REFERENCES

1. Zakeri B, Syri S. Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev 2015;42:569-96.

2. Aneke M, Wang M. Energy storage technologies and real life applications - a state of the art review. Appl Energy 2016;179:350-77.

3. Renewable energy policy network for the 21 century. 2017. Available from: https://www.ren21.net/wp-content/uploads/2019/05/GSR2017_Full-Report_English.pdf [Last accessed on 11 Mar 2023].

4. Bullough C, Gatzen C, Jakiel C, Koller M, Nowi A, Zunft S. Advanced adiabatic compressed air energy storage for the integration of wind energy. In Proceedings of the european wind energy conference; 22-25 Nov 2004, London, UK. Available from: https://www.nrc.gov/docs/ML1202/ML12026A783.pdf [Last accessed on 11 Mar 2023].

5. Harby A, Sauterleute J, Korpås M, Killingtveit Å, Solvang E, Nielsen T. Pumped storage hydropower. In: Transition to renewable energy systems; 2013, p. 597.

6. Huang H, Li D, Hou L, et al. Advanced protective layer design on the surface of Mg-based metal and application in batteries: challenges and progress. J Power Sources 2022;542:231755.

7. Wu J, Zhou T, Zhong B, Wang Q, Liu W, Zhou H. Designing anion-derived solid electrolyte interphase in a siloxane-based electrolyte for lithium-metal batteries. ACS Appl Mater Interfaces 2022;14:27873-81.

8. Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Recent progress in redox flow battery research and development. Adv Funct Mater 2013;23:970-86.

9. Chalamala BR, Soundappan T, Fisher GR, Anstey MR, Viswanathan VV, Perry ML. Redox flow batteries: an engineering perspective. Proc IEEE 2014;102:976-99.

10. Goldstein A. Federal policy to accelerate innovation in long-duration energy storage: the case for flow batteries. 2021. Available from: https://itif.org/publications/2021/04/07/federal-policy-accelerate-innovation-long-duration-energy-storage-case-flow/ [Last accessed on 11 Mar 2023].

11. Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci 2018;11:2696-767.

12. Iwakiri I, Antunes T, Almeida H, Sousa JP, Figueira RB, Mendes A. Redox flow batteries: materials, design and prospects. Energies 2021;14:5643.

13. Yuan X, Song C, Platt A, et al. A review of all-vanadium redox flow battery durability: degradation mechanisms and mitigation strategies. Int J Energy Res 2019;43:6599.

14. Lu W, Yuan Z, Zhao Y, Li X, Zhang H, Vankelecom IFJ. High-performance porous uncharged membranes for vanadium flow battery applications created by tuning cohesive and swelling forces. Energy Environ Sci 2016;9:2319-25.

15. Jia C, Liu J, Yan C. A significantly improved membrane for vanadium redox flow battery. J Power Sources 2010;195:4380-3.

16. Lou X, Lu B, He M, et al. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery. J Membr Sci 2022;643:120015.

17. Wei X, Pan W, Duan W, et al. Materials and systems for organic redox flow batteries: status and challenges. ACS Energy Lett 2017;2:2187-204.

18. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7:19-29.

19. Ding Y, Zhang C, Zhang L, Zhou Y, Yu G. Molecular engineering of organic electroactive materials for redox flow batteries. Chem Soc Rev 2018;47:69-103.

20. Tabor DP, Roch LM, Saikin SK, et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat Rev Mater 2018;3:5-20.

21. Wang C, Yang Z, Wang Y, et al. High-performance alkaline organic redox flow batteries based on 2-hydroxy-3-carboxy-1,4-naphthoquinone. ACS Energy Lett 2018;3:2404-9.

22. Tong L, Goulet M, Tabor DP, et al. Molecular engineering of an alkaline naphthoquinone flow battery. ACS Energy Lett 2019;4:1880-7.

23. Yu J, Salla M, Zhang H, et al. A robust anionic sulfonated ferrocene derivative for pH-neutral aqueous flow battery. Energy Stor Mater 2020;29:216-22.

24. Hwang B, Park MS, Kim K. Ferrocene and cobaltocene derivatives for non-aqueous redox flow batteries. ChemSusChem 2015;8:310-4.

25. Gerhardt MR, Tong L, Chen Q, Gordon RG, Aziz MJ. Anthraquinone derivatives in aqueous flow batteries. Meet Abstr 2016;MA2016-01:382.

26. Yang X, Garcia SN, Janoschka T, Kónya D, Hager MD, Schubert US. Novel, stable catholyte for aqueous organic redox flow batteries: symmetric cell study of hydroquinones with high accessible capacity. Molecules 2021;26:3823.

27. Lai YY, Li X, Zhu Y. Polymeric active materials for redox flow battery application. ACS Appl Polym Mater 2020;2:113-28.

28. Janoschka T, Martin N, Martin U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 2015;527:78-81.

29. Li T, Zhang C, Li X. Machine learning for flow batteries: opportunities and challenges. Chem Sci 2022;13:4740-52.

30. Pyzer-knapp EO, Pitera JW, Staar PWJ, et al. Accelerating materials discovery using artificial intelligence, high performance computing and robotics. NPJ Comput Mater 2022;8:84.

31. Huang S, Cole JM. A database of battery materials auto-generated using ChemDataExtractor. Sci Data 2020;7:260.

32. Liang Y, Job H, Feng R, et al. High-throughput solubility determination for data-driven materials design and discovery in redox flow battery research. ChemRxiv 2023.

33. Duke R, Bhat V, Sornberger P, Odom SA, Risko C. Towards a comprehensive data infrastructure for redox-active organic molecules targeting non-aqueous redox flow batteries. Dig Discov 2023;2:1152-62.

34. Gao P, Andersen A, Sepulveda J, et al. SOMAS: a platform for data-driven material discovery in redox flow battery development. Sci Data 2022;9:740.

35. Häse F, Aldeghi M, Hickman RJ, Roch LM, Aspuru-guzik A. Gryffin: an algorithm for bayesian optimization of categorical variables informed by expert knowledge. Appl Phys Rev 2021;8:031406.

36. Roch LM, Häse F, Kreisbeck C, et al. ChemOS: orchestrating autonomous experimentation. Sci Robot 2018;3:eaat5559.

37. Boyce BL, Uchic MD. Progress toward autonomous experimental systems for alloy development. MRS Bull 2019;44:273-80.

38. Zhu X. Toward the uniform of chemical theory, simulation, and experiments in metaverse technology. Precis Chem 2023;1:192-8.

39. Li T, Lu W, Yuan Z, Zhang H, Li X. A data-driven and DFT assisted theoretic guide for membrane design in flow batteries. J Mater Chem A 2021;9:14545-52.

40. Wang F, Li J, Liu Z, Qiu T, Wu J, Lu D. Computational design of quinone electrolytes for redox flow batteries using high-throughput machine learning and theoretical calculations. Front Chem Eng 2023;4:1086412.

41. Chen Q, Gerhardt MR, Hartle L, Aziz MJ. A quinone-bromide flow battery with 1 W/cm2 power density. J Electrochem Soc 2016;163:A5010-3.

42. Xiong Z, Wang D, Liu X, et al. Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism. J Med Chem 2020;63:8749-60.

43. Merchant A, Batzner S, Schoenholz SS, Aykol M, Cheon G, Cubuk ED. Scaling deep learning for materials discovery. Nature 2023;624:80-5.

44. Sorkun E, Zhang Q, Khetan A, Sorkun MC, Er S. RedDB, a computational database of electroactive molecules for aqueous redox flow batteries. Sci Data 2022;9:718.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/