REFERENCES

1. de Mattos IL, de Castro MDL, Valcárcel M. Pervaporation: an integrated evaporation/gas-diffusion approach to analytical continuous separation techniques. Talanta 1995;42:755-63.

2. Arosio P, Müller T, Mahadevan L, Knowles TPJ. Density-gradient-free microfluidic centrifugation for analytical and preparative separation of nanoparticles. Nano Lett 2014;14:2365-71.

3. Zoccali M, Donato P, Mondello L. Recent advances in the coupling of carbon dioxide-based extraction and separation techniques. Trends Analyt Chem 2019;116:158-65.

4. Zhang S, Ning S, Liu H, Wang X, Wei Y, Yin X. Preparation of ion-exchange resin via in-situ polymerization for highly selective separation and continuous removal of palladium from electroplating wastewater. Sep Purif Technol 2021;258:117670.

5. Chen JP, Mou H, Wang LK, Matsuura T, Wei Y. Membrane separation: basics and applications. In: Wang LK, editor. Membrane and desalination technologies. Totowa, NJ: Humana Press; 2011. pp. 271-332.

6. Strathmann H. Membrane separation processes: current relevance and future opportunities. AIChE J 2001;47:1077-87.

7. Nazir A, Khan K, Maan A, Zia R, Giorno L, Schroën K. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends Food Sci Technol 2019;86:426-38.

8. Liu HB, Li B, Guo LW, et al. Current and future use of membrane technology in the traditional Chinese medicine industry. Sep Purif Rev 2022;51:484-502.

9. Ravanchi M, Kaghazchi T, Kargari A. Application of membrane separation processes in petrochemical industry: a review. Desalination 2009;235:199-244.

10. Castel C, Favre E. Membrane separations and energy efficiency. J Membr Sci 2018;548:345-57.

11. Goh SH, Lau HS, Yong WF. Metal-organic frameworks (MOFs)-based mixed matrix membranes (MMMs) for gas separation: a review on advanced materials in harsh environmental applications. Small 2022;18:e2107536.

12. Visvanathan C, Aim RB, Parameshwaran K. Membrane separation bioreactors for wastewater treatment. Crit Rev Environ Sci Technol 2000;30:1-48.

13. Li B, Qi B, Guo Z, Wang D, Jiao T. Recent developments in the application of membrane separation technology and its challenges in oil-water separation: a review. Chemosphere 2023;327:138528.

14. Ulbricht M. Advanced functional polymer membranes. Polymer 2006;47:2217-62.

15. Swolfs Y, Van den fonteyne W, Baets J, Verpoest I. Failure behaviour of self-reinforced polypropylene at and below room temperature. Compos Part A Appl Sci Manuf 2014;65:100-7.

16. Zhang RC, Li R, Lu A, Jin Z, Liu B, Xu Z. The glass transition temperature of poly(phenylene sulfide) with various crystallinities. Polym Int 2013;62:449-53.

17. Rahate AS, Nemade KR, Waghuley SA. Polyphenylene sulfide (PPS): state of the art and applications. Rev Chem Eng 2013;29:471-89.

18. Hill Jr HW. History of polyphenylene sulfide. In: Seymour RB, Kirshenbaum GS, editors. High performance polymers: their origin and development. Dordrecht, The Netherlands: Springer; 1986, pp. 135-48.

19. Cunningham BD, Huang J, Baird DG. Development of bipolar plates for fuel cells from graphite filled wet-lay material and a thermoplastic laminate skin layer. J Power Sources 2007;165:764-73.

20. Gu J, Du J, Dang J, Geng W, Hu S, Zhang Q. Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites. RSC Adv 2014;4:22101-5.

21. Wang XH, Qin YF, Wan JX, Li SB, Zhan Y, Ma YL. Research on the acid fastness of polyphenylene sulfide fiber. Adv Mater Res 2011;332-4:281-5.

22. Guo Y, Bradshaw RD. Long-term creep of polyphenylene sulfide (PPS) subjected to complex thermal histories: the effects of nonisothermal physical aging. Polymer 2009;50:4048-55.

23. Wang HC, Jiang DH, Liu Y. Life problem analysis on PPS filter application of bag dedusters in coal-fired power plants. Adv Mater Res 2011;236-8:2464-70.

