REFERENCES

1. Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019;364:eaav3506.

2. Bushuyev OS, De Luna P, Dinh CT, et al. What should we make with CO2 and how can we make it? Joule 2018;2:825-32.

3. Sa YJ, Lee CW, Lee SY, Na J, Lee U, Hwang YJ. Catalyst-electrolyte interface chemistry for electrochemical CO2 reduction. Chem Soc Rev 2020;49:6632-65.

4. Lei Y, Wang Z, Bao A, et al. Recent advances on electrocatalytic CO2 reduction to resources: target products, reaction pathways and typical catalysts. Chem Eng J 2023;453:139663.

5. Shakun JD, Clark PU, He F, et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 2012;484:49-54.

6. Khezri B, Fisher AC, Pumera M. CO2 reduction: the quest for electrocatalytic materials. J Mater Chem A 2017;5:8230-46.

7. Tanvir RU, Zhang J, Canter T, Chen D, Lu J, Hu Z. Harnessing solar energy using phototrophic microorganisms: a sustainable pathway to bioenergy, biomaterials, and environmental solutions. Renew Sustain Energy Rev 2021;146:1-111181.

8. Zhu DD, Liu JL, Qiao SZ. Recent Advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater 2016;28:3423-52.

9. Zhu S, Delmo EP, Li T, et al. Recent advances in catalyst structure and composition engineering strategies for regulating CO2 electrochemical reduction. Adv Mater 2021;33:e2005484.

10. Wang Y, Miao Y, Ge B, et al. Additives enhancing supported amines performance in CO2 capture from air. SusMat 2023;3:416-30.

11. Gu Z, Shen H, Shang L, Lv X, Qian L, Zheng G. Nanostructured copper-based electrocatalysts for CO2 reduction. Small Methods 2018;2:1800121.

12. Liu C, Gallagher JJ, Sakimoto KK, et al. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 2015;15:3634-9.

13. Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun 2014;5:3242.

14. Qiao J, Liu Y, Hong F, Zhang J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev 2014;43:631-75.

15. Li Z, Qi X, Wang J, et al. Stabilizing highly active atomically dispersed NiN4Cl sites by Cl-doping for CO2 electroreduction. SusMat 2023;3:498-509.

16. Liu S, Fan Y, Wang Y, et al. Surface-oxygen-rich Bi@C nanoparticles for high-efficiency electroreduction of CO2 to formate. Nano Lett 2022;22:9107-14.

17. Şahin NE, Comminges C, Arrii S, Napporn TW, Kokoh KB. CO2-to-HCOOH electrochemical conversion on nanostructured CuxPd100-x/carbon catalysts. ChemElectroChem 2021;8:1362-8.

18. Sun Y, Liu F, Wang X, et al. Highly selective CO2 electroreduction to CO by the synergy between Ni-N-C and encapsulated Ni nanoparticles. Dalton Trans 2023;52:928-35.

19. Frese KW, Leach S. Electrochemical reduction of carbon dioxide to methane, methanol, and  CO  on Ru electrodes. J Electrochem Soc 1985;132:259-60.

20. Wang P, Yang H, Tang C, et al. Boosting electrocatalytic CO2-to-ethanol production via asymmetric C-C coupling. Nat Commun 2022;13:3754.

21. Zhang H, Gao J, Raciti D, Hall AS. Promoting Cu-catalysed CO2 electroreduction to multicarbon products by tuning the activity of H2O. Nat Catal 2023;6:807-17.

22. De R, Gonglach S, Paul S, et al. Electrocatalytic reduction of CO2 to acetic acid by a molecular manganese corrole complex. Angew Chem Int Ed 2020;132:10614-21.

23. Liu X, Zhang K, Sun Y, et al. Upgrading CO2 into acetate on Bi2O3@carbon felt integrated electrode via coupling electrocatalysis with microbial synthesis. SusMat 2023;3:235-47.

24. Zhang H, Qiao Y, Wang Y, Zheng Y, Huang H. In situ oxidative etching-enabled synthesis of hollow Cu2O nanocrystals for efficient CO2 RR into C2+ products. Sustain Energy Fuels 2022;6:4860-5.

25. Han N, Ding P, He L, Li Y, Li Y. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater 2020;10:1902338.

26. Jouny M, Luc W, Jiao F. General techno-economic analysis of CO2 electrolysis systems. Ind Eng Chem Res 2018;57:2165-77.

