REFERENCES

1. Zhang JG, Xu W, Xiao J, Cao X, Liu J. Lithium metal anodes with nonaqueous electrolytes. Chem Rev 2020;120:13312-48.

2. Zhou F, Xin S, Liang HW, Song LT, Yu SH. Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew Chem Int Ed Engl 2014;53:11552-6.

3. Chen H, Yang Y, Boyle DT, et al. Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries. Nat Energy 2021;6:790-8.

4. Wu F, Maier J, Yu Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem Soc Rev 2020;49:1569-614.

5. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev 2017;117:10403-73.

6. Zeng X, Li M, Abd El-hady D, et al. Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater 2019;9:1900161.

7. Harper G, Sommerville R, Kendrick E, et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019;575:75-86.

8. Manthiram A. A reflection on lithium-ion battery cathode chemistry. Nat Commun 2020;11:1550.

9. Zhu P, Gastol D, Marshall J, Sommerville R, Goodship V, Kendrick E. A review of current collectors for lithium-ion batteries. J Power Sources 2021;485:229321.

10. Gupta A, Manthiram A. Designing advanced lithium-based batteries for low-temperature conditions. Adv Energy Mater 2020;10:2001972.

11. Albertus P, Babinec S, Litzelman S, Newman A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy 2018;3:16-21.

12. Duffner F, Kronemeyer N, Tübke J, Leker J, Winter M, Schmuch R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat Energy 2021;6:123-34.

13. Frith JT, Lacey MJ, Ulissi U. A non-academic perspective on the future of lithium-based batteries. Nat Commun 2023;14:420.

14. Tikekar MD, Choudhury S, Tu Z, Archer LA. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy 2016;1:16144.

15. Ghazi ZA, Sun Z, Sun C, et al. Key aspects of lithium metal anodes for lithium metal batteries. Small 2019;15:e1900687.

16. Wang Q, Liu B, Shen Y, et al. Confronting the challenges in lithium anodes for lithium metal batteries. Adv Sci 2021;8:e2101111.

17. Lin L, Qin K, Hu YS, et al. A better choice to achieve high volumetric energy density: anode-free lithium-metal batteries. Adv Mater 2022;34:e2110323.

18. Wang T, Liu X, Zhao X, He P, Nan C, Fan L. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries. Adv Funct Mater 2020;30:2000786.

19. Wang H, Xu Q. Materials Design for rechargeable metal-air batteries. Matter 2019;1:565-95.

20. Lai J, Xing Y, Chen N, Li L, Wu F, Chen R. Electrolytes for rechargeable lithium-air batteries. Angew Chem Int Ed Engl 2020;59:2974-97.

21. Liu T, Vivek JP, Zhao EW, Lei J, Garcia-Araez N, Grey CP. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem Rev 2020;120:6558-625.

22. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater 2011;11:19-29.

23. Gao Y, Guo Q, Zhang Q, Cui Y, Zheng Z. Fibrous materials for flexible Li-S battery. Adv Energy Mater 2021;11:2002580.

24. Shen X, Liu H, Cheng X, Yan C, Huang J. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Storage Mater 2018;12:161-75.

25. Zhan Y, Shi P, Ma X, et al. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Adv Energy Mater 2022;12:2103291.

26. Yuan H, Ding X, Liu T, et al. A review of concepts and contributions in lithium metal anode development. Mater Today 2022;53:173-96.

27. Yang CP, Yin YX, Zhang SF, Li NW, Guo YG. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun 2015;6:8058.

28. Mao H, Yu W, Cai Z, et al. Current-density regulating lithium metal directional deposition for long cycle-life Li metal batteries. Angew Chem Int Ed Engl 2021;60:19306-13.

29. Ye Y, Zhao Y, Zhao T, et al. An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv Mater 2021;33:e2105029.

30. Liu Y, Zhang S, Qin X, Kang F, Chen G, Li B. In-plane highly dispersed Cu2O nanoparticles for seeded lithium deposition. Nano Lett 2019;19:4601-7.

31. Ma Y, Wei L, He Y, et al. A “blockchain” synergy in conductive polymer-filled metal-organic frameworks for dendrite-free li plating/stripping with high coulombic efficiency. Angew Chem Int Ed Engl 2022;61:e202116291.

32. Lin D, Liu Y, Liang Z, et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol 2016;11:626-32.

33. Cai Q, Qin X, Lin K, et al. Gradient structure design of a floatable host for preferential lithium deposition. Nano Lett 2021;21:10252-9.