24. Lian D, Ren J, Han W, Ge C, Lu J. Kinetics and evolved gas analysis of the thermo-oxidative decomposition for neat PPS fiber and nano Ti-SiO2 modified PPS fiber. J Mol Struct 2019;1196:734-46.

25. Pan D, Lin P, Zhao L, et al. Polyphenylene sulfide scaffold based flexible supercapacitor electrode with competitive areal capacitance and flame-retardant behavior. React Funct Polym 2022;174:105216.

26. Czerwiński W. Electronic processes in poly(p-phenylene) and related compounds, II. structure and electrical properties of polymers related to poly(p-phenylene sulfide). Angew Makromol Chem 1986;144:101-12.

27. Lhymn C, Wapner P. Slurry erosion of polyphenylene sulfide-glass fiber composites. Wear 1987;119:1-11.

28. Tan C, Yang Y, Gao J, Li S, Qing L. Temperature dependence of the elongation behavior of polyphenylene sulfide using melt spinning technique. IOP Conf Ser Mater Sci Eng 2017;274:012039.

29. Song SS, White JL, Cakmak M. Structure development in the melt spinning and drawing of poly p phenylene sulfide fibers. Int Polym Proc 1989;4:96-102.

30. Dandan L, Jianjun L, Lixin Y, Chao G, Baojun W. Effect of quercetin on the structure and oxidation resistance of polyphenylene sulfide fiber prepared by melt spinning. Text Res J 2023;93:3286-98.

31. Xing J, Dai S, Chen Z, Wang Y, Zhang Z, Wang G. Effect of montmorillonite on the oxidative stability of polyphenylene sulfide fibers prepared by melt spinning. Text Res J 2022;92:2742-54.

32. Carr PL, Ward IM. Drawing behaviour, mechanical properties and structure of poly(p-phenylene sulphide) fibres. Polymer 1987;28:2070-6.

33. Murthy NS, Elsenbaumer RL, Frommer JE, Baughman RH. Structural changes during annealing and during acceptor doping of oriented poly(p-phenylene sulfide). Synth Met 1984;9:91-6.

34. Zhang Y, Xiang PW, Zhang RP, Dai JM, Lian DD. Effect of spinning speed on structure and properties of poly-phenylene sulfide fiber. Polym Mater Sci Eng 2015;31:114-8. (In Chinese).

35. Gulgunje P, Bhat G, Spruiell J. Structure and properties development in poly(phenylene sulfide) fibers. II. effect of one-zone draw annealing. J Appl Polym Sci 2012;125:1890-900.

36. Hassounah IA, Rowland WC, Sparks SA, et al. Processing of multilayered filament composites by melt blown spinning. J Appl Polym Sci 2014;131:app.40786.

37. Xie S, Zeng YC. The effect of air pressure on the evolution of fiber path in melt-blowing process. Adv Mater Res 2014;852:496-500.

38. Hu JB, Liu F, Shao WL, Yue WL, Chen YK, Xiong JP. Research on melt-blown spinnability of PPS. Shanghai Text Sci Technol 2019;47:29-31. (in Chinese).

39. Yu Y, Ren L, Liu M, et al. Polyphenylene sulfide ultrafine fibrous membrane modified by nanoscale ZIF-8 for highly effective adsorption, interception, and recycling of iodine vapor. ACS Appl Mater Interfaces 2019;11:31291-301.

40. Zhou FL, Gong RH, Porat I. Mass production of nanofibre assemblies by electrostatic spinning. Polym Int 2009;58:331-42.

41. Jang SY, Seshadri V, Khil MS, et al. Welded electrochromic conductive polymer nanofibers by electrostatic spinning. Adv Mater 2005;17:2177-80.

42. Guo J, Wang T, Yan Z, Ji D, Li J, Pan H. Preparation and evaluation of dual drug-loaded nanofiber membranes based on coaxial electrostatic spinning technology. Int J Pharm 2022;629:122410.

43. Nayak R, Kyratzis IL, Truong YB, et al. Fabrication and characterisation of nanofibres by meltblowing and melt electrospinning. Adv Mater Res 2012;472-5:1294-9.