27. Calle-Vallejo F, Koper MT. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew Chem Int Ed 2013;52:7282-5.

28. Schreier M, Luo J, Gao P, Moehl T, Mayer MT, Grätzel M. Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J Am Chem Soc 2016;138:1938-46.

29. Hori Y, Takahashi I, Koga O, Hoshi N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J Phys Chem B 2002;106:15-7.

30. Wulan B, Cao X, Tan D, et al. To stabilize oxygen on In/In2O3 heterostructure via joule heating for efficient electrocatalytic CO2 reduction. Adv Funct Mater 2022;33:2209114.

31. Bai X, Chen W, Zhao C, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy. Angew Chem Int Ed 2017;56:12219-23.

32. Li P, Yang F, Li J, et al. Nanoscale engineering of P-block metal-based catalysts toward industrial-scale electrochemical reduction of CO2. Adv Energy Mater 2023;13:2301597.

33. Chen Z, Wang X, Wang L, Wu YA. Ag@Pd bimetallic structures for enhanced electrocatalytic CO2 conversion to CO: an interplay between the strain effect and ligand effect. Nanoscale 2022;14:11187-96.

34. Xie L, Liu X, Huang F, et al. Regulating Pd-catalysis for electrocatalytic CO2 reduction to formate via intermetallic PdBi nanosheets. Chin J Catal 2022;43:1680-6.

35. Goswami C, Borah BJ, Das R, et al. CeO2 promotes electrocatalytic formic acid oxidation of Pd-based alloys. J Alloys Compd 2023;948:169665.

36. Liu M, Chen X, Wang Z, et al. Size-controlled palladium nanoparticles encapsulated in silicalite-1 for methane catalytic combustion. ACS Appl Nano Mater 2023;6:3637-46.

37. Ma K, Liao W, Shi W, et al. Ceria-supported Pd catalysts with different size regimes ranging from single atoms to nanoparticles for the oxidation of CO. J Catal 2022;407:104-14.

38. Liu G, Poths P, Zhang X, et al. CO2 hydrogenation to formate and formic acid by bimetallic palladium-copper hydride clusters. J Am Chem Soc 2020;142:7930-6.

39. Gao D, Zhou H, Cai F, et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res 2017;10:2181-91.

40. Zhou Y, Zhou R, Zhu X, et al. Mesoporous PdAg nanospheres for stable electrochemical CO2 reduction to formate. Adv Mater 2020;32:e2000992.

41. Zhou R, Fan X, Ke X, et al. Two-dimensional palladium-copper alloy nanodendrites for highly stable and selective electrochemical formate production. Nano Lett 2021;21:4092-8.

42. Chang X, Wang T, Gong J. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ Sci 2016;9:2177-96.

43. Jiao L, Yang W, Wan G, et al. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew Chem Int Ed 2020;59:20589-95.

44. Appel AM, Bercaw JE, Bocarsly AB, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 2013;113:6621-58.

45. Torrente-murciano L, Mattia D, Jones M, Plucinski P. Formation of hydrocarbons via CO2 hydrogenation - a thermodynamic study. J CO2 Util 2014;6:34-9.

46. Wu J, Sharma PP, Harris BH, Zhou X. Electrochemical reduction of carbon dioxide: IV dependence of the Faradaic efficiency and current density on the microstructure and thickness of tin electrode. J Power Sources 2014;258:189-94.

47. Tekalgne MA, Do H, Hasani A, et al. Two-dimensional materials and metal-organic frameworks for the CO2 reduction reaction. Mater Today Adv 2020;5:100038.

48. Zhang W, Hu Y, Ma L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 2018;5:1700275.

49. Kuang Y, Rabiee H, Ge L, et al. High-concentration electrosynthesis of formic acid/formate from CO2: reactor and electrode design strategies. Energy Environ Mate 2023;6:e12596.

50. Durand WJ, Peterson AA, Studt F, Abild-pedersen F, Nørskov JK. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf Sci 2011;605:1354-9.

51. Kyriacou G, Anagnostopoulos A. Electrochemical reduction of CO2 at Cu + Au electrodes. J Electroanal Chem 1992;328:233-43.

52. Koga O, Hori Y. Reduction of adsorbed Co on a Ni electrode in connection with the electrochemical reduction of CO2. Electrochim Acta 1993;38:1391-4.

53. Kostecki R, Augustynski J. Electrochemical reduction of CO2 at an activated silver electrode. Ber Bunsenges Phys Chem 1994;98:1510-5.

54. Murata A, Hori Y. Product selectivity affected by cationic species in electrochemical reduction of CO2 and CO at a Cu Electrode. Bull Chem Soc Jpn 1991;64:123-7.

