REFERENCES

1. Han L, Wu Y, Fang K, et al. The splanchnic mesenchyme is the tissue of origin for pancreatic fibroblasts during homeostasis and tumorigenesis. Nat Commun 2023;14:1.

2. Hou D, Xia D, Gabriel E, et al. Spatial and temporal analysis of sodium-ion batteries. ACS Energy Lett 2021;6:4023-54.

3. Xiong P, Lin C, Wei Y, et al. Charge-transfer complex-based artificial layers for stable and efficient Zn metal anodes. ACS Energy Lett 2023;8:2718-27.

4. Xiao D, Lv X, Fan J, Li Q, Chen Z. Zn-based batteries for energy storage. Energy Mater 2023;3:300007.

5. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater 2011;11:19-29.

6. Xia X, Zhao Y, Zhao Y, Xu M, Liu W, Sun X. Mo doping provokes two electron reaction in MnO2 with ultrahigh capacity for aqueous zinc ion batteries. Nano Res 2023;16:2511-8.

7. Zhong Y, Xu X, Veder JP, Shao Z. Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries. iScience 2020;23:100943.

8. Liu Y, Wang K, Yang X, Liu J, Liu XX, Sun X. Enhancing two-electron reaction contribution in MnO2 cathode material by structural engineering for stable cycling in aqueous Zn batteries. ACS Nano 2023;17:14792-9.

9. Zhao Y, Xia X, Li Q, et al. Activating the redox chemistry of MnO2/Mn2+ in aqueous Zn batteries based on multi-ions doping regulation. Energy Storage Mater 2024;67:103268.

10. Ma Y, Xu M, Liu R, et al. Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability. Energy Storage Mater 2022;48:212-22.

11. Wan F, Huang S, Cao H, Niu Z. Freestanding potassium vanadate/carbon nanotube films for ultralong-life aqueous zinc-ion batteries. ACS Nano 2020;14:6752-60.

12. Guo J, He B, Gong W, et al. Emerging amorphous to crystalline conversion chemistry in Ca-Doped VO2 cathodes for high-capacity and long-term wearable aqueous zinc-ion batteries. Adv Mater 2024;36:e2303906.

13. Song Z, Zhao Y, Zhou A, et al. Organic intercalation induced kinetic enhancement of vanadium oxide cathodes for ultrahigh-loading aqueous zinc-ion batteries. Small 2024;20:e2305030.

14. Wang W, Yang C, Chi X, Liu J, Wen B, Liu Y. Ultralow-water-activity electrolyte endows vanadium-based zinc-ion batteries with durable lifespan exceeding 30 000 cycles. Energy Storage Mater 2022;53:774-82.

15. Zou Y, Liu T, Du Q, et al. A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat Commun 2021;12:170.

16. Liu H, Chen CY, Yang H, et al. A zinc-dual-halogen battery with a molten hydrate electrolyte. Adv Mater 2020;32:e2004553.

17. Chen Z, Hou Y, Wang Y, et al. Selenium-anchored chlorine redox chemistry in aqueous zinc dual-ion batteries. Adv Mater 2024;36:e2309330.

18. Wang C, Lai Q, Xu P, Zheng D, Li X, Zhang H. Cage-like porous carbon with superhigh activity and Br2-complex-entrapping capability for bromine-based flow batteries. Adv Mater 2017;29:1605815.

19. Zhang SJ, Hao J, Li H, et al. Polyiodide confinement by starch enables shuttle-free Zn-iodine batteries. Adv Mater 2022;34:e2201716.

20. Peng C, Ning G, Su J, et al. Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat Energy 2017;2:17074.

21. Zhao Y, Huang Y, Chen R, Wu F, Li L. Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn-organic batteries. Mater Horiz 2021;8:3124-32.

22. Ye F, Liu Q, Dong H, et al. Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew Chem Int Ed 2022;61:e202214244.

23. Lu Y, Cai Y, Zhang Q, Chen J. Structure-performance relationships of covalent organic framework electrode materials in metal-ion batteries. J Phys Chem Lett 2021;12:8061-71.

