REFERENCES

1. Han X, Gong Y, Fu KK, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 2017;16:572-9.

2. Chen C, Zhang Y, Li Y, et al. Highly conductive, lightweight, low-tortuosity carbon frameworks as ultrathick 3D current collectors. Adv Energy Mater 2017;7:1700595.

3. Zhang B, Kang F, Tarascon J, Kim J. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 2016;76:319-80.

4. Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 2010;5:574-8.

5. Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013;499:458-63.

6. Cao Q, Rogers JA. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 2009;21:29-53.

7. Kasavajjula U, Wang C, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 2007;163:1003-39.

8. Xu Z, Liu X, Luo Y, Zhou L, Kim J. Nanosilicon anodes for high performance rechargeable batteries. Prog Mater Sci 2017;90:1-44.

9. Placke T, Kloepsch R, Dühnen S, Winter M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem 2017;21:1939-64.

10. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:e1800561.

11. Ding Y, Cano ZP, Yu A, Lu J, Chen Z. Automotive Li-Ion batteries: current status and future perspectives. Electrochem Energ Rev 2019;2:1-28.

12. Yuan H, Ding X, Liu T, et al. A review of concepts and contributions in lithium metal anode development. Mater Today 2022;53:173-96.

13. Lu G, Nai J, Luan D, Tao X, Lou XWD. Surface engineering toward stable lithium metal anodes. Sci Adv 2023;9:eadf1550.

14. Chu C, Li R, Cai F, et al. Recent advanced skeletons in sodium metal anodes. Energy Environ Sci 2021;14:4318-40.

15. Wang T, Hua Y, Xu Z, Yu JS. Recent advanced development of artificial interphase engineering for stable sodium metal anodes. Small 2022;18:e2102250.

16. Ma L, Cui J, Yao S, et al. Dendrite-free lithium metal and sodium metal batteries. Energ Storage Mater 2020;27:522-54.

17. Liu P, Mitlin D. Emerging potassium metal anodes: perspectives on control of the electrochemical interfaces. Acc Chem Res 2020;53:1161-75.

18. Wei C, Tao Y, Fei H, et al. Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energ Storage Mater 2020;30:206-27.

19. Yi Z, Chen G, Hou F, Wang L, Liang J. Strategies for the stabilization of zn metal anodes for Zn-Ion batteries. Adv Energy Mater 2021;11:2003065.

20. Li C, Xie X, Liang S, Zhou J. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energ Environ Mater 2020;3:146-59.

21. Niu J, Zhang Z, Aurbach D. Alloy anode materials for rechargeable Mg ion batteries. Adv Energy Mater 2020;10:2000697.

22. Jiang J, Liu J. Iron anode-based aqueous electrochemical energy storage devices: Recent advances and future perspectives. Interdiscip Mater 2022;1:116-39.

23. Jiang M, Fu C, Meng P, et al. Challenges and strategies of low-cost aluminum anodes for high-performance Al-based batteries. Adv Mater 2022;34:e2102026.

24. Wu F, Yang H, Bai Y, Wu C. Paving the path toward reliable cathode materials for aluminum-ion batteries. Adv Mater 2019;31:e1806510.

25. Yang H, Li H, Li J, et al. The rechargeable aluminum battery: opportunities and challenges. Angew Chem Int Ed Engl 2019;58:11978-96.

26. Wei C, Tan L, Zhang Y, et al. Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano 2021;15:12741-67.

27. Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau FF. Review on Li-sulfur battery systems: an integral perspective. Adv Energy Mater 2015;5:1500212.

28. Luo C, Zhu Y, Borodin O, et al. Activation of oxygen-stabilized sulfur for Li and Na batteries. Adv Funct Materials 2016;26:745-52.

29. Zhou C, Lu K, Zhou S, et al. Strategies toward anode stabilization in nonaqueous alkali metal-oxygen batteries. Chem Commun 2022;58:8014-24.

30. Wu C, Lou J, Zhang J, et al. Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy 2021;87:106081.

31. Zhang H, Sun C. Cost-effective iron-based aqueous redox flow batteries for large-scale energy storage application: a review. J Power Sources 2021;493:229445.