34. Hu Z, Su H, Zhou M, et al. Lithiophilic carbon nanofiber/graphene nanosheet composite scaffold prepared by a scalable and controllable biofabrication method for ultrastable dendrite-free lithium-metal anodes. Small 2022;18:e2104735.

35. Liu F, Xu R, Wu Y, et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 2021;600:659-63.

36. Piao Z, Gao R, Liu Y, Zhou G, Cheng HM. A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries. Adv Mater 2023;35:e2206009.

37. Jin C, Liu T, Sheng O, et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat Energy 2021;6:378-87.

38. Jiang Z, Zeng Z, Liang X, et al. Fluorobenzene, a low-density, economical, and bifunctional hydrocarbon cosolvent for practical lithium metal batteries. Adv Funct Mater 2021;31:2005991.

39. Lee SH, Hwang J, Ming J, et al. Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry. Adv Energy Mater 2020;10:2000567.

40. Reinoso DM, Frechero MA. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater 2022;52:430-64.

41. Zhang J, Zeng Y, Li Q, et al. Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Mater 2023;54:440-9.

42. Xu L, Lu Y, Zhao C, et al. Toward the scale-up of solid-state lithium metal batteries: the gaps between lab-level cells and practical large-format batteries. Adv Energy Mater 2021;11:2002360.

43. Famprikis T, Canepa P, Dawson JA, Islam MS, Masquelier C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat Mater 2019;18:1278-91.

44. Yu Z, Cui Y, Bao Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep Phys Sci 2020;1:100119.

45. Gao RM, Yang H, Wang CY, Ye H, Cao FF, Guo ZP. Fatigue-resistant interfacial layer for safe lithium metal batteries. Angew Chem Int Ed Engl 2021;60:25508-13.

46. Sun Y, Zhao Y, Wang J, et al. A novel organic “polyurea” thin film for ultralong-life lithium-metal anodes via molecular-layer deposition. Adv Mater 2019;31:e1806541.

47. Yang C, Yao Y, He S, Xie H, Hitz E, Hu L. Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode. Adv Mater 2017:29.

48. Dong K, Xu Y, Tan J, et al. Unravelling the mechanism of lithium nucleation and growth and the interaction with the solid electrolyte interface. ACS Energy Lett 2021;6:1719-28.

49. Hou LP, Yao N, Xie J, et al. Modification of nitrate ion enables stable solid electrolyte interphase in lithium metal batteries. Angew Chem Int Ed Engl 2022;61:e202201406.

50. Zheng G, Xiang Y, Chen S, et al. Additives synergy for stable interface formation on rechargeable lithium metal anodes. Energy Storage Mater 2020;29:377-85.

51. Hagopian A, Doublet M, Filhol J. Thermodynamic origin of dendrite growth in metal anode batteries. Energy Environ Sci 2020;13:5186-97.

52. Rosso M, Gobron T, Brissot C, Chazalviel J, Lascaud S. Onset of dendritic growth in lithium/polymer cells. J Power Sources 2001;97-8:804-6.

53. Chen J, Li Z, Sun N, et al. A robust Li-intercalated interlayer with strong electron withdrawing ability enables durable and high-rate Li metal anode. ACS Energy Lett 2022;7:1594-603.

54. Fan L, Li S, Liu L, et al. Enabling stable lithium metal anode via 3D inorganic skeleton with superlithiophilic interphase. Adv Energy Mater 2018;8:1802350.

55. Zhang R, Shen X, Cheng XB, Zhang Q. The dendrite growth in 3D structured lithium metal anodes: electron or ion transfer limitation? Energy Storage Mater 2019;23:556-65.

56. Sun X, Zhang X, Ma Q, Guan X, Wang W, Luo J. Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries. Angew Chem Int Ed Engl 2020;59:6665-74.

57. Yan K, Lu Z, Lee H, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat Energy 2016;1:16010.

58. Liu W, Lin D, Pei A, Cui Y. Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J Am Chem Soc 2016;138:15443-50.

59. Li D, Xie C, Gao Y, Hu H, Wang L, Zheng Z. Inverted anode structure for long-life lithium metal batteries. Adv Energy Mater 2022;12:2200584.

60. Huang S, Yang J, Ma L, et al. Effectively regulating more robust amorphous Li clusters for ultrastable dendrite-free cycling. Adv Sci 2021;8:e2101584.

61. Zhang S, Xiao S, Li D, et al. Commercial carbon cloth: an emerging substrate for practical lithium metal batteries. Energy Storage Mater 2022;48:172-90.

62. Chen Z, Chen W, Wang H, et al. Lithiophilic anchor points enabling endogenous symbiotic Li3N interface for homogeneous and stable lithium electrodeposition. Nano Energy 2022;93:106836.