24. Kumankuma-Sarpong J, Tang S, Guo W, Fu Y. Naphthoquinone-based composite cathodes for aqueous rechargeable zinc-ion batteries. ACS Appl Mater Interfaces 2021;13:4084-92.

25. Li Q, Zhao Y, Wang Y, Khasraw AK, Zhao Y, Sun X. Rational design of nanostructured MnO2 cathode for high-performance aqueous zinc ion batteries. Chem Res Chin Univ 2023;39:599-611.

26. Zhao Y, Zhang P, Liang J, et al. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater 2022;47:424-33.

27. Dai H, Zhou R, Zhang Z, Zhou J, Sun G. Design of manganese dioxide for supercapacitors and zinc-ion batteries: similarities and differences. Energy Mater 2022;2:200040.

28. Dong H, Li J, Guo J, et al. Insights on flexible zinc-ion batteries from lab research to commercialization. Adv Mater 2021;33:e2007548.

29. Wang M, Tang Y. A review on the features and progress of dual-ion batteries. Adv Energy Mater 2018;8:1703320.

30. Wang S, Hu N, Huang Y, Deng W. Charge-transfer complex promotes energy storage performance of single-moiety organic electrode materials in aqueous zinc-ion battery at low temperatures. Appl Surf Sci 2023;619:156725.

31. Xiong P, Kang Y, Yao N, et al. Zn-ion transporting, in situ formed robust solid electrolyte interphase for stable zinc metal anodes over a wide temperature range. ACS Energy Lett 2023;8:1613-25.

32. Wang M, Zheng X, Zhang X, et al. Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry. Adv Energy Mater 2021;11:2002904.

33. Ruan P, Liang S, Lu B, Fan HJ, Zhou J. Design strategies for high-energy-density aqueous zinc batteries. Angew Chem Int Ed 2022;61:e202200598.

34. Li Y, Liu L, Lu Y, et al. High-energy-density quinone-based electrodes with [Al(OTF)] 2+ storage mechanism for rechargeable aqueous aluminum batteries. Adv Funct Mater 2021;31:2102063.

35. Xu Y, Xu X, Guo M, Zhang G, Wang Y. Research progresses and challenges of flexible zinc battery. Front Chem 2022;10:827563.

36. Chen H, Wang C, Dai Y, et al. Rational design of cathode structure for high rate performance lithium-sulfur batteries. Nano Lett 2015;15:5443-8.

37. Xu Y, Xie C, Li T, Li X. A high energy density bromine-based flow battery with two-electron transfer. ACS Energy Lett 2022;7:1034-9.

38. Ge G, Zhang C, Li X. Multi-electron transfer electrode materials for high-energy-density flow batteries. Next Energy 2023;1:100043.

39. Zhao Y, Wang Y, Zhao Z, et al. Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode. Energy Storage Mater 2020;28:64-72.

40. Huang YX, Wu F, Chen RJ. Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. Natl Sci Rev 2020;7:1367-86.

41. Gao X, Yang H. Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 2010;3:174-89.

42. Chen R, Luo R, Huang Y, Wu F, Li L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci 2016;3:1600051.

43. Whittingham MS, Siu C, Ding J. Can multielectron intercalation reactions be the basis of next generation batteries? ACC Chem Res 2018;51:258-64.

44. Guo RQ, Wu F, Wang XR, Wu C, Bai Y. Multi-electron reaction-boosted high energy density batteries: material and system innovation. J Electrochem 2022;28:2219011.

45. Chen W, Li G, Pei A, et al. A manganese-hydrogen battery with potential for grid-scale energy storage. Nat Energy 2018;3:428-35.

46. Chao D, Zhou W, Ye C, et al. An electrolytic Zn-MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed 2019;58:7823-8.

47. Pan H, Shao Y, Yan P, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 2016;1:16039.

48. Xie C, Li T, Deng C, Song Y, Zhang H, Li X. A highly reversible neutral zinc/manganese battery for stationary energy storage. Energy Environ Sci 2020;13:135-43.