55. Saha P, Amanullah S, Dey A. Selectivity in electrochemical CO2 reduction. ACC Chem Res 2022;55:134-44.

56. Ulissi ZW, Tang MT, Xiao J, et al. Machine-learning methods enable exhaustive searches for active bimetallic facets and reveal active site motifs for CO2 reduction. ACS Catal 2017;7:6600-8.

57. Nie X, Luo W, Janik MJ, Asthagiri A. Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory. J Catal 2014;312:108-22.

58. Wu J, Huang Y, Ye W, Li Y. CO2 reduction: from the electrochemical to photochemical approach. Adv Sci 2017;4:1700194.

59. Rosen J, Hutchings GS, Lu Q, et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces. ACS Catal 2015;5:4293-9.

60. Montoya JH, Shi C, Chan K, Nørskov JK. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett 2015;6:2032-7.

61. Hori Y, Kikuchi K, Suzuki S. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chem Lett 1985;14:1695-8.

62. Kuhl KP, Cave ER, Abram DN, Jaramillo TF. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ Sci 2012;5:7050.

63. Gao D, Zhou H, Cai F, Wang J, Wang G, Bao X. Pd-containing nanostructures for electrochemical CO2 reduction reaction. ACS Catal 2018;8:1510-9.

64. Diercks JS, Herranz J, Georgi M, et al. Interplay between surface-adsorbed CO and bulk Pd hydride under CO2 -electroreduction conditions. ACS Catal 2022;12:10727-41.

65. Rahaman M, Dutta A, Broekmann P. Size-dependent activity of palladium nanoparticles: efficient conversion of CO2 into formate at low overpotentials. ChemSusChem 2017;10:1733-41.

66. Lv H, Lv F, Qin H, et al. Single-crystalline mesoporous palladium and palladium-copper nanocubes for highly efficient electrochemical CO2 reduction. CCS Chem 2022;4:1376-85.

67. Klinkova A, De Luna P, Dinh C, et al. Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate. ACS Catal 2016;6:8115-20.

68. Han N, Sun M, Zhou Y, et al. Alloyed palladium-silver nanowires enabling ultrastable carbon dioxide reduction to formate. Adv Mater 2021;33:e2005821.

69. Sun Y, Wang F, Liu F, et al. Accelerating Pd electrocatalysis for CO2-to-formate conversion across a wide potential window by optimized incorporation of Cu. ACS Appl Mater Interfaces 2022;14:8896-905.

70. Chatterjee S, Griego C, Hart JL, et al. Free standing nanoporous palladium alloys as CO poisoning tolerant electrocatalysts for the electrochemical reduction of CO2 to formate. ACS Catal 2019;9:5290-301.

71. Guo S, Liu Y, Murphy E, et al. Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Appl Catal B 2022;316:121659.

72. Jiang B, Zhang XG, Jiang K, Wu DY, Cai WB. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J Am Chem Soc 2018;140:2880-9.

73. Bok J, Lee SY, Lee BH, et al. Designing atomically dispersed Au on tensile-strained Pd for efficient CO2 electroreduction to formate. J Am Chem Soc 2021;143:5386-95.

74. Jia L, Sun M, Xu J, et al. Phase-dependent electrocatalytic CO2 reduction on Pd3 Bi nanocrystals. Angew Chem Int Ed 2021;60:21741-5.

75. Ma J, Tan X, Zhang Q, Wang Y, Zhang J, Wang L. Exploring the size effect of Pt nanoparticles on the photocatalytic nonoxidative coupling of methane. ACS Catal 2021;11:3352-60.

76. Yao Z, Yuan Y, Cheng T, et al. Anomalous size effect of Pt ultrathin nanowires on oxygen reduction reaction. Nano Lett 2021;21:9354-60.

77. Cao Z, Kim D, Hong D, et al. A molecular surface functionalization approach to tuning nanoparticle electrocatalysts for carbon dioxide reduction. J Am Chem Soc 2016;138:8120-5.

78. Dong C, Lian C, Hu S, et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat Commun 2018;9:1252.

79. Mayrhofer KJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM. The impact of geometric and surface electronic properties of pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 2005;109:14433-40.

80. Wu T, Han MY, Xu ZJ. Size effects of electrocatalysts: more than a variation of surface area. ACS Nano 2022;16:8531-9.

81. Yang P, Li L, Zhao Z, Gong J. Reveal the nature of particle size effect for CO2 reduction over Pd and Au. Chin J Catal 2021;42:817-23.