32. Li B, Liu J. Progress and directions in low-cost redox-flow batteries for large-scale energy storage. Nat Sci Rev 2017;4:91-105.

33. Nie W, Cheng H, Sun Q, et al. Design Strategies toward high-performance Zn metal anode. Small Methods 2023:e2201572.

34. Fan L, Li X. Recent advances in effective protection of sodium metal anode. Nano Energy 2018;53:630-42.

35. Xu M, Li Y, Ihsan-ul-haq M, et al. NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energ Storage Mater 2022;44:477-86.

36. Zhang Y, Zuo T, Popovic J, et al. Towards better Li metal anodes: challenges and strategies. Mater Today 2020;33:56-74.

37. Han Y, Liu B, Xiao Z, et al. Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives. InfoMat 2021;3:155-74.

38. Zhang X, Lv R, Tang W, et al. Challenges and opportunities for multivalent metal anodes in rechargeable batteries. Adv Funct Materials 2020;30:2004187.

39. Chen Y, Luo Y, Zhang H, Qu C, Zhang H, Li X. The challenge of lithium metal anodes for practical applications. Small Methods 2019;3:1800551.

40. Zheng X, Bommier C, Luo W, Jiang L, Hao Y, Huang Y. Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions. Energy Storage Mater 2019;16:6-23.

41. Du W, Ang EH, Yang Y, Zhang Y, Ye M, Li CC. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ Sci 2020;13:3330-60.

42. Brissot C, Rosso M, Chazalviel J, Baudry P, Lascaud S. In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochim Acta 1998;43:1569-74.

43. Rosso M, Gobron T, Brissot C, Chazalviel J, Lascaud S. Onset of dendritic growth in lithium/polymer cells. J Power Sources 2001;97-8:804-6.

44. Zhang R, Cheng XB, Zhao CZ, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater 2016;28:2155-62.

45. Zhang Y, Liu B, Hitz E, et al. A carbon-based 3D current collector with surface protection for Li metal anode. Nano Res 2017;10:1356-65.

46. Brissot C, Rosso M, Chazalviel J-, Lascaud S. In situ concentration cartography in the neighborhood of dendrites growing in lithium/polymer-electrolyte/lithium cells. J Electrochem Soc 1999;146:4393-400.

47. Brissot C, Rosso M, Chazalviel J, Lascaud S. Dendritic growth mechanisms in lithium/polymer cells. J Power Sources 1999;81-2:925-9.

48. Zhang Y, Yao Y, Sendeku MG, et al. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv Mater 2019;31:e1901694.

49. Zavabeti A, Jannat A, Zhong L, Haidry AA, Yao Z, Ou JZ. Two-dimensional materials in large-areas: synthesis, properties and applications. Nanomicro Lett 2020;12:66.

50. Mannix AJ, Kiraly B, Hersam MC, Guisinger NP. Synthesis and chemistry of elemental 2D materials. Nat Rev Chem 2017;1:0014.

51. Rojaee R, Shahbazian-Yassar R. Two-dimensional materials to address the lithium battery challenges. ACS Nano 2020;14:2628-58.

52. Wei C, Tao Y, An Y, et al. Recent advances of emerging 2D mxene for stable and dendrite-free metal anodes. Adv Funct Materials 2020;30:2004613.

53. Zheng S, Zhao W, Chen J, Zhao X, Pan Z, Yang X. 2D materials boost advanced Zn anodes: principles, advances, and challenges. Nanomicro Lett 2023;15:46.

54. Li Z, Zhang Y, Guan H, et al. Rationally integrating 2D confinement and high sodiophilicity toward SnO(2)/Ti(3) C(2) T(x) composites for high-performance sodium-metal anodes. Small 2023;19:e2208277.

55. Cao Z, Zhang Y, Cui Y, et al. Harnessing the unique features of 2D materials toward dendrite-free metal anodes. Energy Environ Mater 2022;5:45-67.

56. Bunch JS, Verbridge SS, Alden JS, et al. Impermeable atomic membranes from graphene sheets. Nano Lett 2008;8:2458-62.

57. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008;321:385-8.

58. Nair RR, Blake P, Grigorenko AN, et al. Fine structure constant defines visual transparency of graphene. Science 2008;320:1308.