49. Fu Y, Wei Q, Zhang G, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv Energy Mater 2018;8:1801445.

50. Radha AV, Forbes TZ, Killian CE, Gilbert PU, Navrotsky A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc Natl Acad Sci USA 2010;107:16438-43.

51. Huang J, Zeng J, Zhu K, Zhang R, Liu J. High-performance aqueous zinc-manganese battery with reversible Mn2+/Mn4+ double redox achieved by carbon coated MnOx nanoparticles. Nanomicro Lett 2020;12:110.

52. Moon H, Ha KH, Park Y, et al. Direct proof of the reversible dissolution/deposition of Mn2+/Mn4+ for mild-acid Zn-MnO2 batteries with porous carbon interlayers. Adv Sci 2021;8:2003714.

53. Yang H, Zhang T, Chen D, et al. Protocol in evaluating capacity of Zn-Mn aqueous batteries: a clue of pH. Adv Mater 2023;35:e2300053.

54. Yang H, Zhou W, Chen D, et al. The origin of capacity fluctuation and rescue of dead Mn-based Zn-ion batteries: a Mn-based competitive capacity evolution protocol. Energy Environ Sci 2022;15:1106-18.

55. Xu Y, Huang W, Liu J, et al. Promoting the reversibility of electrolytic MnO2 -Zn battery with high areal capacity by VOSO4 mediator. Energy Mater 2024;4:400005.

56. Ma D, Zhao H, Cao F, et al. A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chem Sci 2022;13:2385-90.

57. Rubio-garcia J, Kucernak A, Zhao D, et al. Hydrogen/manganese hybrid redox flow battery. J Phys Energy 2019;1:015006.

58. Liu Z, Yang Y, Lu B, Liang S, Fan HJ, Zhou J. Insights into complexing effects in acetate-based Zn-MnO2 batteries and performance enhancement by all-round strategies. Energy Storage Mater 2022;52:104-10.

59. Ye X, Han D, Jiang G, et al. Unraveling the deposition/dissolution chemistry of MnO2 for high-energy aqueous batteries. Energy Environ Sci 2023;16:1016-23.

60. Wu J, Huang J, Chi X, Yang J, Liu Y. Mn2+/I- hybrid cathode with superior conversion efficiency for ultrahigh-areal-capacity aqueous zinc batteries. ACS Appl Mater Interfaces 2022;14:53627-35.

61. Lei J, Yao Y, Wang Z, Lu Y. Towards high-areal-capacity aqueous zinc-manganese batteries: promoting MnO2 dissolution by redox mediators. Energy Environ Sci 2021;14:4418-26.

62. Chuai M, Yang J, Wang M, et al. High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 2021;1:178-85.

63. Li G, Chen W, Zhang H, et al. Membrane-free Zn/MnO2 flow battery for large-scale energy storage. Adv Energy Mater 2020;10:1902085.

64. Tang H, Yin Y, Huang Y, et al. Battery-everywhere design based on a cathodeless configuration with high sustainability and energy density. ACS Energy Lett 2021;6:1859-68.

65. Alfaruqi MH, Mathew V, Gim J, et al. Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem Mater 2015;27:3609-20.

66. Lee B, Seo HR, Lee HR, et al. Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. ChemSusChem 2016;9:2948-56.

67. Liu W, Zhang X, Huang Y, et al. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery. J Energy Chem 2021;56:365-73.

68. Fitz O, Bischoff C, Bauer M, et al. Electrolyte study with in operando pH tracking providing insight into the reaction mechanism of aqueous acidic Zn/MnO2 batteries. ChemElectroChem 2021;8:3553-66.

69. Wu D, Housel LM, Kim SJ, et al. Quantitative temporally and spatially resolved X-ray fluorescence microprobe characterization of the manganese dissolution-deposition mechanism in aqueous Zn/α-MnO2 batteries. Energy Environ Sci 2020;13:4322-33.

70. Kim SJ, Wu D, Sadique N, et al. Unraveling the dissolution-mediated reaction mechanism of α-MnO2 cathodes for aqueous Zn-ion batteries. Small 2020;16:e2005406.