82. Gao D, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc 2015;137:4288-91.

83. Zhu W, Zhang L, Yang P, et al. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance. Angew Chem Int Ed 2018;57:11544-8.

84. Cao C, Xu Q, Zhu Q. Ultrathin two-dimensional metallenes for heterogeneous catalysis. Chem Catal 2022;2:693-723.

85. Xu H, Shang H, Wang C, Du Y. Recent progress of ultrathin 2D Pd-based nanomaterials for fuel cell electrocatalysis. Small 2021;17:e2005092.

86. Liu M, Pang Y, Zhang B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 2016;537:382-6.

87. Zhang X, Zhang Z, Li H, et al. Insight into heterogeneous electrocatalyst design understanding for the reduction of carbon dioxide. Adv Energy Mater 2022;12:2201461.

88. Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 2009;48:60-103.

89. Li F, Medvedeva XV, Medvedev JJ, et al. Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nat Catal 2021;4:479-87.

90. Xiao C, Lu B, Xue P, et al. High-index-facet- and high-surface-energy nanocrystals of metals and metal oxides as highly efficient catalysts. Joule 2020;4:2562-98.

91. Tang Y, Chen Y, Wu Y, et al. High-indexed intermetallic Pt3Sn nanozymes with high activity and specificity for sensitive immunoassay. Nano Lett 2023;23:267-75.

92. Hall AS, Yoon Y, Wuttig A, Surendranath Y. Mesostructure-induced selectivity in CO2 reduction catalysis. J Am Chem Soc 2015;137:14834-7.

93. Liang J, Xia Y, Liu X, et al. Molybdenum-doped ordered L10 -PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat 2022;2:347-56.

94. Gunji T, Ochiai H, Ohira T, Liu Y, Nakajima Y, Matsumoto F. Preparation of various Pd-based alloys for electrocatalytic CO2 reduction reaction - selectivity depending on secondary elements. Chem Mater 2020;32:6855-63.

95. Lu D, Fu X, Guo D, et al. Challenges and opportunities in 2D high-entropy alloy electrocatalysts for sustainable energy conversion. SusMat 2023;3:730-48.

96. Yang S, Yang X, Cui X, et al. High C-C cleavage efficiencies of ethanol oxidation reaction on mesoporous RhPt electrocatalysts. SusMat 2022;2:689-98.

97. Proietto F, Patel U, Galia A, Scialdone O. Electrochemical conversion of CO2 to formic acid using a Sn based electrode: a critical review on the state-of-the-art technologies and their potential. Electrochim Acta 2021;389:138753.

98. Gao N, Wang F, Ding J, et al. Intercalated gold nanoparticle in 2D palladium nanosheet avoiding CO poisoning for formate production under a wide potential window. ACS Appl Mater Interfaces 2022;14:10344-52.

99. Kim D, Resasco J, Yu Y, Asiri AM, Yang P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun 2014;5:4948.

100. Dong J, Cheng Y, Li Y, et al. Abundant (110) facets on PdCu3 alloy promote electrochemical conversion of CO2 to CO. ACS Appl Mater Interfaces 2022;14:41969-77.

101. Bao K, Zhou Y, Wu J, et al. Super-branched PdCu alloy for efficiently converting carbon dioxide to carbon monoxide. Nanomaterials 2023;13:603.

102. Huang W, Wang Y, Liu J, et al. Efficient and selective CO2 reduction to formate on Pd-doped Pb3(CO3)2(OH)2: dynamic catalyst reconstruction and accelerated CO2 protonation. Small 2022;18:e2107885.

103. Li H, Yue X, Qiu Y, et al. Selective electroreduction of CO2 to formate over the co-electrodeposited Cu/Sn bimetallic catalyst. Mater Today Energy 2021;21:100797.

104. Liu S, Wang X, Tao H, et al. Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO. Nano Energy 2018;45:456-62.

105. Xie H, Wang T, Liang J, Li Q, Sun S. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018;21:41-54.

106. Chen Z, Liao Y, Chen S. Facile synthesis of platinum-copper aerogels for the oxygen reduction reaction. Energy Mater 2022;2:200033.

107. Jiang T, Zhou Y, Ma X, et al. Spectrometric study of electrochemical CO2 reduction on Pd and Pd-B electrodes. ACS Catal 2021;11:840-8.

108. Wei K, Wang X, Ge J. PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: active sites and activity enhancement. Energy Mater 2023:3.