59. Bolotin KI, Jiang Z, Klima M, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun 2008;146:351-5.

60. Su CY, Lu AY, Xu Y, Chen FR, Khlobystov AN, Li LJ. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 2011;5:2332-9.

61. Muñoz R, Gómez-aleixandre C. Review of CVD synthesis of graphene. Chem Vap Deposition 2013;19:297-322.

62. Vazirisereshk MR, Hasz K, Zhao MQ, Johnson ATC, Carpick RW, Martini A. Nanoscale friction behavior of transition-metal dichalcogenides: role of the chalcogenide. ACS Nano 2020;14:16013-21.

63. Zong X, Yan H, Wu G, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation. J Am Chem Soc 2008;130:7176-7.

64. Liu Y, Guo J, Zhu E, et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018;557:696-700.

65. Sun G, Li B, Li J, et al. Direct van der Waals epitaxial growth of 1D/2D Sb2Se3/WS2 mixed-dimensional p-n heterojunctions. Nano Res 2019;12:1139-45.

66. Wang X, Lin J, Zhu Y, et al. Chemical vapor deposition of trigonal prismatic NbS(2) monolayers and 3R-polytype few-layers. Nanoscale 2017;9:16607-11.

67. Deng Y, Lai Y, Zhao X, et al. Controlled Growth of 3R Phase Tantalum Diselenide and Its Enhanced Superconductivity. J Am Chem Soc 2020;142:2948-55.

68. Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 2015;10:313-8.

69. Liu Z, Ou X, Zhuang M, et al. Confinement-enhanced rapid interlayer diffusion within graphene-supported anisotropic ReSe(2) electrodes. ACS Appl Mater Interfaces 2019;11:31147-54.

70. Liu Z, Daali A, Xu GL, et al. Highly reversible sodiation/desodiation from a carbon-sandwiched snS(2) nanosheet anode for sodium ion batteries. Nano Lett 2020;20:3844-51.

71. Kim SY, Kwak J, Ciobanu CV, Kwon SY. Recent developments in controlled vapor-phase growth of 2D group 6 transition metal dichalcogenides. Adv Mater 2019;31:e1804939.

72. Wang F, Tu B, He P, et al. Uncovering the conduction behavior of van der waals ambipolar semiconductors. Adv Mater 2019;31:e1805317.

73. Chen Y, Peng B, Cong C, et al. In-Plane Anisotropic Thermal conductivity of few-layered transition metal dichalcogenide Td-WTe(2). Adv Mater 2019;31:e1804979.

74. Zhu C, Chen Y, Liu F, et al. Light-tunable 1T-TaS(2) charge-density-wave oscillators. ACS Nano 2018;12:11203-10.

75. Bosi M. Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Adv 2015;5:75500-18.

76. Zhang K, Feng Y, Wang F, Yang Z, Wang J. Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. J Mater Chem C 2017;5:11992-2022.

77. Costa C, Barbosa J, Gonçalves R, Castro H, Campo FD, Lanceros-méndez S. Recycling and environmental issues of lithium-ion batteries: Advances, challenges and opportunities. Energ Storage Mater 2021;37:433-65.

78. Chen TA, Chuu CP, Tseng CC, et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 2020;579:219-23.

79. Ma KY, Zhang L, Jin S, et al. Epitaxial single-crystal hexagonal boron nitride multilayers on Ni (111). Nature 2022;606:88-93.

80. Kim KK, Hsu A, Jia X, et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 2012;12:161-6.

81. Kim SM, Hsu A, Park MH, et al. Synthesis of large-area multilayer hexagonal boron nitride for high material performance. Nat Commun 2015;6:8662.

82. Zeng F, Wang R, Wei W, et al. Stamped production of single-crystal hexagonal boron nitride monolayers on various insulating substrates. Nat Commun 2023;14:6421.

83. Singhal R, Echeverria E, Mcilroy DN, Singh RN. Synthesis of hexagonal boron nitride films on silicon and sapphire substrates by low-pressure chemical vapor deposition. Thin Solid Films 2021;733:138812.

84. Mehek R, Iqbal N, Noor T, et al. Metal-organic framework based electrode materials for lithium-ion batteries: a review. RSC Adv 2021;11:29247-66.