71. Chen H, Dai C, Xiao F, et al. Reunderstanding the reaction mechanism of aqueous Zn-Mn batteries with sulfate electrolytes: role of the zinc sulfate hydroxide. Adv Mater 2022;34:e2109092.

72. Guo S, Liang S, Zhang B, Fang G, Ma D, Zhou J. Cathode interfacial layer formation via in situ electrochemically charging in aqueous zinc-ion battery. ACS Nano 2019;13:13456-64.

73. Jiang W, Zhu K, Yang W. Critical issues of vanadium-based cathodes towards practical aqueous Zn-ion batteries. Chemistry 2023;29:e202301769.

74. Hu Z, Miao Z, Xu Z, et al. Carbon felt electrode modified by lotus seed shells for high-performance vanadium redox flow battery. Chem Eng J 2022;450:138377.

75. Jiang H, Chen GF, Hai G, et al. A nitrogen battery electrode involving eight-electron transfer per nitrogen for energy storage. Angew Chem Int Ed 2023;62:e202305695.

76. Venkatkarthick R, Rodthongkum N, Zhang X, et al. Vanadium-based oxide on two-dimensional vanadium carbide MXene (V2Ox@V2CTx) as cathode for rechargeable aqueous zinc-ion batteries. ACS Appl Energy Mater 2020;3:4677-89.

77. Zhu X, Wang W, Cao Z, et al. Zn2+-intercalated V2O5·nH2O derived from V2CTx MXene for hyper-stable zinc-ion storage. J Mater Chem A 2021;9:17994-8005.

78. Wu S, Liu S, Hu L, Chen S. Constructing electron pathways by graphene oxide for V2O5 nanoparticles in ultrahigh-performance and fast charging aqueous zinc ion batteries. J Alloys Compd 2021;878:160324.

79. Wang X, Li Y, Das P, Zheng S, Zhou F, Wu Z. Layer-by-layer stacked amorphous V2O5/Graphene 2D heterostructures with strong-coupling effect for high-capacity aqueous zinc-ion batteries with ultra-long cycle life. Energy Storage Mater 2020;31:156-63.

80. Cui F, Wang D, Hu F, et al. Deficiency and surface engineering boosting electronic and ionic kinetics in NH4V4O10 for high-performance aqueous zinc-ion battery. Energy Storage Mater 2022;44:197-205.

81. Narayanasamy M, Hu L, Kirubasankar B, Liu Z, Angaiah S, Yan C. Nanohybrid engineering of the vertically confined marigold structure of rGO-VSe2 as an advanced cathode material for aqueous zinc-ion battery. J Alloys Compd 2021;882:160704.

82. Deka Boruah B, Mathieson A, Park SK, et al. Vanadium dioxide cathodes for high-rate photo-rechargeable zinc-ion batteries. Adv Energy Mater 2021;11:2100115.

83. Kong D, Li X, Zhang Y, et al. Encapsulating V2O5 into carbon nanotubes enables the synthesis of flexible high-performance lithium ion batteries. Energy Environ Sci 2016;9:906-11.

84. Wan F, Niu Z. Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed 2019;58:16358-67.

85. Guo C, Yi S, Si R, et al. Advances on defect engineering of vanadium-based compounds for high-energy aqueous zinc-ion batteries. Adv Energy Mater 2022;12:2202039.

86. Deng S, Jiang Y, Huang D, et al. Driving intercalation kinetic through hydrated Na+ insertion in V2O5 for high rate performance aqueous zinc ion batteries. J Alloys Compd 2022;891:161946.

87. Ma X, Cao X, Yao M, et al. Organic-inorganic hybrid cathode with dual energy-storage mechanism for ultrahigh-rate and ultralong-life aqueous zinc-ion batteries. Adv Mater 2022;34:e2105452.

88. Islam S, Alfaruqi MH, Putro DY, et al. K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. J Mater Chem A 2019;7:20335-47.

89. Sambandam B, Soundharrajan V, Kim S, et al. K2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J Mater Chem A 2018;6:15530-9.