44. Larrondo L, St John Manley R. Electrostatic fiber spinning from polymer melts. I. experimental observations on fiber formation and properties. J Polym Sci Polym Phys Ed 1981;19:909-20.

45. Li HY, Ding YM, Liu Y, Zhang YC, Yang WM. The preparation of polypropylene/polyvinyl alcohol ultra-fine fibers using melt electrospinning method. Key Eng Mater 2013;561:8-12.

46. An Y, Yu S, Li S, et al. Melt-electrospinning of polyphenylene sulfide. Fibers Polym 2018;19:2507-13.

47. Chen Q, Liu Y, Deng H, et al. Melt differential electrospinning of polyphenylene sulfide nanofibers for flue gas filtration. Polym Eng Sci 2020;60:2887-94.

48. Fan ZZ, He HW, Yan X, Zhao RH, Long YZ, Ning X. Fabrication of ultrafine PPS fibers with high strength and tenacity via melt electrospinning. Polymers 2019;11:530.

49. Kou X, Han N, Zhang Y, et al. Fabrication of polyphenylene sulfide nanofibrous membrane via sacrificial templated-electrospinning for fast gravity-driven water-in-oil emulsion separation. Sep Purif Technol 2021;275:119124.

50. Balea A, Fuente E, Monte MC, et al. Industrial application of nanocelluloses in papermaking: a review of challenges, technical solutions, and market perspectives. Molecules 2020;25:526.

51. Hui L, Yang B, Han X, Liu M. Application of synthetic fiber in air filter paper. BioResources 2018;13:4264-78.

53. Zhu C, Zhang J, Xu J, et al. Facile fabrication of cellulose/polyphenylene sulfide composite separator for lithium-ion batteries. Carbohydr Polym 2020;248:116753.

54. Zhu C, Zhang J, Qiu S, Jia Y, Wang L, Wang H. Tailoring the pore size of polyphenylene sulfide nonwoven with bacterial cellulose (BC) for heat-resistant and high-wettability separator in lithium-ion battery. Compos Commun 2021;24:100659.

55. Zhu C, Zhang J, Xu J, et al. Aramid nanofibers/polyphenylene sulfide nonwoven composite separator fabricated through a facile papermaking method for lithium ion battery. J Membr Sci 2019;588:117169.

56. Yu Y, Jia G, Zhao L, et al. Flexible and heat-resistant polyphenylene sulfide ultrafine fiber hybrid separators for high-safety lithium-ion batteries. Chem Eng J 2023;452:139112.

57. Gong X, Chen X, Zhou Y. 4-advanced weaving technologies for high-performance fabrics. In: High-performance apparel materials, development, and applications Woodhead publishing series in textiles; 2018. pp.75-112.

58. Gandhi KL. 5 - the fundamentals of weaving technology. In: Woven textiles (second edition) principles, technologies and applications the textile institute book series; 2020. pp.167-270.

59. Mecha CA, Pillay VL. Development and evaluation of woven fabric microfiltration membranes impregnated with silver nanoparticles for potable water treatment. J Membr Sci 2014;458:149-56.

60. Qiu C, Setiawan L, Wang R, Tang CY, Fane AG. High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate. Desalination 2012;287:266-70.

61. Lee HI, Mehdi M, Kim SK, et al. Advanced Zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode. J Membr Sci 2020;616:118541.

62. Li M, Lu J, Chen Z, Amine K. 30 years of lithium-ion batteries. Adv Mater 2018;30:e1800561.

63. Luiso S, Fedkiw P. Lithium-ion battery separators: recent developments and state of art. Curr Opin Electrochem 2020;20:99-107.

64. Costa CM, Lee YH, Kim JH, Lee SY, Lanceros-Méndez S. Recent advances on separator membranes for lithium-ion battery applications: from porous membranes to solid electrolytes. Energy Stor Mater 2019;22:346-75.

65. Choi J, Kim PJ. A roadmap of battery separator development: past and future. Curr Opin Electrochem 2022;31:100858.

66. Held M, Tuchschmid M, Zennegg M, et al. Thermal runaway and fire of electric vehicle lithium-ion battery and contamination of infrastructure facility. Renew Sustain Energy Rev 2022;165:112474.