109. Liu S, Zhang H, Ren T, et al. Interface engineering and boron modification of Pd-B/Pd hetero-metallene synergistically accelerate oxygen reduction catalysis. Small 2023;19:e2306014.

110. Lv H, Xu D, Sun L, et al. Ternary palladium-boron-phosphorus alloy mesoporous nanospheres for highly efficient electrocatalysis. ACS Nano 2019;13:12052-61.

111. Jiang T, Yu L, Zhao Z, Wu W, Wang Z, Cheng N. Regulating the intermediate affinity on Pd nanoparticles through the control of inserted-B atoms for alkaline hydrogen evolution. Chem Eng J 2022;433:133525.

112. Lin B, Wu X, Xie L, et al. Atomic imaging of subsurface interstitial hydrogen and insights into surface reactivity of palladium hydrides. Angew Chem Int Ed 2020;59:20348-52.

113. Li H, Qin X, Zhang X, Jiang K, Cai W. Boron-doped platinum-group metals in electrocatalysis: a perspective. ACS Catal 2022;12:12750-64.

114. Wang H, Li Y, Liu S, et al. B-doping-induced lattice expansion of Pd metallene nanoribbons for oxygen reduction reaction. Inorg Chem 2023;62:15157-63.

115. Mao Z, Ding C, Liu X, et al. Interstitial B-doping in Pt lattice to upgrade oxygen electroreduction performance. ACS Catal 2022;12:8848-56.

116. Shen T, Wang S, Zhao T, Hu Y, Wang D. Recent advances of single-atom-alloy for energy electrocatalysis. Adv Energy Mater 2022;12:2201823.

117. Yang X, Wang Y, Tong X, Yang N. Strain engineering in electrocatalysts: fundamentals, progress, and perspectives. Adv Energy Mater 2022;12:2102261.

118. Xia Z, Guo S. Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem Soc Rev 2019;48:3265-78.

119. Jiang K, Zhang HX, Zou S, Cai WB. Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 2014;16:20360-76.

120. Shao Q, Wang P, Liu S, Huang X. Advanced engineering of core/shell nanostructures for electrochemical carbon dioxide reduction. J Mater Chem A 2019;7:20478-93.

121. He T, Wang W, Shi F, et al. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021;598:76-81.

122. Luo M, Guo S. Strain-controlled electrocatalysis on multimetallic nanomaterials. Nat Rev Mater 2017;2:17059.

123. Yan Y, Du JS, Gilroy KD, Yang D, Xia Y, Zhang H. Intermetallic nanocrystals: syntheses and catalytic applications. Adv Mater 2017;29:1605997.

124. Li J, Sun S. Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis. Acc Chem Res 2019;52:2015-25.

125. Zhou M, Li C, Fang J. Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications. Chem Rev 2021;121:736-95.

126. Zeng Y, Liang J, Li C, et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J Am Chem Soc 2023;145:17643-55.

127. Feng S, Geng Y, Liu H, Li H. Targeted intermetallic nanocatalysts for sustainable biomass and CO2 valorization. ACS Catal 2022;12:14999-5020.

128. Zhou F, Li H, Fournier M, MacFarlane DR. Electrocatalytic CO2 reduction to formate at low overpotentials on electrodeposited Pd films: stabilized performance by suppression of CO formation. ChemSusChem 2017;10:1509-16.

129. Hou Y, Erni R, Widmer R, et al. Synthesis and characterization of degradation-resistant Cu@CuPd nanowire catalysts for the efficient production of formate and CO from CO2. ChemElectroChem 2019;6:3189-98.

130. Yin Z, Yu J, Xie Z, et al. Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J Am Chem Soc 2022;144:20931-8.

131. Kim D, Choi W, Lee HW, et al. Electrocatalytic reduction of low concentrations of CO2 gas in a membrane electrode assembly electrolyzer. ACS Energy Lett 2021;6:3488-95.

132. Ge L, Rabiee H, Li M, et al. Electrochemical CO2 reduction in membrane-electrode assemblies. Chem 2022;8:663-92.

133. Zhang Z, Huang X, Chen Z, et al. Membrane electrode assembly for electrocatalytic CO2 reduction: principle and application. Angew Chem Int Ed 2023;62:e202302789.

134. Dattila F, Seemakurthi RR, Zhou Y, López N. Modeling operando electrochemical CO2 reduction. Chem Rev 2022;122:11085-130.

135. Deng Y, Yeo BS. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando raman spectroscopy. ACS Catal 2017;7:7873-89.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/