63. Du J, Wang W, Wan M, et al. Doctor-blade casting fabrication of ultrathin Li metal electrode for high-energy-density batteries. Adv Energy Mater 2021;11:2102259.

64. Jiang G, Jiang N, Zheng N, et al. MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes. Energy Storage Mater 2019;23:181-9.

65. Chen Y, Ke X, Cheng Y, et al. Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering. Energy Storage Mater 2020;26:56-64.

66. Zhou T, Shen J, Wang Z, et al. Regulating lithium nucleation and deposition via MOF-derived Co@C-modified carbon cloth for stable Li metal anode. Adv Funct Mater 2020;30:1909159.

67. Shen Y, Pu Z, Zhang Y, et al. MXene/ZnO flexible freestanding film as a dendrite-free support in lithium metal batteries. J Mater Chem A 2022;10:17199-207.

68. Wang SH, Yin YX, Zuo TT, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv Mater 2017;29:1703729.

69. Liu S, Zhao J, Li F, Zhao Y, Li G. Regulating lithium deposition behavior by electrokinetic effects in a high-zeta-potential h-BN/zinc-lithium alloy for high-performance lithium metal anodes. J Mater Chem A 2022;10:5221-9.

70. Xu H, Li S, Zhang C, et al. Roll-to-roll prelithiation of Sn foil anode suppresses gassing and enables stable full-cell cycling of lithium ion batteries. Energy Environ Sci 2019;12:2991-3000.

71. Fang S, Shen L, Hoefling A, et al. A mismatch electrical conductivity skeleton enables dendrite-free and high stability lithium metal anode. Nano Energy 2021;89:106421.

72. Zhao P, Feng Y, Li T, et al. Stable lithium metal anode enabled by high-dimensional lithium deposition through a functional organic substrate. Energy Storage Mater 2020;33:158-63.

73. Feng X, Bai Y, Liu M, et al. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ Sci 2021;14:2036-89.

74. Liu Y, Qin X, Zhang S, et al. Oxygen and nitrogen co-doped porous carbon granules enabling dendrite-free lithium metal anode. Energy Storage Mater 2019;18:320-7.

75. Chen X, Chen XR, Hou TZ, et al. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci Adv 2019;5:eaau7728.

76. Feng X, Wu H, Gao B, Świętosławski M, He X, Zhang Q. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res 2022;15:352-60.

77. Ge J, Hong J, Liu T, Wang Y. Rational design of a self-supporting skeleton decorated with dual lithiophilic Sn-containing and N-doped carbon tubes for dendrite-free lithium metal anodes. J Mater Chem A 2022;10:11458-69.

78. Zhang R, Chen XR, Chen X, et al. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angew Chem Int Ed Engl 2017;56:7764-8.

79. Liu L, Yin YX, Li JY, Wang SH, Guo YG, Wan LJ. Uniform lithium nucleation/growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes. Adv Mater 2018;30:1706216.

80. Lyu Z, Lim GJ, Guo R, et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater 2020;24:336-42.

81. Liu K, Li Z, Xie W, et al. Oxygen-rich carbon nanotube networks for enhanced lithium metal anode. Energy Storage Mater 2018;15:308-14.

82. Li K, Hu Z, Ma J, Chen S, Mu D, Zhang J. A 3D and stable lithium anode for high-performance lithium-iodine batteries. Adv Mater 2019;31:e1902399.

83. Xu Z, Xu L, Xu Z, Deng Z, Wang X. N, O-codoped carbon nanosheet array enabling stable lithium metal anode. Adv Funct Mater 2021;31:2102354.

84. Li D, Zhang S, Zhang Q, et al. Pencil-drawing on nitrogen and sulfur co-doped carbon paper: an effective and stable host to pre-store Li for high-performance lithium-air batteries. Energy Storage Mater 2020;26:593-603.

85. Xie Y, Zhang H, Yu J, et al. A novel dendrite-free lithium metal anode via oxygen and boron codoped honeycomb carbon skeleton. Small 2022;18:e2104876.

86. Yang Z, Dang Y, Zhai P, et al. Single-atom reversible lithiophilic sites toward stable lithium anodes. Adv Energy Mater 2022;12:2103368.

87. Zhai P, Wang T, Yang W, et al. Lithium metal anodes: uniform lithium deposition assisted by single-atom doping toward high-performance lithium metal anodes. Adv Energy Mater 2019;9:1804019.

88. Liu H, Chen X, Cheng XB, et al. Lithium metal anodes: uniform lithium nucleation guided by atomically dispersed lithiophilic CoNx sites for safe lithium metal batteries. Small Methods 2019;3:1800354.