67. Klein S, Wrogemann JM, van Wickeren S, et al. Understanding the role of commercial separators and their reactivity toward LiPF6 on the failure mechanism of high-voltage NCM523 || graphite lithium ion cells. Adv Energy Mater 2022;12:2102599.

68. Jeong HS, Choi ES, Lee SY, Kim JH. Evaporation-induced, close-packed silica nanoparticle-embedded nonwoven composite separator membranes for high-voltage/high-rate lithium-ion batteries: advantageous effect of highly percolated, electrolyte-philic microporous architecture. J Membr Sci 2012;415-6:513-9.

69. Luo D, Chen M, Xu J, et al. Polyphenylene sulfide nonwoven-based composite separator with superior heat-resistance and flame retardancy for high power lithium ion battery. Compos Sci Technol 2018;157:119-25.

70. Zhang J, Zhu C, Xu J, et al. Enhanced mechanical behavior and electrochemical performance of composite separator by constructing crosslinked polymer electrolyte networks on polyphenylene sulfide nonwoven surface. J Membr Sci 2020;597:117622.

71. Zeng X, Liu Y, He R, et al. Tissue paper-based composite separator using nano-SiO2 hybrid crosslinked polymer electrolyte as coating layer for lithium ion battery with superior security and cycle stability. Cellulose 2022;29:3985-4000.

72. Hu Y, Zhu G, Zeng X, et al. Tissue paper-based composite separator using double-crosslinked polymer electrolyte as coating layer for lithium-ion battery with superior ion transport and cyclic stability. Cellulose 2023;30:247-61.

73. Zhang H, Liu J, Guan M, et al. Nanofibrillated cellulose (NFC) as a pore size mediator in the preparation of thermally resistant separators for lithium ion batteries. ACS Sustain Chem Eng 2018;6:4838-44.

74. Trisno MLA, Dayan A, Lee SJ, et al. Reinforced gel-state polybenzimidazole hydrogen separators for alkaline water electrolysis. Energy Environ Sci 2022;15:4362-75.

75. Guo Y, Li G, Zhou J, Liu Y. Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis. IOP Conf Ser Earth Environ Sci 2019;371:042022.

76. Renaud R, Leroy RL. Separator materials for use in alkaline water electrolysers. Int J Hydrog Energy 1982;7:155-66.

77. Modica G, Giuffre L, Montoneri E, Pozzi V, Tempesti E. Electrolytic separators from asbestos cardboard: a flexible technique to obtain reinforced diaphragms or ion-selective membranes. Int J Hydrog Energy 1983;8:419-35.

78. de Groot MT, Vreman AW. Ohmic resistance in zero gap alkaline electrolysis with a Zirfon diaphragm. Electrochim Acta 2021;369:137684.

79. Zhu L, Song H, Zhang D, Wang G, Zeng Z, Xue Q. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization. J Colloid Interface Sci 2017;498:136-43.

80. Chung YT, Ng LY, Mohammad AW. Sulfonated-polysulfone membrane surface modification by employing methacrylic acid through UV-grafting: optimization through response surface methodology approach. J Ind Eng Chem 2014;20:1549-57.

81. Teotia RS, Kalita D, Singh AK, Verma SK, Kadam SS, Bellare JR. Bifunctional polysulfone-chitosan composite hollow fiber membrane for bioartificial liver. ACS Biomater Sci Eng 2015;1:372-81.

82. Aerts P, Kuypers S, Genné I, et al. Polysulfone-ZrO2 surface interactions. The influence on formation, morphology and properties of zirfon-membranes. J Phys Chem B 2006;110:7425-30.

83. Xu L, Li W, You Y, Zhang S, Zhao Y. Polysulfone and zirconia composite separators for alkaline water electrolysis. Front Chem Sci Eng 2013;7:154-61.

84. Oh SJ, Kim N, Lee YT. Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J Membr Sci 2009;345:13-20.

85. Lee JW, Lee C, Lee JH, et al. Cerium oxide-polysulfone composite separator for an advanced alkaline electrolyzer. Polymers 2020;12:2821.

