REFERENCES

1. Kong F, Wang Y, Wang X. How to understand carbon neutrality in the context of climate change? With special reference to China. Sustain Environ 2022;8:2062824.

2. Song D, Rui J. Research on legal promotion mechanism of biomass energy development under “carbon peaking and carbon neutrality” targets in China. Energies 2023;16:4361.

3. Rabani I, Zafar R, Subalakshmi K, Kim HS, Bathula C, Seo YS. A facile mechanochemical preparation of Co3O4@g-C3N4 for application in supercapacitors and degradation of pollutants in water. J Hazard Mater 2021;407:124360.

4. Shrestha A, Mustafa AA, Htike MM, You V, Kakinaka M. Evolution of energy mix in emerging countries: modern renewable energy, traditional renewable energy, and non-renewable energy. Renew Energy 2022;199:419-32.

5. Chang J, Leung DYC, Wu CZ, Yuan ZH. A review on the energy production, consumption, and prospect of renewable energy in China. Renew Sustain Energy Rev 2003;7:453-68.

6. Xie M, Cai C, Duan X, Xue K, Yang H, An S. Review on Fe-based double perovskite cathode materials for solid oxide fuel cells. Energy Mater 2024;4:400007.

7. Rawat S, Mishra RK, Bhaskar T. Biomass derived functional carbon materials for supercapacitor applications. Chemosphere 2022;286:131961.

8. Zhai M, Ye J, Jiang Y, et al. Biomass-derived carbon materials for vanadium redox flow battery: from structure to property. J Colloid Interface Sci 2023;651:902-18.

9. Huang Y, Tang Z, Zhou S, et al. Renewable waste biomass-derived carbon materials for energy storage. J Phys D Appl Phys 2022;55:313002.

10. Zhu J, Roscow J, Chandrasekaran S, et al. Biomass-derived carbons for sodium-ion batteries and sodium-ion capacitors. ChemSusChem 2020;13:1275-95.

11. Ramalingam G, Priya AK, Gnanasekaran L, Rajendran S, Hoang TKA. Biomass and waste derived silica, activated carbon and ammonia-based materials for energy-related applications - a review. Fuel 2024;355:129490.

12. Brunerová A, Haryanto A, Hasanudin U, Iryani DA, Telaumbanua M, Herák D. Sustainable management of coffee fruit waste biomass in ecological farming systems at West Lampung, Indonesia. IOP Conf Ser Earth Environ Sci 2019;345:012007.

13. Yang Y. Improvement of rural soil properties and states by biomass carbon under the concept of sustainability: a research progress. Front Chem 2022;10:1078170.

14. Cabrera M, Díaz-López JL, Agrela F, Rosales J. Eco-efficient cement-based materials using biomass bottom ash: a review. Appl Sci 2020;10:8026.

15. Wang L, Choi W, Yoo K, Nam K, Ko TJ, Choi J. Stretchable carbon nanotube dilatometer for in situ swelling detection of lithium-ion batteries. ACS Appl Energy Mater 2020;3:3637-44.

16. Li ZM, Li B, Feng D, Zeng TB. Research progress of cathode materials for lithium-ion battery. Acta Mater Compos Sin 2022;39:513-27.

17. Chen Y, Kang Y, Zhao Y, et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J Energy Chem 2021;59:83-99.

18. Khan FMNU, Rasul MG, Sayem ASM, Mandal NK. Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: a comprehensive review. J Energy Storage 2023;71:108033.

19. Zhang X, Li Z, Luo L, Fan Y, Du Z. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 2022;238:121652.

20. Yan X, Feng G, Huang X. Research progress of preparation and application of cathode material for lithium ion battery. New Chem Mater 2019;47:22-5. Available from: https://www.hgxx.org/EN/abstract/abstract7362.shtml [Last accessed on 9 Oct 2024]

21. PRC Notice Release. Notice of The State Council on the issuance of made in China 2025. Available from: https://www.gov.cn/zhengce/content/2015-05/19/content_9784.htm [Last accessed on 9 Oct 2024].

22. Suo LM, Li H. The past, present and future of lithium ion batteries. Physics 2020;49:17-23.

23. Martín MM. Chapter 8 - biomass. In: Industrial chemical process analysis and design. The Amsterdam: Elsevier; 2016. p. 405-47.