89. Wang Y, Tan J, Li Z, et al. Recent progress on enhancing the Lithiophilicity of hosts for dendrite-free lithium metal batteries. Energy Storage Mater 2022;53:156-82.

90. Liu Y, Lin D, Liang Z, Zhao J, Yan K, Cui Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat Commun 2016;7:10992.

91. Liu Y, Sun J, Hu X, et al. Lithiophilic sites dependency of lithium deposition in Li metal host anodes. Nano Energy 2022;94:106883.

92. Wu S, Zhang Z, Lan M, et al. Lithiophilic Cu-CuO-Ni hybrid structure: advanced current collectors toward stable lithium metal anodes. Adv Mater 2018;30:1705830.

93. Zhang C, Lv W, Zhou G, et al. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv Energy Mater 2018;8:1703404.

94. Mei Y, Zhou J, Hao Y, et al. High-lithiophilicity host with micro/nanostructured active sites based on wenzel wetting model for dendrite-free lithium metal anodes. Adv Funct Mater 2021;31:2106676.

95. Zhang Q, Bai W, Sun C, Liu X, Wang K, Chen J. Surface modification of Ni foam for stable and dendrite-free lithium deposition. Chem Eng J 2021;405:127022.

96. Chen Y, Xu X, Gao L, et al. Two birds with one stone: using indium oxide surficial modification to tune inner helmholtz plane and regulate nucleation for dendrite-free lithium anode. Small Methods 2022;6:e2200113.

97. Xu Y, Zheng H, Yang H, et al. Thermodynamic regulation of dendrite-free Li plating on Li3Bi for stable lithium metal batteries. Nano Lett 2021;21:8664-70.

98. Tabassum H, Zou R, Mahmood A, et al. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv Mater 2018;30:1705441.

99. Zheng J, Zhang W, Zhang J, et al. Recent advances in nanostructured transition metal nitrides for fuel cells. J Mater Chem A 2020;8:20803-18.

100. Lei M, Wang JG, Ren L, et al. Highly lithiophilic cobalt nitride nanobrush as a stable host for high-performance lithium metal anodes. ACS Appl Mater Interfaces 2019;11:30992-8.

101. Xu R, Zhou Y, Tang X, et al. Nanoarray architecture of ultra-lithiophilic metal nitrides for stable lithium metal anodes. Small 2023;19:e2205709.

102. Luo L, Li J, Yaghoobnejad Asl H, Manthiram A. A 3D lithiophilic Mo2N-modified carbon nanofiber architecture for dendrite-free lithium-metal anodes in a full cell. Adv Mater 2019;31:e1904537.

103. Shen X, Shi S, Li B, et al. Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes. Adv Funct Mater 2022;32:2206388.

104. Lin K, Qin X, Liu M, et al. Ultrafine titanium nitride sheath decorated carbon nanofiber network enabling stable lithium metal anodes. Adv Funct Mater 2019;29:1903229.

105. Fu X, Duan H, Zhang L, Hu Y, Deng Y. A 3D framework with an in situ generated Li3N solid electrolyte interphase for superior lithium metal batteries. Adv Funct Mater 2023;33:2308022.

106. Lee D, Sun S, Kwon J, et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv Mater 2020;32:e1905573.

107. Zhang S, Yang G, Liu Z, et al. Phase diagram determined lithium plating/stripping behaviors on lithiophilic substrates. ACS Energy Lett 2021;6:4118-26.

108. Jin S, Ye Y, Niu Y, et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J Am Chem Soc 2020;142:8818-26.

109. Yang T, Li L, Wu F, Chen R. A soft lithiophilic graphene aerogel for stable lithium metal anode. Adv Funct Mater 2020;30:2002013.

110. Zheng H, Zhang Q, Chen Q, et al. 3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. J Mater Chem A 2020;8:313-22.

111. Li W, Luo P, Chen M, et al. Hedging Li dendrite formation by virtue of controllable tip effect. J Mater Chem A 2022;10:15161-8.

112. Li L, Fu H, Yang J, et al. A dual-confined lithium nucleation and growth design enables dendrite-free lithium metal batteries. J Mater Chem A 2022;10:11659-66.

113. Gao P, Wu H, Zhang X, et al. Optimization of magnesium-doped lithium metal anode for high performance lithium metal batteries through modeling and experiment. Angew Chem Int Ed Engl 2021;60:16506-13.

114. Xu Y, Zhao S, Zhou G, et al. Solubility-dependent protective effects of binary alloys for lithium anode. ACS Appl Energy Mater 2020;3:2278-84.

115. Liang Z, Lin D, Zhao J, et al. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc Natl Acad Sci U S A 2016;113:2862-7.