86. Sun YP. Post-processing effect on the performance of PPS fiber membrane for water electrolyzer hydrogen production. J Ind Text 2015;33:14-7. Available from: https://kns.cnki.net/kcms2/article/abstract?v=Y2wviAwYlnKCFOnL-zI2KTfSP29ofZH8v1rUh0FOUoTRi44jfw2T4q8M288fEpRS69plR14Z9hFgXlN_XoPbO79terPbaDM0Vh0yetySeSnGOqk1IV4xoOLh8JIuZYQQyYpCCxlssyA=&uniplatform=NZKPT&language=CHS [Last accessed on 1 Mar 2024]

87. Su YP. The preparation and performance of polyphenylene sulfide staple fibers and filament diaphragm. J Henan Univ Eng 2022;34:04.

88. Liang CZ, Chung TS, Lai JY. A review of polymeric composite membranes for gas separation and energy production. Prog Polym Sci 2019;97:101141.

89. Vermeiren PH, Leysen R, Beckers H, Moreels JP, Claes A. The influence of manufacturing parameters on the properties of macroporous Zirfon® separators. J Porous Mater 2008;15:259-64.

90. Schalenbach M, Lueke W, Stolten D. Hydrogen diffusivity and electrolyte permeability of the Zirfon PERL separator for alkaline water electrolysis. J Electrochem Soc 2016;163:F1480-8.

91. In Lee H, Dung DT, Kim J, et al. The synthesis of a Zirfon-type porous separator with reduced gas crossover for alkaline electrolyzer. Int J Energy Res 2020;44:1875-85.

92. Ali MF, Lee HI, Bernäcker CI, et al. Zirconia toughened alumina-based separator membrane for advanced alkaline water electrolyzer. Polymers 2022;14:1173.

93. Lee JW, Lee JH, Lee C, et al. Cellulose nanocrystals-blended zirconia/polysulfone composite separator for alkaline electrolyzer at low electrolyte contents. Chem Eng J 2022;428:131149.

94. Francis CFJ, Kyratzis IL, Best AS. Lithium-ion battery separators for ionic-liquid electrolytes: a review. Adv Mater 2020;32:e1904205.

95. Manabe A, Domon H, Kosaka J, Hashimoto T, Okajima T, Ohsaka T. Study on separator for alkaline water electrolysis. J Electrochem Soc 2016;163:F3139-45.

96. Jbaily A, Zhou X, Liu J, et al. Air pollution exposure disparities across US population and income groups. Nature 2022;601:228-33.

97. Clappier A, Thunis P, Beekmann M, Putaud JP, de Meij A. Impact of SOx, NOx and NH3 emission reductions on PM2.5 concentrations across Europe: hints for future measure development. Environ Int 2021;156:106699.

98. Tanthapanichakoon W, Hata M, Nitta KH, Furuuchi M, Otani Y. Mechanical degradation of filter polymer materials: polyphenylene sulfide. Polym Degrad Stab 2006;91:2614-21.

99. Tanthapanichakoon W, Furuuchi M, Nitta KH, Hata M, Endoh S, Otani Y. Degradation of semi-crystalline PPS bag-filter materials by NO and O2 at high temperature. Polym Degrad Stab 2006;91:1637-44.

100. Tanthapanichakoon W, Furuuchi M, Nitta KH, Hata M, Otani Y. Degradation of bag-filter non-woven fabrics by nitric oxide at high temperatures. Adv Powder Technol 2007;18:349-54.

101. Zhao P, Yan J, Chen C, et al. PPS ultrafine fiber enhanced aramid fiber filter with superior thermal stability and excellent chemical resistance for efficient PM2.5 removal. React Funct Polym 2023;188:105605.

102. Ye W, Feng S, Zhou Q, Zhang F, Zhong Z, Xing W. Gridded fibers’ restricted melting strategy for gas permeance and binding enhancement of the ePTFE/PPS filter. Ind Eng Chem Res 2023;62:9503-14.

103. Zhang B, Wang W, Cao H, et al. Development of an asymmetric composite PPS-based bag-filter material through membrane laminating and superfine fiber blending: lab test, field application and development of numerical models. J Hazard Mater 2023;459:132078.