24. Yan M, Qin Y, Wang L, et al. Recent advances in biomass-derived carbon materials for sodium-ion energy storage devices. Nanomaterials 2022;12:930.

25. Geng H, Peng Y, Qu L, Zhang H, Wu M. Structure design and composition engineering of carbon-based nanomaterials for lithium energy storage. Adv Energy Mater 2020;10:1903030.

26. Gao Y, Zhai Z, Huang K, Zhang Y. Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors. New J Chem 2017;41:11456-70.

27. He H, Zhang R, Zhang P, et al. Functional carbon from nature: biomass-derived carbon materials and the recent progress of their applications. Adv Sci 2023;10:e2205557.

28. Jin H, Li J, Yuan Y, Wang J, Lu J, Wang S. Recent progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv Energy Mater 2018;8:1801007.

29. Zhang B, Jiang Y, Balasubramanian R. Synthesis, formation mechanisms and applications of biomass-derived carbonaceous materials: a critical review. J Mater Chem A 2021;9:24759-802.

30. Wan H, Hu X. Nitrogen doped biomass-derived porous carbon as anode materials of lithium ion batteries. Solid State Ion 2019;341:115030.

31. Li Y, Li C, Qi H, Yu K, Li X. Formation mechanism and characterization of porous biomass carbon for excellent performance lithium-ion batteries. RSC Adv 2018;8:12666-71.

32. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K. Recent development of carbon materials for Li ion batteries. Carbon 2000;38:183-97.

33. Liu J, Yue M, Wang S, Zhao Y, Zhang J. A review of performance attenuation and mitigation strategies of lithium-ion batteries. Adv Funct Mater 2022;32:2107769.

34. Kotal M, Jakhar S, Roy S, Sharma HK. Cathode materials for rechargeable lithium batteries: recent progress and future prospects. J Energy Storage 2022;47:103534.

35. Palluzzi M, Tsurumaki A, Adenusi H, Navarra MA, Passerini S. Ionic liquids and their derivatives for lithium batteries: role, design strategy, and perspectives. Energy Mater 2023;3:300049.

36. Pan Z, Chen H, Zeng Y, Ding Y, Pu X, Chen Z. Fluorine chemistry in lithium-ion and sodium-ion batteries. Energy Mater 2023;3:300054.

37. Wang C, Zhang A, Chang Z, Wu S, Liu Z, Pang J. Progress in structure design and preparation of porous electrodes for lithium ion batteries. J Mater Eng 2022;50:67-79.

38. Chen Z, Ren Y, Jansen AN, Lin CK, Weng W, Amine K. New class of nonaqueous electrolytes for long-life and safe lithium-ion batteries. Nat Commun 2013;4:1513.

39. Yue Y, Li Y, Bi Z, et al. A POM-organic framework anode for Li-ion battery. J Mater Chem A 2015;3:22989-95.

40. Kim HJ, Krishna T, Zeb K, et al. A comprehensive review of Li-ion battery materials and their recycling techniques. Electronics 2020;9:1161.

41. Chen Z, Zhang W, Yang Z. A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations. Nanotechnology 2020;31:012001.

42. Zou Z, Zhang S, Li S. A review of the preparation and performance improvement of V6O13 as a cathode material for lithium-ion batteries. Mater Technol 2020;35:300-15.

43. Yang Z, Zheng C, Wei Z, et al. Multi-dimensional correlation of layered Li-rich Mn-based cathode materials. Energy Mater 2022;2:200006.

44. Akhilash M, Salini PS, John B, Mercy TD. A journey through layered cathode materials for lithium ion cells - from lithium cobalt oxide to lithium-rich transition metal oxides. J Alloy Compd 2021;869:159239.

45. Yang S, Wang P, Wei H, et al. Li4V2Mn(PO4)4-stablized Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium ion batteries. Nano Energy 2019;63:103889.

46. Yu Z, Tong Q, Cheng Y, et al. Enabling 4.6 V LiNi0.6Co0.2Mn0.2O2 cathodes with excellent structural stability: combining surface LiLaO2 self-assembly and subsurface La-pillar engineering. Energy Mater 2022;2:200037.

47. Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun 2020;11:1550.

48. Kim HS, Kong M, Kim K, Kim IJ, Gu HB. Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Power Sources 2007;171:917-21.

