812.

7. He, Q.; Ning, J.; Chen, H.; et al. Achievements, challenges, and perspectives in the design of polymer binders for advanced lithium-ion batteries. Chem. Soc. Rev. 2024, 53, 7091-157.

8. Tian, H.; Tian, H.; Wang, S.; et al. High-power lithium-selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode. Nat. Commun. 2020, 11, 5025.

9. Han, C.; Li, Z.; Li, W.; Chou, S.; Dou, S. Controlled synthesis of copper telluride nanostructures for long-cycling anodes in lithium ion batteries. J. Mater. Chem. A. 2014, 2, 11683.

10. Zhang, X.; Zhang, B.; Yang, J. L.; et al. High-sulfur loading and single ion-selective membranes for high-energy and durable decoupled aqueous batteries. Adv. Mater. 2024, 36, e2307298.

11. Ye, C.; Jiao, Y.; Chao, D.; et al. Electron-state confinement of polysulfides for highly stable sodium-sulfur batteries. Adv. Mater. 2020, 32, e1907557.

12. Chao, D.; Zhou, W.; Ye, C.; et al. An electrolytic Zn-MnO2 Battery for high-voltage and scalable energy storage. Angew. Chem. Int. Ed. 2019, 58, 7823-8.

13. Xu, C.; Li, B.; Du, H.; Kang, F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 2012, 124, 957-9.

14. Manalastas, W. J.; Kumar, S.; Verma, V.; Zhang, L.; Yuan, D.; Srinivasan, M. Water in rechargeable multivalent-ion batteries: an electrochemical pandora’s box. ChemSusChem 2019, 12, 379-96.

15. Zhang, J.; Zhou, Q.; Tang, Y.; Zhang, L.; Li, Y. Zinc-air batteries: are they ready for prime time? Chem. Sci. 2019, 10, 8924-9.

16. Wang, F.; Borodin, O.; Gao, T.; et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543-9.

17. Li, Q.; Chen, A.; Wang, D.; Pei, Z.; Zhi, C. “Soft shorts” hidden in zinc metal anode research. Joule 2022, 6, 273-9.

18. Ding, J.; Zheng, H.; Gao, H.; et al. In situ lattice tunnel distortion of vanadium trioxide for enhancing zinc ion storage. Adv. Energy. Mater. 2021, 11, 2100973.

19. Shahali, H.; Sellers, R.; Rafieerad, A.; Polycarpou, A. A.; Amiri, A. Progress and prospects of zinc-sulfur batteries. Energy. Storage. Mater. 2024, 65, 103130.

20. Xu, C.; Li, B.; Du, H.; Kang, F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 2012, 51, 933-5.

21. Deng, S.; Yuan, Z.; Tie, Z.; Wang, C.; Song, L.; Niu, Z. Electrochemically induced metal-organic-framework-derived amorphous V2O5 for superior rate aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2020, 59, 22002-6.

22. Luo, H.; Wang, B.; Wang, F.; et al. Anodic oxidation strategy toward structure-optimized V2O3 cathode via electrolyte regulation for Zn-ion storage. ACS. Nano. 2020, 14, 7328-37.

23. Zhu, K.; Wu, T.; Huang, K. A high-voltage activated high-erformance cathode for aqueous Zn-ion batteries. Energy. Storage. Mater. 2021, 38, 473-81.

24. Wang, S.; Yuan, Z.; Zhang, X.; et al. Non-metal ion co-insertion chemistry in aqueous Zn/MnO2 batteries. Angew. Chem. Int. Ed. 2021, 60, 7056-60.

25. Zeng, Y.; Zhang, X.; Meng, Y.; et al. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 2017, 29, 1700274.

26. Xiong, T.; Yu, Z. G.; Wu, H.; et al. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy. Mater. 2019, 9, 1803815.

27. Ma, L.; Chen, S.; Long, C.; et al. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy. Mater. 2019, 9, 1902446.

28. Pan, W.; Wang, Y.; Zhao, X.; et al. High-performance aqueous Na-Zn hybrid ion battery boosted by “water-in-gel” electrolyte. Adv. Funct. Mater. 2021, 31, 2008783.