90. He P, Quan Y, Xu X, et al. High-performance aqueous zinc-ion battery based on layered H2V3O8 nanowire cathode. Small 2017;13:1702551.

91. Peng B, Zhang H, Shao H, et al. Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene. J Mater Chem A 2018;6:2018-33.

92. Wang X, Zhang Z, Xiong S, et al. A high-rate and ultrastable aqueous zinc-ion battery with a novel MgV2O6·1.7H2O nanobelt cathode. Small 2021;17:e2100318.

93. Yang Y, Guo S, Pan Y, Lu B, Liang S, Zhou J. Dual mechanism of ion (de)intercalation and iodine redox towards advanced zinc batteries. Energy Environ Sci 2023;16:2358-67.

94. Liang G, Liang B, Chen A, et al. Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction. Nat Commun 2023;14:1856.

95. Wang H, Chen S, Fu C, et al. Recent advances in conversion-type electrode materials for post lithium-ion batteries. ACS Mater Lett 2021;3:956-77.

96. Kang J, Zhao Z, Li H, Meng Y, Hu B, Lu H. An overview of aqueous zinc-ion batteries based on conversion-type cathodes. Energy Mater 2022;2:200009.

97. Kralik D, Jorne J. Hydrogen evolution and zinc nodular growth in the zinc chloride battery. J Electrochem Soc 1980;127:2335-40.

98. Gao L, Li Z, Zou Y, et al. A high-performance aqueous zinc-bromine static battery. iScience 2020;23:101348.

99. Li Y, Liu L, Li H, Cheng F, Chen J. Rechargeable aqueous zinc-iodine batteries: pore confining mechanism and flexible device application. Chem Commun 2018;54:6792-5.

100. Ma W, Liu T, Xu C, et al. A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution. Nat Commun 2023;14:5508.

101. Darling RM, Gallagher KG, Kowalski JA, Ha S, Brushett FR. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ Sci 2014;7:3459-77.

102. Biswas S, Senju A, Mohr R, et al. Minimal architecture zinc-bromine battery for low cost electrochemical energy storage. Energy Environ Sci 2017;10:114-20.

103. Zhu G, Tian X, Tai HC, et al. Rechargeable Na/Cl2 and Li/Cl2 batteries. Nature 2021;596:525-30.

104. Yang C, Chen J, Ji X, et al. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature 2019;569:245-50.

105. Kim JT, Jorné J. The kinetics of a chlorine graphite electrode in the zinc-chlorine battery. J Electrochem Soc 1977;124:1473-7.

106. Fan X, Huang K, Chen L, et al. High power- and energy-density supercapacitors through the chlorine respiration mechanism. Angew Chem Int Ed 2023;62:e202215342.

107. Holleck GL. The reduction of chlorine on carbon in AlCl3-KCl-NaCl melts. J Electrochem Soc 1972;119:1158.

108. Chen N, Wang W, Ma Y, et al. Aqueous zinc-chlorine battery modulated by a MnO2 redox adsorbent. Small Methods 2023:e2201553.

109. Lin D, Li Y. Recent advances of aqueous rechargeable zinc-iodine batteries: challenges, solutions, and prospects. Adv Mater 2022;34:e2108856.

110. Eustace DJ. Bromine complexation in zinc-bromine circulating batteries. J Electrochem Soc 1980;127:528-32.

111. Jameson A, Gyenge E. Halogens as positive electrode active species for flow batteries and regenerative fuel cells. Electrochem Energ Rev 2020;3:431-65.

112. Pei Z, Zhu Z, Sun D, et al. Review of the I-/I3- redox chemistry in Zn-iodine redox flow batteries. Mater Res Bull 2021;141:111347.

113. Miao L, Guo Z, Jiao L. Insights into the design of mildly acidic aqueous electrolytes for improved stability of Zn anode performance in zinc-ion batteries. Energy Mater 2023;3:300014.

114. Yin Y, Yuan Z, Li X. Rechargeable aqueous zinc-bromine batteries: an overview and future perspectives. Phys Chem Chem Phys 2021;23:26070-84.