49. Zhang H, Zhang Z, Zhao L, Liu XQ. Synthesis and electrochemical performance of spinel LiMn2O4 modified by CNTs. Adv Mat Res 2013;734-7:2523-7.

50. Luo W, Wen L, Luo H, et al. Carbon nanotube-modified LiFePO4 for high rate lithium ion batteries. New Carbon Mater 2014;29:287-94.

51. Yang H, Wu K, Hu G, Peng Z, Cao Y, Du K. Design and synthesis of double-functional polymer composite layer coating to enhance the electrochemical performance of the Ni-rich cathode at the upper cutoff voltage. ACS Appl Mater Inter 2019;11:8556-66.

52. Insinna T, Bassey EN, Märker K, Collauto A, Barra AL, Grey CP. Graphite anodes for Li-ion batteries: an electron paramagnetic resonance investigation. Chem Mater 2023;35:5497-511.

53. Hamidi S, Askari K, Salimi P. Thermally expanded graphite: a promising anode electrode in the current and next-generation LIBs. New J Chem 2023;47:12085-8.

54. Fischer S, Doose S, Müller J, Höfels C, Kwade A. Impact of spheroidization of natural graphite on fast-charging capability of anodes for LIB. Batteries 2023;9:305.

55. Zhang H, Yang Y, Ren D, Wang L, He X. Graphite as anode materials: fundamental mechanism, recent progress and advances. Energy Storage Mater 2021;36:147-70.

56. Xie C, Chang J, Shang J, et al. Hybrid lithium-ion/metal electrodes enable long cycle stability and high energy density of flexible batteries. Adv Funct Mater 2022;32:2203242.

57. Chen W. A review of materials and their future development trends for lithium ion battery anodes. IOP Conf Ser Earth Environ Sci 2020;546:022026.

58. Ding F, Xu W, Choi D, et al. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries. J Mater Chem 2012;22:12745-51.

59. Lee GH, Lee JW, Choi JI, Kim SJ, Kim YH, Kang JK. Ultrafast discharge/charge rate and robust cycle life for high-performance energy storage using ultrafine nanocrystals on the binder-free porous graphene foam. Adv Funct Mater 2016;26:5139-48.

60. Bi J, Du Z, Sun J, et al. On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes. Adv Mater 2023;35:e2210734.

61. Feng K, Li M, Liu W, et al. Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 2018;14:1702737.

62. Liu X, Wu X, Chang B, Wang K. Recent progress on germanium-based anodes for lithium ion batteries: efficient lithiation strategies and mechanisms. Energy Storage Mater 2020;30:146-69.

63. Chang H, Wu Y, Han X, Yi T. Recent developments in advanced anode materials for lithium-ion batteries. Energy Mater 2021;1:100003.

64. Zhang W. A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 2011;196:13-24.

65. Pavlovskii AA, Pushnitsa K, Kosenko A, Novikov P, Popovich AA. Organic anode materials for lithium-ion batteries: recent progress and challenges. Materials 2022;16:177.

66. Nzereogu PU, Omah AD, Ezema FI, Iwuoha EI, Nwanya AC. Anode materials for lithium-ion batteries: a review. Appl Surf Sci Adv 2022;9:100233.

67. Sharma SK, Sharma G, Gaur A, et al. Progress in electrode and electrolyte materials: path to all-solid-state Li-ion batteries. Energy Adv 2022;1:457-510.

68. Zhang L, Zhang G, Wu HB, Yu L, Lou XW. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv Mater 2013;25:2589-93.

69. Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol 2014;9:187-92.

70. Suarso E, Setyawan FA, Subhan A, et al. Enhancement of LiFePO4 (LFP) electrochemical performance through the insertion of coconut shell-derived rGO-like carbon as cathode of Li-ion battery. J Mater Sci Mater Electron 2021;32:28297-306.

71. Zhang C, Jiang Q, Liu A, et al. The bead-like Li3V2(PO4)3/NC nanofibers based on the nanocellulose from waste reed for long-life Li-ion batteries. Carbohydr Polym 2020;237:116134.

72. Huang W, Zhang M, Cui H, Yan B, Liu Y, Zhang Q. Cost-effective biomass carbon/calix[4]quinone composites for lithium ion batteries. Chem Asian J 2019;14:4164-8.