116. Wan M, Kang S, Wang L, et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat Commun 2020;11:829.

117. Zhou Y, Zhang J, Zhao K, et al. A novel dual-protection interface based on gallium-lithium alloy enables dendrite-free lithium metal anodes. Energy Stor Mater 2021;39:403-11.

118. Liu Y, Zhang X, Liu F, et al. Basal nanosuit of graphite for high-energy hybrid Li batteries. ACS Nano 2020;14:1837-45.

119. Pu J, Li J, Shen Z, et al. Interlayer lithium plating in Au nanoparticles pillared reduced graphene oxide for lithium metal anodes. Adv Funct Mater 2018;28:1804133.

120. Chen J, Xiang J, Chen X, Yuan L, Li Z, Huang Y. Li2S-based anode-free full batteries with modified Cu current collector. Energy Storage Mater 2020;30:179-86.

121. Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart eutectic gallium-indium: from properties to applications. Adv Mater 2023;35:e2203391.

122. Zhou J, Qian T, Wang Z, et al. Healable lithium alloy anode with ultrahigh capacity. Nano Lett 2021;21:5021-7.

123. Li H, Yamaguchi T, Matsumoto S, et al. Circumventing huge volume strain in alloy anodes of lithium batteries. Nat Commun 2020;11:1584.

124. Sun B, Zhang Q, Xu W, et al. A gradient topology host for a dendrite-free lithium metal anode. Nano Energy 2022;94:106937.

125. Wu J, Ju Z, Zhang X, et al. Gradient design for high-energy and high-power batteries. Adv Mater 2022;34:e2202780.

126. Le T, Liang Q, Chen M, et al. Lithium metal anodes: a triple-gradient host for long cycling lithium metal anodes at ultrahigh current density (small 30/2020). Small 2020;16:e2001992.

127. Guo W, Liu S, Guan X, Zhang X, Liu X, Luo J. Mixed ion and electron-conducting scaffolds for high-rate lithium metal anodes. Adv Energy Mater 2019;9:1900193.

128. Li J, Zou P, Chiang SW, et al. A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Mater 2020;24:700-6.

129. Zhou S, Fu C, Chang Z, et al. Conductivity gradient modulator induced highly reversible Li anodes in carbonate electrolytes for high-voltage lithium-metal batteries. Energy Storage Mater 2022;47:482-90.

130. Nan Y, Li S, Shi Y, Yang S, Li B. Gradient-distributed nucleation seeds on conductive host for a dendrite-free and high-rate lithium metal anode. Small 2019;15:e1903520.

131. Lv Y, Zhang Q, Li C, et al. Bottom-up Li deposition by constructing a multiporous lithiophilic gradient layer on 3D Cu foam for stable Li metal anodes. ACS Sustainable Chem Eng 2022;10:7188-95.

132. Li T, Gu S, Chen L, et al. Bidirectional lithiophilic gradients modification of ultralight 3D carbon nanofiber host for stable lithium metal anode. Small 2022;18:e2203273.

133. Huang S, Zhang H, Fan LZ. Confined lithium deposition triggered by an integrated gradient scaffold for a lithium-metal anode. ACS Appl Mater Interfaces 2022;14:17539-46.

134. Yu Z, Yang Q, Xue W, et al. Uniformizing the lithium deposition by gradient lithiophilicity and conductivity for stable lithium-metal batteries. Nanoscale 2023;15:4529-35.

135. Hong SH, Jung DH, Kim JH, et al. Electrical conductivity gradients: electrical conductivity gradient based on heterofibrous scaffolds for stable lithium-metal batteries. Adv Funct Mater 2020;30:1908868.

136. Pu J, Li J, Zhang K, et al. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat Commun 2019;10:1896.

137. Yun J, Park B, Won E, et al. Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode. ACS Energy Lett 2020;5:3108-14.

138. Liu H, Di J, Wang P, et al. A novel design of 3D carbon host for stable lithium metal anode. Carbon Energy 2022;4:654-64.

139. Pan J, Shi K, Wu H, et al. Lithium dredging and capturing dual-gradient framework enabling step-packed deposition for dendrite-free lithium metal anodes. Adv Energy Mater 2024;14:2302862.

140. Wang D, Liu H, Liu F, et al. Phase-separation-induced porous lithiophilic polymer coating for high-efficiency lithium metal batteries. Nano Lett 2021;21:4757-64.

141. Jiang J, Pan Z, Kou Z, et al. Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Mater 2020;29:84-91.

142. Li NW, Shi Y, Yin YX, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew Chem Int Ed Engl 2018;57:1505-9.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/