85. Liu X, Jin Y, Wang H, et al. In situ growth of covalent organic framework nanosheets on graphene as the cathode for long-life high-capacity lithium-ion batteries. Adv Mater 2022;34:e2203605.

86. Kong L, Liu M, Huang H, Xu Y, Bu X. Metal/covalent-organic framework based cathodes for metal-ion batteries. Adv Energy Mater 2022;12:2100172.

87. Cravillon J, Münzer S, Lohmeier S, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater 2009;21:1410-2.

88. Chui SS, Lo SM, Charmant JP, Orpen AG, Williams ID. A chemically functionalizable nanoporous material. Science 1999;283:1148-50.

89. Tranchemontagne DJ, Hunt JR, Yaghi OM. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008;64:8553-7.

90. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev 2012;112:933-69.

91. Campbell NL, Clowes R, Ritchie LK, Cooper AI. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 2009;21:204-6.

92. Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J Am Chem Soc 2013;135:5328-31.

93. Kim S, Park C, Lee M, et al. Rapid Photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv Funct Materials 2017;27:1700925.

94. Ren H, Wei T. Electrochemical synthesis methods of metal-organic frameworks and their environmental analysis applications: a review. ChemElectroChem 2022;9:e202200196.

95. Zhang M, Chen J, Zhang S, et al. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. J Am Chem Soc 2020;142:9169-74.

96. Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 2017;29:7633-44.

97. Sang X, Xie Y, Lin MW, et al. Atomic defects in monolayer titanium carbide (Ti(3)C(2)T(x)) MXene. ACS Nano 2016;10:9193-200.

98. Guo Z, Zhou J, Si C, Sun Z. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys Chem Chem Phys 2015;17:15348-54.

99. Hart JL, Hantanasirisakul K, Lang AC, et al. Control of MXenes' electronic properties through termination and intercalation. Nat Commun 2019;10:522.

100. Jiang Y, Sun T, Xie X, et al. Oxygen-functionalized ultrathin Ti(3)C(2)T(x) MXene for enhanced electrocatalytic hydrogen evolution. ChemSusChem 2019;12:1368-73.

101. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 2011;23:4248-53.

102. Zhan X, Si C, Zhou J, Sun Z. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz 2020;5:235-58.

103. Anasori B, Xie Y, Beidaghi M, et al. Two-Dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015;9:9507-16.

104. Li Y, Shao H, Lin Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat Mater 2020;19:894-9.

105. Yang S, Zhang P, Wang F, et al. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed Engl 2018;57:15491-5.

106. Li T, Yao L, Liu Q, et al. Fluorine-free synthesis of high-purity Ti(3)C(2)T(x) (T=OH, O) via alkali treatment. Angew Chem Int Ed Engl 2018;57:6115-9.

107. Wang D, Zhou C, Filatov AS, et al. Direct synthesis and chemical vapor deposition of 2D carbide and nitride MXenes. Science 2023;379:1242-7.

108. Liu J, Liu XW. Two-dimensional nanoarchitectures for lithium storage. Adv Mater 2012;24:4097-111.

109. Sun W, Rui X, Zhu J, et al. Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage. J Power Sources 2015;274:755-61.

110. Zhang X, Shi W, Zhu J, et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 2010;3:643-52.

111. Garg N, Basu M, Ganguli AK. Nickel cobaltite nanostructures with enhanced supercapacitance activity. J Phys Chem C 2014;118:17332-41.

112. Jiang H, Zhao T, Li C, Ma J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J Mater Chem 2011;21:3818-23.

113. Kurra N, Alhebshi NA, Alshareef HN. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Advanced Energy Materials 2015;5:1401303.

114. Yang GW, Xu CL, Li HL. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem Commun 2008:6537-9.

115. Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 2014;5:4458.

116. Qiao J, Kong X, Hu ZX, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat Commun 2014;5:4475.

117. Li L, Yang F, Ye GJ, et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat Nanotechnol 2016;11:593-7.

118. Luo Z, Maassen J, Deng Y, et al. Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat Commun 2015;6:8572.

119. Guo Z, Zhang H, Lu S, et al. From black phosphorus to phosphorene: basic solvent exfoliation, evolution of raman scattering, and applications to ultrafast photonics. Adv Funct Materials 2015;25:6996-7002.