29. Zou, Y.; Liu, T.; Du, Q.; et al. A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 2021, 12, 170.

30. Zhang, S. J.; Hao, J.; Wu, H.; Chen, Q.; Ye, C.; Qiao, S. Z. Protein interfacial gelation toward shuttle-free and dendrite-free Zn-iodine batteries. Adv. Mater. 2024, 36, e2404011.

31. Wang, C.; Ji, X.; Liang, J.; et al. Activating and stabilizing a reversible four electron redox reaction of I-/I+ for aqueous Zn-iodine battery. Angew. Chem. Int. Ed. 2024, 63, e202403187.

32. Hu, T.; Zhao, Y.; Yang, Y.; et al. Development of inverse-opal-structured charge-deficient Co9S8@nitrogen-doped-carbon to catalytically enable high energy and high power for the two-electron transfer I-/I+ electrode. Adv. Mater. 2024, 36, e2312246.

33. Wang, W.; Kale, V. S.; Cao, Z.; et al. Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 2021, 33, e2103617.

34. Zhao, Q.; Huang, W.; Luo, Z.; et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 2018, 4, eaao1761.

35. Ning, J.; Zhang, X.; Xie, D.; et al. Unveiling phenoxazine’s unique reversible two-electron transfer process and stable redox intermediates for high-performance aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 2024, 63, e202319796.

36. Chang, G.; Liu, J.; Hao, Y.; et al. Bifunctional electrolyte additive with redox mediation and capacity contribution for sulfur cathode in aqueous Zn-S batteries. Chem. Eng. J. 2023, 457, 141083.

37. Li, Y.; Wang, Z.; Cai, Y.; et al. Designing advanced aqueous zinc-ion batteries: principles, strategies, and perspectives. Energy. Environ. Mater. 2022, 5, 823-51.

38. Ning, J.; Yu, H.; Mei, S.; et al. Constructing binder- and carbon additive-free organosulfur cathodes based on conducting thiol-polymers through electropolymerization for lithium-sulfur batteries. ChemSusChem 2022, 15, e202200434.

39. Yang, G.; Wu, Y.; Lv, Z.; et al. Keggin-type polyoxometalate-based crown ether complex for lithium-sulfur batteries. Chem. Commun. 2023, 59, 788-91.

40. Ma, Z.; Gu, J.; Jiang, X.; et al. [Mo3S13]2- as bidirectional cluster catalysts for high-performance Li-S batteries. Catal. Sci. Technol. 2022, 12, 3431-5.

41. Du, M.; Geng, P.; Pei, C.; et al. High-entropy Prussian blue analogues and their oxide family as sulfur hosts for lithium-sulfur batteries. Angew. Chem. Int. Ed. 2022, 61, e202209350.

42. Zhao, Y.; Wang, D.; Li, X.; et al. Initiating a reversible aqueous Zn/sulfur battery through a “liquid film”. Adv. Mater. 2020, 32, e2003070.

43. Li, W.; Wang, K.; Jiang, K. A low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci. 2020, 7, 2000761.

44. Chen, Z.; Huang, Z.; Zhu, J.; et al. Highly reversible positive-valence conversion of sulfur chemistry for high-voltage zinc-sulfur batteries. Adv. Mater. 2024, 36, e2402898.

45. Sun, Q.; Guo, Z.; Shu, T.; et al. Lithium-induced oxygen vacancies in MnO2@MXene for high-performance zinc-air batteries. ACS. Appl. Mater. Interfaces. 2024, 16, 12781-92.

46. Zhong, Y.; Xu, X.; Liu, P.; et al. A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy. Mater. 2020, 10, 2002992.

47. Patel, D.; Sharma, A. K. Minireview on aqueous zinc-sulfur batteries: recent advances and future perspectives. Energy. Fuels. 2023, 37, 10897-914.