73. Xu X, Meng Z, Zhu X, Zhang S, Han W. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery. J Power Sources 2018;380:12-7.

74. Guo H, Zhang X, He W, et al. Fabricating three-dimensional mesoporous carbon network-coated LiFePO4/Fe nanospheres using thermal conversion of alginate-biomass. RSC Adv 2016;6:16933-40.

75. Wu Z, Li Z, Chou S, Liang X. Novel biomass-derived hollow carbons as anode materials for lithium-ion batteries. Chem Res Chin Univ 2023;39:283-9.

76. Zhu L, Han T, Lin X, Chen Z, Hu C, Liu J. In-situ growing nanowires on biomass corn pods as free-standing electrodes with low surface reaction barrier for Li-, Al-, and Na-ion batteries. Appl Surf Sci 2023;608:155223.

77. Huang G, Kong Q, Yao W, Wang Q. Poly tannic acid carbon rods as anode materials for high performance lithium and sodium ion batteries. J Colloid Interface Sci 2023;629:832-45.

78. Zheng S, Luo Y, Zhang K, Liu H, Hu G, Qin A. Nitrogen and phosphorus co-doped mesoporous carbon nanosheets derived from bagasse for lithium-ion batteries. Mater Lett 2021;290:129459.

79. Yu J, Tang T, Cheng F, et al. Exploring spent biomass-derived adsorbents as anodes for lithium ion batteries. Mater Today Energy 2021;19:100580.

80. Panda MR, Kathribail AR, Modak B, Sau S, Dutta DP, Mitra S. Electrochemical properties of biomass-derived carbon and its composite along with Na2Ti3O7 as potential high-performance anodes for Na-ion and Li-ion batteries. Electrochim Acta 2021;392:139026.

81. Zhang Y, Li X, Wang Q, et al. A wax gourd flesh-derived porous carbon activated by different activating agents as lithium ion battery anode material. J Mater Sci Mater Electron 2021;32:23776-85.

82. Bakierska M, Lis M, Pacek J, et al. Bio-derived carbon nanostructures for high-performance lithium-ion batteries. Carbon 2019;145:426-32.

83. Zhu J, Liu S, Liu Y, et al. Graphitic, porous, and multiheteroatom codoped carbon microtubes made from hair waste: a superb and sustained anode substitute for Li-ion batteries. ACS Sustain Chem Eng 2018;6:13662-9.

84. Zhang D, Wang G, Xu L, et al. Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries. Appl Surf Sci 2018;451:298-305.

85. Salimi P, Javadian S, Norouzi O, Gharibi H. Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries. Environ Sci Pollut Res Int 2017;24:27974-84.

86. Lim DG, Kim K, Razdan M, Diaz R, Osswald S, Pol VG. Lithium storage in structurally tunable carbon anode derived from sustainable source. Carbon 2017;121:134-42.

87. Mondal AK, Kretschmer K, Zhao Y, Liu H, Fan H, Wang G. Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Micropor Mesopor Mater 2017;246:72-80.

88. Gaddam RR, Yang D, Narayan R, Raju K, Kumar NA, Zhao XS. Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 2016;26:346-52.

89. Ru H, Xiang K, Zhou W, Zhu Y, Zhao XS, Chen H. Bean-dreg-derived carbon materials used as superior anode material for lithium-ion batteries. Electrochim Acta 2016;222:551-60.

90. Han SW, Jung DW, Jeong JH, Oh ES. Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem Eng J 2014;254:597-604.

91. Song H, Li P, Shen W. Preparation and applications of biomass porous carbon. Sci Adv Mater 2015;7:2257-71.

92. Sun Y, Shi X, Yang Y, et al. Biomass-derived carbon for high-performance batteries: from structure to properties. Adv Funct Mater 2022;32:2201584.

93. Zhang G, Liu X, Wang L, Fu H. Recent advances of biomass derived carbon-based materials for efficient electrochemical energy devices. J Mater Chem A 2022;10:9277-307.

94. Jiang L, Sheng L, Fan Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci China Mater 2018;61:133-58.

95. Benítez A, Amaro-Gahete J, Chien YC, Caballero Á, Morales J, Brandell D. Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renew Sustain Energy Rev 2022;154:111783.

96. Pillai MM, Kalidas N, Zhao X, Lehto VP. Biomass-based silicon and carbon for lithium-ion battery anodes. Front Chem 2022;10:882081.