120. Pei J, Gai X, Yang J, et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat Commun 2016;7:10450.

121. Gao J, Zhang G, Zhang YW. The critical role of substrate in stabilizing phosphorene nanoflake: a theoretical exploration. J Am Chem Soc 2016;138:4763-71.

122. Wong H, Li Y, Wang J, et al. Two-dimensional materials for high density, safe and robust metal anodes batteries. Nano Converg 2023;10:37.

123. Zhang C, Wang A, Zhang J, Guan X, Tang W, Luo J. 2D Materials for lithium/sodium metal anodes. Adv Energy Mater 2018;8:1802833.

124. Shang M, Shovon OG, Wong FEY, Niu J. A BF(3) -doped MXene dual-layer interphase for a reliable lithium-metal anode. Adv Mater 2023;35:e2210111.

125. Han KH, Seok JY, Kim IH, et al. A 2D ultrathin nanopatterned interlayer to suppress lithium dendrite growth in high-energy lithium-metal anodes. Adv Mater 2022;34:e2203992.

126. Zhou J, Xie M, Wu F, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv Mater 2021;33:e2101649.

127. Jiang Z, Liu T, Yan L, et al. Metal-organic framework nanosheets-guided uniform lithium deposition for metallic lithium batteries. Energ Storage Mater 2018;11:267-73.

128. Landsman MR, Sujanani R, Brodfuehrer SH, et al. Water treatment: are membranes the panacea? Annu Rev Chem Biomol Eng 2020;11:559-85.

129. Denny MS, Moreton JC, Benz L, Cohen SM. Metal–organic frameworks for membrane-based separations. Nat Rev Mater 2016;1:16078.

130. Zhang Y, Li J, Zhao W, et al. Defect-free metal-organic framework membrane for precise ion/solvent separation toward highly stable magnesium metal anode. Adv Mater 2022;34:e2108114.

131. Zhao F, Zhai P, Wei Y, et al. Constructing artificial sei layer on lithiophilic MXene surface for high-performance lithium metal anodes. Adv Sci 2022;9:e2103930.

132. Zhang D, Wang S, Li B, Gong Y, Yang S. Horizontal growth of lithium on parallelly aligned mxene layers towards dendrite-free metallic lithium anodes. Adv Mater 2019;31:e1901820.

133. Cha E, Patel MD, Park J, et al. 2D MoS(2) as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat Nanotechnol 2018;13:337-44.

134. Zhao W, Cao Z, Bayhan Z, et al. A two-dimensional cation-deficient Ti0.87O2 artificial protection layer for stable sodium metal anodes. Materials Today Energy 2023;34:101271.

135. Tian Y, An Y, Yang Y, Xu B. Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energ Storage Mater 2022;49:122-34.

136. Zhang X, Weng H, Miu Y, et al. Atomic-scale inorganic carbon additive with rich surface polarity and low lattice mismatch for zinc to boost Zn metal anode reversibility. Chem Eng J 2024;482:148807.

137. Yang M, Mo Y. Interfacial defect of lithium metal in solid-state batteries. Angew Chem Int Ed Engl 2021;60:21494-501.

138. Liu J, Zhang J, Zhang Z, et al. Epitaxial electrocrystallization of magnesium via synergy of magnesiophilic interface, lattice matching, and electrostatic confinement. ACS Nano 2022;16:9894-907.

139. Wang J, Zhang J, Wu J, et al. Interfacial "single-atom-in-defects" catalysts accelerating Li(+) desolvation kinetics for long-lifespan lithium-metal batteries. Adv Mater 2023;35:e2302828.

140. Li Y, Min Y, Liang J, et al. Lithiophilic diffusion barrier layer on stainless steel mesh for dendrite suppression and stable lithium metal anode. Appl Mater Today 2021;22:100896.

141. Wu Y, Yu Y. 2D material as anode for sodium ion batteries: Recent progress and perspectives. Energ Storage Mater 2019;16:323-43.

142. Tian H, Liang J, Liu J. Nanoengineering carbon spheres as nanoreactors for sustainable energy applications. Adv Mater 2019;31:e1903886.