48. Licht, S. Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides. J. Electrochem. Soc. 1988, 135, 2971-5.

49. Yang, M.; Yan, Z.; Xiao, J.; et al. Boosting Cathode activity and anode stability of Zn-S batteries in aqueous media through cosolvent-catalyst synergy. Angew. Chem. Int. Ed. 2022, 61, e202212666.

50. Liu, J.; Zhou, W.; Zhao, R.; et al. Sulfur-based aqueous batteries: electrochemistry and strategies. J. Am. Chem. Soc. 2021, 143, 15475-89.

51. Wu, X.; Markir, A.; Xu, Y.; et al. Rechargeable iron-sulfur battery without polysulfide shuttling. Adv. Energy. Mater. 2019, 9, 1902422.

52. Zhang, H.; Shang, Z.; Luo, G.; et al. Redox catalysis promoted activation of sulfur redox chemistry for energy-dense flexible solid-state Zn-S battery. ACS. Nano. 2022, 16, 7344-51.

53. Liu, D.; He, B.; Zhong, Y.; et al. A durable ZnS cathode for aqueous Zn-S batteries. Nano. Energy. 2022, 101, 107474.

54. Sonigara, K. K.; Vaghasiya, J. V.; Mayorga-Martinez, C. C.; Pumera, M. Flexible aqueous Zn-S battery based on an S-decorated Ti3C2Tx cathode. NPJ. 2D. Mater. Appl. 2023, 7, 411.

55. Menzel, J.; Slesinski, A.; Galek, P.; et al. Operando monitoring of activated carbon electrodes operating with aqueous electrolytes. Energy. Storage. Mater. 2022, 49, 518-28.

56. Zampardi, G.; La, M. F. Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 2022, 13, 687.

57. Xin, W.; Miao, L.; Zhang, L.; Peng, H.; Yan, Z.; Zhu, Z. Turning the byproduct Zn4(OH)6SO4·xH2O into a uniform solid electrolyte interphase to stabilize aqueous Zn anode. ACS. Mater. Lett. 2021, 3, 1819-25.

58. Zhang, L.; Miao, L.; Xin, W.; Peng, H.; Yan, Z.; Zhu, Z. Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy. Stor. Mater. 2022, 44, 408-15.

59. Feng, C.; Jiang, X.; Zhou, Q.; et al. Recent advances in aqueous zinc-sulfur batteries: overcoming challenges for sustainable energy storage. J. Mater. Chem. A. 2023, 11, 18029-45.

60. Li, W.; Jing, X.; Ma, Y.; et al. Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery. Chem. Eng. J. 2021, 420, 129920.

61. Cui, M.; Fei, J.; Mo, F.; Lei, H.; Huang, Y. Ultra-high-capacity and dendrite-free zinc-sulfur conversion batteries based on a low-cost deep eutectic solvent. ACS. Appl. Mater. Interfaces. 2021, 13, 54981-9.

62. Zhou, T.; Wan, H.; Liu, M.; Wu, Q.; Fan, Z.; Zhu, Y. Regulating uniform nucleation of ZnS enables low-polarized and high stable aqueous Zn-S batteries. Mater. Today. Energy. 2022, 27, 101025.

63. Xu, Z.; Zhang, Y.; Gou, W.; et al. The key role of concentrated Zn(OTF)2 electrolyte in the performance of aqueous Zn-S batteries. Chem. Commun. 2022, 58, 8145-8.

64. Zhang, W.; Wang, M.; Ma, J.; et al. Bidirectional atomic iron catalysis of sulfur redox conversion in high-energy flexible Zn-S battery. Adv. Funct. Mater. 2023, 33, 2210899.

65. Guo, Y.; Chua, R.; Chen, Y.; et al. Hybrid electrolyte design for high-performance zinc-sulfur battery. Small 2023, 19, e2207133.

66. Liu, M.; Zhang, Y.; Xu, Z.; et al. Highly microporous carbon from enteromorpha for high-performance aqueous zinc-chalcogen (S, SeS2) batteries. Batteries. Supercaps. 2023, 6, e202300145.

67. Cai, P.; Sun, W.; Chen, J.; Chen, K.; Lu, Z.; Wen, Z. High-energy density aqueous alkali/acid hybrid Zn-S battery. Adv. Energy. Mater. 2023, 13, 2301279.

