REFERENCES

1. Zhao, Q.; Stalin, S.; Zhao, C.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229-52.

2. Unemoto, A.; Matsuo, M.; Orimo, S. Complex hydrides for electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 2267-79.

3. Higashi, S.; Miwa, K.; Aoki, M.; Takechi, K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem. Commun. 2014, 50, 1320-2.

4. Ruyet R, Berthelot R, Salager E, Florian P, Fleutot B, Janot R. Investigation of Mg(BH4)(NH2)-based composite materials with enhanced Mg2+ ionic conductivity. J. Phys. Chem. C. 2019, 123, 10756-63.

5. Le, R. R.; Fleutot, B.; Berthelot, R.; et al. Mg3(BH4)4(NH2)2 as inorganic solid electrolyte with high Mg2+ ionic conductivity. ACS. Appl. Energy. Mater. 2020, 3, 6093-7.

6. Roedern, E.; Kühnel, R. S.; Remhof, A.; Battaglia, C. Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries. Sci. Rep. 2017, 7, 46189.

7. Burankova, T.; Roedern, E.; Maniadaki, A. E.; et al. Dynamics of the coordination complexes in a solid-state Mg electrolyte. J. Phys. Chem. Lett. 2018, 9, 6450-5.

8. Kisu, K.; Kim, S.; Inukai, M.; Oguchi, H.; Takagi, S.; Orimo, S. Magnesium borohydride ammonia borane as a magnesium ionic conductor. ACS. Appl. Energy. Mater. 2020, 3, 3174-9.

9. Yan, Y.; Dononelli, W.; Jørgensen, M.; et al. The mechanism of Mg2+ conduction in ammine magnesium borohydride promoted by a neutral molecule. Phys. Chem. Chem. Phys. 2020, 22, 9204-9.

10. Yan, Y.; Grinderslev, J. B.; Jo̷rgensen, M.; Skov, L. N.; Skibsted, J.; Jensen, T. R. Ammine magnesium borohydride nanocomposites for all-solid-state magnesium batteries. ACS. Appl. Energy. Mater. 2020, 3, 9264-70.

11. Yan, Y.; Grinderslev, J. B.; Burankova, T.; et al. Fast room-temperature Mg2+ conductivity in Mg(BH4)2·1.6NH3-Al2O3 nanocomposites. J. Phys. Chem. Lett. 2022, 13, 2211-6.

12. Wang, Q.; Li, H.; Zhang, R.; et al. Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy. Storage. Mater. 2022, 51, 630-7.

13. Zhang, J.; Wang, W.; Chen, X.; Jin, J.; Yan, X.; Huang, J. Single-atom Ni supported on TiO2 for catalyzing hydrogen storage in MgH2. J. Am. Chem. Soc. 2024, 146, 10432-42.

14. Liu, F.; Cao, G.; Ban, J.; et al. Recent advances based on Mg anodes and their interfacial modulation in Mg batteries. J. Magnes. Alloys. 2022, 10, 2699-716.

15. Son, S. B.; Gao, T.; Harvey, S. P.; et al. An artificial interphase enables reversible magnesium chemistry in carbonate electrolytes. Nat. Chem. 2018, 10, 532-9.

16. Tang, K.; Du, A.; Dong, S.; et al. A stable solid electrolyte interphase for magnesium metal anode evolved from a bulky anion lithium salt. Adv. Mater. 2020, 32, e1904987.

17. Chinnadurai, D.; Lieu, W. Y.; Kumar, S.; Yang, G.; Li, Y.; Seh, Z. W. A passivation-free solid electrolyte interface regulated by magnesium bromide additive for highly reversible magnesium batteries. Nano. Lett. 2023, 23, 1564-72.

18. Chen, T.; Sai, G. G.; Canepa, P. Ionic transport in potential coating materials for Mg batteries. Chem. Mater. 2019, 31, 8087-99.

19. Hebié, S.; Ngo, H. P. K.; Leprêtre, J. C.; et al. Electrolyte based on easily synthesized, low cost triphenolate-borohydride salt for high performance Mg(TFSI)2-glyme rechargeable magnesium batteries. ACS. Appl. Mater. Interfaces. 2017, 9, 28377-85.

20. Wang, Q.; Li, Z.; Deng, H.; Chen, Y.; Yan, Y. Enhanced interface stability of ammine magnesium borohydride by in situ decoration of MgBr2·2NH3 nanoparticles. Chem. Commun. 2023, 59, 6726-9.