104. Zheng WJ, Zheng YY, Chen J, Zou HQ, Fu BB, Chen XH. Fabrication of nf-MnO2/PPS functional composites for selective reduction of NOx with NH3. Acta Polym Sinica 2017;11:1806-15.

105. Luo R, Zeng Y, Ju S, et al. Flowerlike FeOX-MnOX amorphous oxides anchored on PTFE/PPS membrane for efficient dust filtration and low-temperature no reduction. Ind Eng Chem Res 2022;61:5816-24.

106. Li H, Hu C, He Y, Sun Z, Yin Z, Tang D. Emerging surface strategies for porous materials-based phase change composites. Matter 2022;5:3225-59.

107. DeCoste JB, Peterson GW. Metal-organic frameworks for air purification of toxic chemicals. Chem Rev 2014;114:5695-727.

108. Bux H, Feldhoff A, Cravillon J, Wiebcke M, Li Y, Caro J. Oriented zeolitic imidazolate framework-8 membrane with sharp H2/C3H8 molecular sieve separation. Chem Mater 2011;23:2262-9.

109. Wang W, Hou Z, Zhang H, et al. Harsh environmental-tolerant ZIF-8@polyphenylene sulfide membrane for efficient oil/water separation and air filtration under extreme conditions. J Membr Sci 2023;685:121885.

110. Vankelecom IFJ. Polymeric membranes in catalytic reactors. Chem Rev 2002;102:3779-810.

111. Liu JW, Liang HW, Yu SH. Macroscopic-scale assembled nanowire thin films and their functionalities. Chem Rev 2012;112:4770-99.

112. Wang P, He C, Hu L, et al. Load of Ag3PO4 particles on sulfonated polyphenylene sulfide superfine fibre with high visible-light photocatalytic activity. Fibers Polym 2018;19:1379-85.

113. Huston PL, Pignatello JJ. Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Res 1999;33:1238-46.

114. Azbar N, Yonar T, Kestioglu K. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent. Chemosphere 2004;55:35-43.

115. Chen W, Yang X, Huang J, et al. Iron oxide containing graphene/carbon nanotube based carbon aerogel as an efficient E-Fenton cathode for the degradation of methyl blue. Electrochim Acta 2016;200:75-83.

116. Liu M, Yu Y, Xiong S, et al. A flexible and efficient electro-fenton cathode film with aeration function based on polyphenylene sulfide ultra-fine fiber. React Funct Polym 2019;139:42-9.

117. Hu L, Liu Z, He C, et al. Ferrous-oxalate-decorated polyphenylene sulfide fenton catalytic microfiber for methylene blue degradation. Compos Part B Eng 2019;176:107220.

118. Chu Z, Feng Y, Seeger S. Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed 2015;54:2328-38.

119. Zhang R, Xu Y, Shen L, Li R, Lin H. Preparation of nickel@polyvinyl alcohol (PVA) conductive membranes to couple a novel electrocoagulation-membrane separation system for efficient oil-water separation. J Membr Sci 2022;653:120541.

120. Adebajo MO, Frost RL, Kloprogge JT, Carmody O, Kokot S. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. J Porous Mater 2003;10:159-70.

121. Cao Y, Zhang X, Tao L, et al. Mussel-inspired chemistry and Michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces 2013;5:4438-42.

122. Huang H, Liu M, Li Y, et al. Polyphenylene sulfide microfiber membrane with superhydrophobicity and superoleophilicity for oil/water separation. J Mater Sci 2018;53:13243-52.

123. Huang H, Li Y, Zhao L, et al. A facile fabrication of chitosan modified PPS-based microfiber membrane for effective antibacterial activity and oil-in-water emulsion separation. Cellulose 2019;26:2599-611.

124. Fan T, Su Y, Fan Q, et al. Robust graphene@PPS fibrous membrane for harsh environmental oil/water separation and all-weather cleanup of crude oil spill by joule heat and photothermal effect. ACS Appl Mater Interfaces 2021;13:19377-86.

125. Gao Y, Qi Y, Wang S, Zhou X, Lyu L, Jin G. Superhydrophobic polyphenylene sulfide fiber paper with nanofiber network-like structure prepared via regulation of TIPS process for oil/water separation. J Mater Sci 2022;57:20531-42.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/