97. Huang B, Liu Y, Xie Z. Two dimensional nanocarbons from biomass and biological molecules: synthetic strategies and energy related applications. J Energy Chem 2021;54:795-814.

98. Xiang J, Lv W, Mu C, Zhao J, Wang B. Activated hard carbon from orange peel for lithium/sodium ion battery anode with long cycle life. J Alloy Compd 2017;701:870-4.

99. Li J, Hong X, Luo Y, et al. Nitrogen doping of porous carbon electrodes derived from pine nut shell for high-performance supercapacitors. Int J Electrochem Sci 2020;15:6041-51.

100. Campbell B, Ionescu R, Favors Z, Ozkan CS, Ozkan M. Bio-derived, binderless, hierarchically porous carbon anodes for Li-ion batteries. Sci Rep 2015;5:14575.

101. Choi C, Seo SD, Kim BK, Kim DW. Enhanced lithium storage in hierarchically porous carbon derived from waste tea leaves. Sci Rep 2016;6:39099.

102. Chen C, Huang Y, Meng Z, Xu Z, Liu P, Li T. Multi-heteroatom doped porous carbon derived from insect feces for capacitance-enhanced sodium-ion storage. J Energy Chem 2021;54:482-92.

103. Bi Z, Kong Q, Cao Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 2019;7:16028-45.

104. Qiang L, Hu Z, Li Z, et al. Hierarchical porous biomass carbon derived from cypress coats for high energy supercapacitors. J Mater Sci Mater Electron 2019;30:7324-36.

105. Gong Y, Li D, Luo C, Fu Q, Pan C. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem 2017;19:4132-40.

106. Noerochim L, Yurwendra AO, Susanti D. Effect of carbon coating on the electrochemical performance of LiFePO4/C as cathode materials for aqueous electrolyte lithium-ion battery. Ionics 2016;22:341-6.

107. Zhang Q, Wu X, Gong S, Fan L, Zhang N. Iron fluoride nanoparticles embedded in a nitrogen and oxygen dual-doped 3D porous carbon derived from nori for high rate cathode in lithium-ion battery. ChemistrySelect 2019;4:10334-9.

108. Ou J, Yang L, Zhang Z. Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for Lithium/Sodium ion batteries. Powder Technol 2019;344:89-95.

109. Xu G, Han J, Ding B, et al. Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for energy storage. Green Chem 2015;17:1668-74.

110. Zheng F, Liu D, Xia G, et al. Biomass waste inspired nitrogen-doped porous carbon materials as high-performance anode for lithium-ion batteries. J Alloy Compd 2017;693:1197-204.

111. Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett 2020;31:583-8.

112. Zhang X, Hu J, Chen X, et al. Microtubular carbon fibers derived from bamboo and wood as sustainable anodes for lithium and sodium ion batteries. J Porous Mater 2019;26:1821-30.

113. Tang J, Etacheri V, Pol VG. Wild fungus derived carbon fibers and hybrids as anodes for lithium-ion batteries. ACS Sustain Chem Eng 2016;4:2624-31.

114. Lv C, Yang X, Umar A, et al. Architecture-controlled synthesis of MxOy (M = Ni, Fe, Cu) microfibres from seaweed biomass for high-performance lithium ion battery anodes. J Mater Chem A 2015;3:22708-15.

115. Kim K, Adams RA, Kim PJ, et al. Li-ion storage in an amorphous, solid, spheroidal carbon anode produced by dry-autoclaving of coffee oil. Carbon 2018;133:62-8.

116. Song M, Xie L, Cheng J, et al. Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries. J Energy Chem 2022;66:448-58.

117. Shi L, Chen Y, Chen G, Wang Y, Chen X, Song H. Fabrication of hierarchical porous carbon microspheres using porous layered double oxide templates for high-performance lithium ion batteries. Carbon 2017;123:186-92.

118. Chen M, Yu C, Liu S, et al. Micro-sized porous carbon spheres with ultra-high rate capability for lithium storage. Nanoscale 2015;7:1791-5.

119. Ming J, Wu Y, Liang G, Park JB, Zhao F, Sun YK. Sodium salt effect on hydrothermal carbonization of biomass: a catalyst for carbon-based nanostructured materials for lithium-ion battery applications. Green Chem 2013;15:2722-6.