68. Wang, K.; Wang, J.; Zhang, Z.; Zhang, W.; Fu, F.; Du, Y. Pitch-derived 3D amorphous carbon encapsulated sulfur-rich cathode for aqueous Zn-S batteries. Sci. China. Chem. 2023, 66, 2711-8.

69. Wu, W.; Wang, S.; Lin, L.; Shi, H.; Sun, X. A dual-mediator for a sulfur cathode approaching theoretical capacity with low overpotential in aqueous Zn-S batteries. Energy. Environ. Sci. 2023, 16, 4326-33.

70. Patel, D.; Dharmesh, A.; Sharma, Y.; Rani, P.; Sharma, A. K. Hybrid electrolyte with biomass-derived carbon host for high-performance aqueous Zn-S battery. Chem. Eng. J. 2024, 479, 147722.

71. Amiri, A.; Sellers, R.; Naraghi, M.; Polycarpou, A. A. Multifunctional quasi-solid-state zinc-sulfur battery. ACS. Nano. 2023, 17, 1217-28.

72. Hei, P.; Sai, Y.; Liu, C.; et al. Facilitating the electrochemical oxidation of ZnS through iodide catalysis for aqueous zinc-sulfur batteries. Angew. Chem. Int. Ed. 2024, 63, e202316082.

73. Zhang, Y.; Amardeep, A.; Wu, Z.; et al. A tellurium-boosted high-areal-capacity zinc-sulfur battery. Adv. Sci. 2024, 11, e2308580.

74. Wang, M.; Zhang, H.; Ding, T.; et al. Simultaneous acceleration of sulfur reduction and oxidation on bifunctional electrocatalytic electrodes for quasi-solid-state Zn-S batteries. Sci. China. Chem. 2024, 67, 1531-8.

75. Zhao, S.; Wu, X.; Zhang, J.; et al. Biomass-derived porous carbon with single-atomic cobalt toward high-performance aqueous zinc-sulfur batteries at room temperature. J. Energy. Chem. 2024, 95, 325-35.

76. Mehta, S.; Kaur, S.; Singh, M.; et al. Unleashing ultrahigh capacity and lasting stability: aqueous zinc-sulfur batteries. Adv. Energy. Mater. 2024, 14, 2401515.

77. Ren, Y.; Li, J.; Zhang, Y.; Huang, Y.; Li, Z. Trace selenium doping for improving the reaction kinetics of ZnS cathode for aqueous Zn-S batteries. Small 2024, 20, e2402466.

78. Li, J.; Cong, J.; Ren, Y.; Ji, H.; Li, Z.; Huang, Y. Constructing a raincoat-like protective layer on sulfur cathode for aqueous Zn-S batteries. Energy. Storage. Mater. 2024, 70, 103541.

79. Chai, J.; Du, J.; Li, Q.; Han, N.; Zhang, W.; Tang, B. Recent breakthroughs in the bottleneck of cathode materials for Li-S batteries. Energy. Fuels. 2021, 35, 15455-71.

80. Eftekhari, A.; Kim, D. W. Cathode materials for lithium-sulfur batteries: a practical perspective. J. Mater. Chem. A. 2017, 5, 17734-76.

81. Shao, J.; Li, X.; Zhang, L.; Qu, Q.; Zheng, H. Core-shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries. Nanoscale 2013, 5, 1460-4.

82. Zhang, Y.; Zhang, P.; Zhang, S.; et al. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries. InfoMat 2021, 3, 790-803.

83. Wang, T.; Zhang, Q.; Zhong, J.; et al. 3D holey graphene/polyacrylonitrile sulfur composite architecture for high loading lithium sulfur batteries. Adv. Energy. Mater. 2021, 11, 2100448.

84. Mu, Y.; Li, Z.; Wu, B. K.; et al. 3D hierarchical graphene matrices enable stable Zn anodes for aqueous Zn batteries. Nat. Commun. 2023, 14, 4205.