115. Mahmood A, Zheng Z, Chen Y. Zinc-bromine batteries: challenges, prospective solutions, and future. Adv Sci 2024;11:e2305561.

116. Xiang HX, Tan AD, Piao JH, Fu ZY, Liang ZX. Efficient nitrogen-doped carbon for zinc-bromine flow battery. Small 2019;15:e1901848.

117. Wang C, Li X, Xi X, Xu P, Lai Q, Zhang H. Relationship between activity and structure of carbon materials for Br2/Br- in zinc bromine flow batteries. RSC Adv 2016;6:40169-74.

118. Suresh S, Ulaganathan M, Venkatesan N, Periasamy P, Ragupathy P. High performance zinc-bromine redox flow batteries: role of various carbon felts and cell configurations. J Energy Storage 2018;20:134-9.

119. Suresh S, Ulaganathan M, Aswathy R, Ragupathy P. Enhancement of bromine reversibility using chemically modified electrodes and their applications in zinc bromine hybrid redox flow batteries. ChemElectroChem 2018;5:3411-8.

120. Xu C, Lei C, Jiang P, et al. Practical high-energy aqueous zinc-bromine static batteries enabled by synergistic exclusion-complexation chemistry. Joule 2024;8:461-81.

121. Park H, Bera RK, Ryoo R. Microporous 3D graphene-like carbon as iodine host for zinc-based battery-supercapacitor hybrid energy storage with ultrahigh energy and power densities. Adv Energy Sustain Res 2021;2:2100076.

122. Liu T, Wang H, Lei C, et al. Recognition of the catalytic activities of graphitic N for zinc-iodine batteries. Energy Storage Mater 2022;53:544-51.

123. Bai C, Cai F, Wang L, Guo S, Liu X, Yuan Z. A sustainable aqueous Zn-I2 battery. Nano Res 2018;11:3548-54.

124. Liu M, Chen Q, Cao X, Tan D, Ma J, Zhang J. Physicochemical confinement effect enables high-performing zinc-iodine batteries. J Am Chem Soc 2022;144:21683-91.

125. Tan Y, Tao Z, Zhu Y, et al. Anchoring I3- via charge-transfer interaction by a coordination supramolecular network cathode for a high-performance aqueous dual-ion battery. ACS Appl Mater Interfaces 2022;14:47716-24.

126. Zeng X, Meng X, Jiang W, et al. Anchoring polyiodide to conductive polymers as cathode for high-performance aqueous zinc-iodine batteries. ACS Sustain Chem Eng 2020;8:14280-5.

127. Chen M, Zhu W, Guo H, et al. Tightly confined iodine in surface-oxidized carbon matrix toward dual-mechanism zinc-iodine batteries. Energy Storage Mater 2023;59:102760.

128. Yang H, Qiao Y, Chang Z, Deng H, He P, Zhou H. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv Mater 2020;32:e2004240.

129. Shang W, Zhu J, Liu Y, et al. Establishing high-performance quasi-solid Zn/I2 batteries with alginate-based hydrogel electrolytes. ACS Appl Mater Interfaces 2021;13:24756-64.

130. Sonigara KK, Zhao J, Machhi HK, Cui G, Soni SS. Self-assembled solid-state gel catholyte combating iodide diffusion and self-discharge for a stable flexible aqueous Zn-I2 Battery. Adv Energy Mater 2020;10:2001997.

131. Chen G, Kang Y, Yang H, et al. Toward forty thousand-cycle aqueous zinc-iodine battery: simultaneously inhibiting polyiodides shuttle and stabilizing zinc anode through a suspension electrolyte. Adv Funct Mater 2023;33:2300656.

132. Wang Z, Meng X, Chen K, Mitra S. Development of high-capacity periodate battery with three-dimensional-printed casing accommodating replaceable flexible electrodes. ACS Appl Mater Interfaces 2018;10:30257-64.

133. Wang A, Gyenge EL. Borohydride electro-oxidation in a molten alkali hydroxide eutectic mixture and a novel borohydride-periodate battery. J Power Sources 2015;282:169-73.