120. Zhou X, Chen F, Bai T, et al. Interconnected highly graphitic carbon nanosheets derived from wheat stalk as high performance anode materials for lithium ion batteries. Green Chem 2016;18:2078-88.

121. Mondal AK, Kretschmer K, Zhao Y, et al. Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries. Chemistry 2017;23:3683-90.

122. Gao F, Geng C, Xiao N, Qu J, Qiu J. Hierarchical porous carbon sheets derived from biomass containing an activation agent and in-built template for lithium ion batteries. Carbon 2018;139:1085-92.

123. Xie L, Tang C, Bi Z, et al. Hard carbon anodes for next-generation Li-ion batteries: review and perspective. Adv Energy Mater 2021;11:2101650.

124. Wang K, Xu Y, Wu H, et al. A hybrid lithium storage mechanism of hard carbon enhances its performance as anodes for lithium-ion batteries. Carbon 2021;178:443-50.

125. Adams RA, Varma A, Pol VG. Carbon anodes for nonaqueous alkali metal-ion batteries and their thermal safety aspects. Adv Energy Mater 2019;9:1900550.

126. Zhao L, Hu Z, Lai W, et al. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv Energy Mater 2021;11:2002704.

127. Xie F, Xu Z, Guo Z, Titirici MM. Hard carbons for sodium-ion batteries and beyond. Prog Energy 2020;2:042002.

128. Stevens DA, Dahn JR. High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 2000;147:1271.

129. Chen F, Yang J, Bai T, Long B, Zhou X. Facile synthesis of few-layer graphene from biomass waste and its application in lithium ion batteries. J Electroanal Chem 2016;768:18-26.

130. Yao YX, Yan C, Zhang Q. Emerging interfacial chemistry of graphite anodes in lithium-ion batteries. Chem Commun 2020;56:14570-84.

131. Saju SK, Chattopadhyay S, Xu J, Alhashim S, Pramanik A, Ajayan PM. Hard carbon anode for lithium-, sodium-, and potassium-ion batteries: advancement and future perspective. Cell Rep Phys Sci 2024;5:101851.

132. Tenhaeff WE, Rios O, More K, Mcguire MA. Highly robust lithium ion battery anodes from lignin: an abundant, renewable, and low-cost material. Adv Funct Mater 2014;24:86-94.

133. Wang C, Xiao X, Zhong GB, et al. Water chestnut-based hard carbon prepared by hydrothermal-carbonization method as anode for lithium ion battery. Energy Storage Sci Technol 2020;9:818-25.

134. Tian Y, Yang R, Lin R, Li X, Song Y, Xu B. Influencing factors and catalytic mechanism of catalytic effect in catalytic graphitization. Mater Sci 2020;10:40-6.

135. Gomez-Martin A, Martinez-Fernandez J, Ruttert M, et al. Iron-catalyzed graphitic carbon materials from biomass resources as anodes for lithium-ion batteries. ChemSusChem 2018;11:2776-87.

136. Zhang X, Qu H, Ji W, et al. Fast and controllable prelithiation of hard carbon anodes for lithium-ion batteries. ACS Appl Mater Interfaces 2020;12:11589-99.

137. Holtstiege F, Bärmann P, Nölle R, Winter M, Placke T. Pre-lithiation strategies for rechargeable energy storage technologies: concepts, promises and challenges. Batteries 2018;4:4.

138. Huang X, Zhang C, Chen M, Yang Y. Li2C2O4 with 3D confinement as simultaneous sacrificial material and activation reagent of biomass-derived carbon for advanced lithium-ion capacitors. Mater Today Sustain 2023;24:100567.

139. Drews M, Büttner J, Bauer M, et al. Spruce hard carbon anodes for lithium-ion batteries. ChemElectroChem 2021;8:4750-61.

140. Legesse M, Rashkeev SN, Al-Dirini F, Alharbi FH. Tunable high workfunction contacts: doped graphene. Appl Surf Sci 2020;509:144893.

141. Ren N, Wang L, He X, et al. High ICE hard carbon anodes for lithium-ion batteries enabled by a high work function. ACS Appl Mater Interfaces 2021;13:46813-20.

142. Jin C, Nai J, Sheng O, et al. Biomass-based materials for green lithium secondary batteries. Energy Environ Sci 2021;14:1326-79.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/