21. Xu, X.; Chao, D.; Chen, B.; et al. Revealing the magnesium-storage mechanism in mesoporous bismuth via spectroscopy and Ab-initio simulations. Angew. Chem. Int. Ed. Engl. 2020, 59, 21728-35.

22. Chen, X.; Wei, S.; Tong, F.; Taylor, M. P.; Cao, P. Electrochemical performance of Mg-Sn alloy anodes for magnesium rechargeable battery. Electrochimica. Acta. 2021, 398, 139336.

23. Ikhe, A. B.; Han, S. C.; Prabakar, S. J. R.; Park, W. B.; Sohn, K.; Pyo, M. 3Mg/Mg2 Sn anodes with unprecedented electrochemical performance towards viable magnesium-ion batteries. J. Mater. Chem. A. 2020, 8, 14277-86.

24. Wang, L.; Welborn, S. S.; Kumar, H.; et al. High-rate and long cycle-life alloy-type magnesium-ion battery anode enabled through (de) magnesiation-induced near-room-temperature solid-liquid phase transformation. Adv. Energy. Mater. 2019, 9, 1902086.

25. Chai, X.; Xie, H.; Zhang, T.; et al. Ternary Mg alloy-based artificial interphase enables high-performance rechargeable magnesium batteries. Energy. Storage. Mater. 2024, 70, 103460.

26. Singh, N.; Arthur, T. S.; Ling, C.; Matsui, M.; Mizuno, F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 2013, 49, 149-51.

27. Kravchyk, K. V.; Piveteau, L.; Caputo, R.; et al. Colloidal bismuth nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights. ACS. Nano. 2018, 12, 8297-307.

28. Jung, S. C.; Han, Y. Fast magnesium ion transport in the Bi/Mg3Bi2 two-phase electrode. J. Phys. Chem. C. 2018, 122, 17643-9.

29. Yaghoobnejad Asl, H.; Fu, J.; Kumar, H.; Welborn, S. S.; Shenoy, V. B.; Detsi, E. In situ dealloying of bulk Mg2Sn in Mg-ion half cell as an effective route to nanostructured Sn for high performance Mg-ion battery anodes. Chem. Mater. , 30, 1815-24.

30. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169-86.

31. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-8.

32. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999, 59, 1758-75.

33. Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B. 1976, 13, 5188-92.

34. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901-4.

35. Nayeb-hashemi, A. A.; Clark, J. B. The Bi-Mg (Bismuth-Magnesium) system. Bull. Alloy. Phase. Diagrams. 1985, 6, 528-33.

36. Pradhan, B.; Dalui, A.; Paul, S.; Roy, D.; Acharya, S. Solution phase synthesis of large-area ultra-thin two dimensional layered Bi2Se3: role of Cu-intercalation and substitution. Mater. Res. Express. 2019, 6, 124005.

37. Xu, X.; Ye, C.; Chao, D.; et al. Synchrotron X-ray spectroscopic investigations of in-situ-formed alloy anodes for magnesium batteries. Adv. Mater. 2022, 34, e2108688.

38. Li, Y.; Yang, G.; Zhang, C.; et al. Grain-boundary-rich triphasic artificial hybrid interphase toward practical magnesium metal anodes. Adv. Funct. Mater. 2023, 33, 2210639.

39. Ding, M. S.; Diemant, T.; Behm, R. J.; Passerini, S.; Giffin, G. A. Dendrite growth in Mg metal cells containing Mg(TFSI)2/glyme electrolytes. J. Electrochem. Soc. 2018, 165, A1983-90.

40. Yoo, H. D.; Han, S. D.; Bolotin, I. L.; et al. Degradation mechanisms of magnesium metal anodes in electrolytes based on (CF3SO2)2N- at high current densities. Langmuir 2017, 33, 9398-406.

41. Dewitt, S.; Hahn, N.; Zavadil, K.; Thornton, K. Computational examination of orientation-dependent morphological evolution during the electrodeposition and electrodissolution of magnesium. J. Electrochem. Soc. 2016, 163, A513-21.

42. Zhang, Y.; Li, J.; Zhao, W.; et al. Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode. Adv. Mater. 2022, 34, e2108114.

43. Wan, B.; Dou, H.; Zhao, X.; et al. Three-dimensional magnesiophilic scaffolds for reduced passivation toward high-rate Mg metal anodes in a noncorrosive electrolyte. ACS. Appl. Mater. Interfaces. 2020, 12, 28298-305.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/