85. Liu, P.; Wang, Y.; Liu, J. Biomass-derived porous carbon materials for advanced lithium sulfur batteries. J. Energy. Chem. 2019, 34, 171-85.

86. Gopalakrishnan, A.; Badhulika, S. Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. J. Power. Sources. 2020, 480, 228830.

87. Zhang, G.; Liu, X.; Wang, L.; Fu, H. Recent advances of biomass derived carbon-based materials for efficient electrochemical energy devices. J. Mater. Chem. A. 2022, 10, 9277-307.

88. Seh, Z. W.; Sun, Y.; Zhang, Q.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605-34.

89. Zhang, J.; Wu, Y.; Xing, Y.; Li, Y.; Li, T.; Ren, B. A review of cathode for lithium-sulfur batteries: progress and prospects. J. Porous. Mater. 2023, 30, 1807-19.

90. Zhang, Y.; Liu, J. Materials design and mechanistic understanding of tellurium and tellurium-sulfur cathodes for rechargeable batteries. ACC. Chem. Res. 2024, 57, 2500-11.

91. Lu, K.; Zhang, H.; Gao, S.; Ma, H.; Chen, J.; Cheng, Y. Manipulating polysulfide conversion with strongly coupled Fe3O4 and nitrogen doped carbon for stable and high capacity lithium-sulfur batteries. Adv. Funct. Mater. 2019, 29, 1807309.

92. Zhou, G.; Tian, H.; Jin, Y.; et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA. 2017, 114, 840-5.

93. Tian, H.; Song, A.; Tian, H.; et al. Single-atom catalysts for high-energy rechargeable batteries. Chem. Sci. 2021, 12, 7656-76.

94. Guerfi, A.; Dontigny, M.; Charest, P.; et al. Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J. Power. Sources. 2010, 195, 845-52.

95. Sui, Y.; Ji, X. Electrolyte interphases in aqueous batteries. Angew. Chem. Int. Ed. 2024, 63, e202312585.

96. Yu, X.; Chen, M.; Li, Z.; et al. Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 2024, 146, 17103-13.

97. Zou, Y.; Yang, X.; Shen, L.; et al. Emerging strategies for steering orientational deposition toward high-performance Zn metal anodes. Energy. Environ. Sci. 2022, 15, 5017-38.

98. Shi, J.; Sun, T.; Bao, J.; et al. “Water-in-deep eutectic solvent” electrolytes for high-performance aqueous Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2102035.

99. Wang, D.; Li, Q.; Zhao, Y.; et al. Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy. Mater. 2022, 12, 2102707.

100. Li, X.; Binnemans, K. Oxidative dissolution of metals in organic solvents. Chem. Rev. 2021, 121, 4506-30.

101. Wu, S. C.; Ai, Y.; Chen, Y. Z.; et al. High-performance rechargeable aluminum-selenium battery with a new deep eutectic solvent electrolyte: thiourea-AlCl3. ACS. Appl. Mater. Interfaces. 2020, 12, 27064-73.

102. Xie, X.; Zou, X.; Lu, X.; et al. Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent. Appl. Surf. Sci. 2016, 385, 481-9.

103. Huang, J.; Chi, X.; Du, Y.; Qiu, Q.; Liu, Y. Ultrastable zinc anodes enabled by anti-dehydration ionic liquid polymer electrolyte for aqueous Zn batteries. ACS. Appl. Mater. Interfaces. 2021, 13, 4008-16.

104. Ruan, P.; Liang, S.; Lu, B.; Fan, H. J.; Zhou, J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 2022, 61, e202200598.

105. He, Z.; Hui, Y.; Yang, Y.; et al. Electrode and electrolyte co-energy-storage electrochemistry enables high-energy Zn-S decoupled batteries. Small 2024, 20, e2402325.

106. Amiri, A.; Bashandeh, K.; Sellers, R.; Vaught, L.; Naraghi, M.; Polycarpou, A. A. Fully integrated design of a stretchable kirigami-inspired micro-sized zinc-sulfur battery. J. Mater. Chem. A. 2023, 11, 10788-97.

107. Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/