143. Tian H, Song A, Tian H, et al. Single-atom catalysts for high-energy rechargeable batteries. Chem Sci 2021;12:7656-76.

144. Li Y, Wong H, Wang J, et al. Deposition of horizontally stacked Zn crystals on single layer 1T-VSe 2 for dendrite-free Zn metal anodes. Adv Energy Mater 2022;12:2202983.

145. Zheng J, Zhao Q, Tang T, et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 2019;366:645-8.

146. Wang Y, Xu X, Yin J, et al. MoS(2) -Mediated epitaxial plating of Zn metal anodes. Adv Mater 2023;35:e2208171.

147. Wang C, Zheng Z, Feng Y, Ye H, Cao F, Guo Z. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020;74:104817.

148. Wang T, Liu Y, Lu Y, Hu Y, Fan L. Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts. Energ Storage Mater 2018;15:274-81.

149. Zhang S, Xiao S, Li D, et al. Commercial carbon cloth: an emerging substrate for practical lithium metal batteries. Energ Storage Mater 2022;48:172-90.

150. Yang H, Zhang L, Wang H, et al. Regulating Na deposition by constructing a Au sodiophilic interphase on CNT modified carbon cloth for flexible sodium metal anode. J Colloid Interface Sci 2022;611:317-26.

151. Zhao Y, Sun Q, Li X, et al. Carbon paper interlayers: a universal and effective approach for highly stable Li metal anodes. Nano Energy 2018;43:368-75.

152. Lu Z, Zhang Z, Chen X, et al. Improving Li anode performance by a porous 3D carbon paper host with plasma assisted sponge carbon coating. Energ Storage Mater 2018;11:47-56.

153. Chen Q, Wei Y, Zhang X, et al. Vertically aligned mxene nanosheet arrays for high-rate lithium metal anodes. Adv Energy Mater 2022;12:2200072.

154. Xu M, Liu Z, Li Y, et al. Uniform SnSe nanoparticles on 3D graphene host enabling a dual-nucleation-site interface for dendrite-free sodium metal batteries. Energ Storage Mater 2023;60:102848.

155. Shi H, Dong Y, Zheng S, Dong C, Wu ZS. Three dimensional Ti(3)C(2) MXene nanoribbon frameworks with uniform potassiophilic sites for the dendrite-free potassium metal anodes. Nanoscale Adv 2020;2:4212-9.

156. Yan J, Zhi G, Kong D, et al. 3D printed rGO/CNT microlattice aerogel for a dendrite-free sodium metal anode. J Mater Chem A 2020;8:19843-54.

157. Yang H, Wang H, Li W, et al. A simple and effective host for sodium metal anode: a 3D-printed high pyrrolic-N doped graphene microlattice aerogel. J Mater Chem A 2022;10:16842-52.

158. Wang Z, Huang Z, Wang H, et al. 3D-Printed sodiophilic V(2)CT(x)/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity. ACS Nano 2022;16:9105-16.

159. Zhou J, Xie M, Wu F, et al. Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Zn-Ion Batteries. Adv Mater 2022;34:e2106897.

160. Wang F, Lu H, Li H, et al. Demonstrating U-shaped zinc deposition with 2D metal-organic framework nanoarrays for dendrite-free zinc batteries. Energ Storage Mater 2022;50:641-7.

161. Heo YH, Lee J, Ha S, et al. 3D-structured bifunctional MXene paper electrodes for protection and activation of Al metal anodes. J Mater Chem A 2023;11:14380-9.

162. Wei C, Wang Y, Zhang Y, et al. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res 2021;14:3576-84.

163. Yang T, Li L, Wu F, Chen R. A soft lithiophilic graphene aerogel for stable lithium metal anode. Adv Funct Materials 2020;30:2002013.

164. Hu Z, Su H, Zhou M, et al. Lithiophilic carbon nanofiber/graphene nanosheet composite scaffold prepared by a scalable and controllable biofabrication method for ultrastable dendrite-free lithium-metal anodes. Small 2022;18:e2104735.

165. Cao Z, Chen H, Du Z, et al. Low-tortuous MXene (TiNbC) accordion arrays enabled fast ion diffusion and charge transfer in dendrite-free lithium metal anodes. Adv Energy Mater 2022;12:2201189.