134. Wang Z, Meng X, Chen K, Mitra S. High capacity aqueous periodate batteries featuring a nine-electron transfer process. Energy Storage Mater 2019;19:206-11.

135. Shi Y, Chen Y, Shi L, et al. An overview and future perspectives of rechargeable zinc batteries. Small 2020;16:e2000730.

136. Grignon E, Battaglia AM, Schon TB, Seferos DS. Aqueous zinc batteries: design principles toward organic cathodes for grid applications. iScience 2022;25:104204.

137. Yan Y, Li P, Wang Y, et al. Molecular engineering of N-heteroaromatic organic cathode for high-voltage and highly stable zinc batteries. Adv Funct Mater 2024:2312332.

138. Chen W, Chen T, Fu J. Pivotal role of organic materials in aqueous zinc-based batteries: regulating cathode, anode, electrolyte, and separator. Adv Funct Mater 2024;34:2308015.

139. Zhang X, Zhang L, Jia X, Song W, Liu Y. Design strategies for aqueous zinc metal batteries with high zinc utilization: from metal anodes to anode-free structures. Nanomicro Lett 2024;16:75.

140. Cui H, Ma L, Huang Z, Chen Z, Zhi C. Organic materials-based cathode for zinc ion battery. SmartMat 2022;3:565-81.

141. Huang L, Li J, Wang J, et al. Organic compound as a cathode for aqueous zinc-ion batteries with improved electrochemical performance via multiple active centers. ACS Appl Energy Mater 2022;5:15780-7.

142. Abdalla KK, Wang Y, Abdalla KK, et al. Rational design and prospects for advanced aqueous Zn-organic batteries enabled by multielectron redox reactions. Sci China Mater 2024;67:1367-78.

143. Yang B, Ma Y, Bin D, Lu H, Xia Y. Ultralong-life cathode for aqueous zinc-organic batteries via pouring 9,10-phenanthraquinone into active carbon. ACS Appl Mater Interfaces 2021;13:58818-26.

144. Yan L, Zhang Y, Ni Z, et al. Chemically self-charging aqueous zinc-organic battery. J Am Chem Soc 2021;143:15369-77.

145. Li Z, Tan J, Wang Y, et al. Building better aqueous Zn-organic batteries. Energy Environ Sci 2023;16:2398-431.

146. Wang Y, Li Q, Li Q, et al. Design strategies and challenges of next generation aqueous Zn-organic batteries. Next Energy 2023;1:100061.

147. Li W, Xu H, Zhang H, et al. Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat Commun 2023;14:5235.

148. Lee M, Hong J, Lee B, et al. Multi-electron redox phenazine for ready-to-charge organic batteries. Green Chem 2017;19:2980-5.

149. Lin Q, Li H, Chen L, He X. Naphthalenediimide-carbonylpyridiniums: stable six electron acceptors for organic cathodes. Mater Chem Front 2023;7:3747-53.

150. Zhao Y, Zhang S, Zhang Y, et al. Vacancy-rich Al-doped MnO2 cathodes break the trade-off between kinetics and stability for high-performance aqueous Zn-ion batteries. Energy Environ Sci 2024;17:1279-90.

151. Zhong Y, Li Y, Meng J, et al. Boosting the cyclability of tetracyanoquinodimethane (TCNQ) as cathode material in aqueous battery with high valent cation. Energy Storage Mater 2021;43:492-8.

152. Cheng M, Zheng S, Sun T, et al. A solubility limited pyrene-4,5,9,10-tetraone-based covalent organic framework for high-performance aqueous zinc-organic batteries. Nano Res 2024;17:5095-103.

153. Zuo S, Xu X, Ji S, Wang Z, Liu Z, Liu J. Cathodes for aqueous Zn-ion batteries: materials, mechanisms, and kinetics. Chemistry 2021;27:830-60.

154. Ji W, Du D, Liang J, et al. Aqueous Zn-organic batteries: electrochemistry and design strategies. Battery Energy 2023;2:20230020.