166. Luo J, Lu X, Matios E, et al. Tunable MXene-derived 1D/2D hybrid nanoarchitectures as a stable matrix for dendrite-free and ultrahigh capacity sodium metal anode. Nano Lett 2020;20:7700-8.

167. Xue P, Guo C, Li L, et al. A MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv Mater 2022;34:e2110047.

168. Zhang Y, Tian Y, Wang Z, et al. Flexible, free-standing and dendrite-free iron metal anodes enabled by MXene frameworks for aqueous Fe metal dual-ion batteries. Chem Eng J 2023;458:141388.

169. Wu J, Li X, Rao Z, et al. Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy 2020;72:104725.

170. Zhang Y, Huang Z, Wu K, et al. 2D anionic nanosheet additive for stable Zn metal anodes in aqueous electrolyte. Chem Eng J 2022;430:133042.

171. Aslam MK, Niu Y, Hussain T, et al. How to avoid dendrite formation in metal batteries: Innovative strategies for dendrite suppression. Nano Energy 2021;86:106142.

172. Jiang B, Li F, Hou T, et al. Polymer electrolytes shielded by 2D Li0.46Mn0.77PS3 Li+-conductors for all-solid-state lithium-metal batteries. Energ Storage Mater 2023;56:183-91.

173. Pan Q, Zheng Y, Kota S, et al. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv 2019;1:395-402.

174. Liu C, Tian Y, An Y, et al. Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries. Chem Eng J 2022;430:132748.

175. Han X, Chen J, Chen M, et al. Induction of planar Li growth with designed interphases for dendrite-free Li metal anodes. Energ Storage Mater 2021;39:250-8.

176. Wu L, Zhang Y, Shang P, Dong Y, Wu Z. Redistributing Zn ion flux by bifunctional graphitic carbon nitride nanosheets for dendrite-free zinc metal anodes. J Mater Chem A 2021;9:27408-14.

177. Zhou J, Zhang Z, Jiang W, et al. Ion-sieving Janus separator modified by Ti3C2Tx toward dendrite-free zinc-ion battery. J Alloy Compd 2023;950:169836.

178. Guo C, Luo ZH, Zhou MX, et al. Clay-originated two-dimensional holey silica separator for dendrite-free lithium Metal Anode. Small 2023;19:e2301428.

179. Jiang C, Tang M, Zhu S, et al. Constructing universal ionic sieves via alignment of two-dimensional covalent organic frameworks (COFs). Angew Chem Int Ed Engl 2018;57:16072-6.

180. Cao Z, Zhang H, Song B, et al. Angstrom-level ionic sieve 2D-MOF membrane for high power aqueous zinc anode. Adv Funct Materials 2023;33:2300339.

181. Ni L, Osenberg M, Liu H, et al. In situ visualizing the interplay between the separator and potassium dendrite growth by synchrotron X-ray tomography. Nano Energy 2021;83:105841.

182. Yu SH, Huang X, Brock JD, Abruña HD. Regulating key variables and visualizing lithium dendrite growth: an operando X-ray Study. J Am Chem Soc 2019;141:8441-9.

183. Wu Z, Kong Pang W, Chen L, Johannessen B, Guo Z. In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries. Batteries Supercaps 2021;4:1547-66.

184. Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal Bioanal Chem 2021;413:727-62.

185. Xiao X, Zheng Z, Zhong X, et al. Rational design of flexible Zn-based batteries for wearable electronic devices. ACS Nano 2023;17:1764-802.

186. Ma Q, Zheng Y, Luo D, et al. 2D materials for all-solid-state lithium batteries. Adv Mater 2022;34:e2108079.

187. Wang Q, Lu T, Xiao Y, et al. Leap of Li metal anodes from coin cells to pouch cells: challenges and progress. Electrochem Energy Rev 2023;6:22.

188. Deng S, Jiang M, Rao A, et al. Fast-charging halide-based all-solid-state batteries by manipulation of current collector interface. Adv Funct Materials 2022;32:2200767.

189. Duan H, Wang C, Yu R, et al. In situ constructed 3d lithium anodes for long-cycling all-solid-state batteries. Adv Energy Mater 2023;13:2300815.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/