155. Sun T, Yi Z, Zhang W, Nian Q, Fan HJ, Tao Z. Dynamic balance of partial charge for small organic compound in aqueous zinc-organic battery. Adv Funct Mater 2023;33:2306675.

156. Gong Y, Wang B, Ren H, et al. Recent advances in structural optimization and surface modification on current collectors for high-performance zinc anode: principles, strategies, and challenges. Nanomicro Lett 2023;15:208.

157. Li J, Huang L, Lv H, et al. Novel organic cathode with conjugated N-heteroaromatic structures for high-performance aqueous zinc-ion batteries. ACS Appl Mater Interfaces 2022;14:38844-53.

158. Wang Y, Wang C, Ni Z, et al. Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic batteries. Adv Mater 2020;32:e2000338.

159. Lin Z, Shi HY, Lin L, Yang X, Wu W, Sun X. A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat Commun 2021;12:4424.

160. Zheng S, Wang Q, Hou Y, Li L, Tao Z. Recent progress and strategies toward high performance zinc-organic batteries. J Energy Chem 2021;63:87-112.

161. Chen Y, Fan K, Gao Y, Wang C. Challenges and perspectives of organic multivalent metal-ion batteries. Adv Mater 2022;34:e2200662.

162. Peng H, Xiao J, Wu Z, et al. N-heterocycles extended π-conjugation enables ultrahigh capacity, long-lived, and fast-charging organic cathodes for aqueous zinc batteries. CCS Chem 2023;5:1789-801.

163. Zhang M, Ding C, Li C, et al. Bioactive small-molecule-based aqueous zinc-organic battery enables long-life and fast-charge performance. Sci China Mater 2023;66:3104-12.

164. Zhao Y, Huang Y, Wu F, Chen R, Li L. High-performance aqueous zinc batteries based on organic/organic cathodes integrating multiredox centers. Adv Mater 2021;33:e2106469.

165. Xu D, Zhang H, Cao Z, et al. High-rate aqueous zinc-ion batteries enabled by a polymer/graphene composite cathode involving reversible electrolyte anion doping/dedoping. J Mater Chem A 2021;9:10666-71.

166. Sun T, Fan HJ. Understanding cathode materials in aqueous zinc-organic batteries. Curr Opin Electrochem 2021;30:100799.

167. Song Z, Miao L, Duan H, et al. Anionic co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc-organic batteries. Angew Chem Int Ed 2022;61:e202208821.

168. Shuai H, Liu R, Li W, et al. Recent advances of transition metal sulfides/selenides cathodes for aqueous zinc-ion batteries. Adv Energy Mater 2023;13:2202992.

169. Ye Z, Xie S, Cao Z, et al. High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater 2021;37:378-86.

170. Chen X, Su H, Yang B, Yin G, Liu Q. Realizing high-rate aqueous zinc-ion batteries using organic cathode materials containing electron-withdrawing groups. Sustain Energy Fuels 2022;6:2523-31.

171. Chen Z, Cui H, Hou Y, et al. Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 2022;8:2204-16.

172. Bayaguud A, Luo X, Fu Y, Zhu C. Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett 2020;5:3012-20.

173. Dai C, Hu L, Chen H, et al. Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nat Commun 2022;13:1863.

174. Cui F, Pan R, Su L, et al. Activating selenium cathode chemistry for aqueous zinc-ion batteries. Adv Mater 2023;35:e2306580.

175. Zhang Q, Ma Y, Lu Y, et al. Halogenated Zn2+ solvation structure for reversible Zn metal batteries. J Am Chem Soc 2022;144:18435-43.

176. Lin Z, Lin L, Zhu J, Wu W, Yang X, Sun X. An anti-aromatic covalent organic framework cathode with dual-redox centers for rechargeable aqueous zinc batteries. ACS Appl Mater Interfaces 2022;14:38689-95.

177. Xiong P, Zhang Y, Zhang J, et al. Recent progress of artificial interfacial layers in aqueous Zn metal batteries. EnergyChem 2022;4:100076.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/