REFERENCES

1. Boretti A, Rosa L. Reassessing the projections of the World water development report. NPJ Clean Water 2019;2:15.

2. He C, Liu Z, Wu J, et al. Future global urban water scarcity and potential solutions. Nat Commun 2021;12:4667.

3. Doornbusch G, van der Wal M, Tedesco M, Post J, Nijmeijer K, Borneman Z. Multistage electrodialysis for desalination of natural seawater. Desalination 2021;505:114973.

4. Xia W, Cheng H, Zhou S, Yu N, Hu H. Synergy of copper selenide/MXenes composite with enhanced solar-driven water evaporation and seawater desalination. J Colloid Interface Sci 2022;625:289-96.

5. Fayyaz S, Khadem Masjedi S, Kazemi A, Khaki E, Moeinaddini M, Irving Olsen S. Life cycle assessment of reverse osmosis for high-salinity seawater desalination process: potable and industrial water production. J Clean Prod 2023;382:135299.

6. Zhang L, Li X, Zhong Y, et al. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat Commun 2022;13:849.

7. Bai H, Zhao T, Cao M. Interfacial solar evaporation for water production: from structure design to reliable performance. Mol Syst Des Eng 2020;5:419-32.

8. Cao S, Thomas A, Li C. Emerging materials for interfacial solar-driven water purification. Angew Chem 2023;135:e202214391.

9. Liu H, Huang Z, Liu K, Hu X, Zhou J. Interfacial solar-to-heat conversion for desalination. Adv Energy Mater 2019;9:1900310.

10. Xia Y, Kang Y, Wang Z, et al. Rational designs of interfacial-heating solar-thermal desalination devices: recent progress and remaining challenges. J Mater Chem A 2021;9:6612-33.

11. Min X, Zhu B, Li B, Li J, Zhu J. Interfacial solar vapor generation: materials and structural design. ACC Mater Res 2021;2:198-209.

12. Zhang Y, Xiong T, Nandakumar DK, Tan SC. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv Sci 2020;7:1903478.

13. Du C, Zhao X, Qian X, Huang C, Yang R. Heat-localized solar evaporation: transport processes and applications. Nano Energy 2023;107:108086.

14. Geng Y, Sun W, Ying P, et al. Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation. Adv Funct Mater 2021;31:2007648.

15. Zhou X, Zhao F, Zhang P, Yu G. Solar water evaporation toward water purification and beyond. ACS Materials Lett 2021;3:1112-29.

16. Wang C, Zhou S, Wu C, Yang Z, Zhang X. Janus carbon nanotube sponges for highly efficient solar-driven vapor generation. Chem Eng J 2023;454:140501.

17. Zhang H, Li L, Geng L, et al. Reduced graphene oxide/carbon nitride composite sponge for interfacial solar water evaporation and wastewater treatment. Chemosphere 2023;311:137163.

18. Zhang C, Xiao P, Ni F, et al. Programmable interface asymmetric integration of carbon nanotubes and gold nanoparticles toward flexible, configurable, and surface-enhanced raman scattering active all-in-one solar-driven evaporators. Energy Technol 2019;7:1900787.

19. Xiao J, Gong J, Dai M, et al. Reduced graphene oxide/Ag nanoparticle aerogel for efficient solar water evaporation. J Alloys Compd 2023;930:167404.

20. Pan J, Yu X, Dong J, et al. Diatom-inspired TiO2-PANi-decorated bilayer photothermal foam for solar-driven clean water generation. ACS Appl Mater Interfaces 2021;13:58124-33.

21. Wang X, Xue J, Ma C, et al. Anti-biofouling double-layered unidirectional scaffold for long-term solar-driven water evaporation. J Mater Chem A 2019;7:16696-703.

22. Wu W, Xu Y, Ma X, et al. Cellulose-based interfacial solar evaporators: structural regulation and performance manipulation. Adv Funct Mater 2023;33:2302351.

23. Chhetri S, Nguyen AT, Song S, et al. Flexible graphite nanoflake/polydimethylsiloxane nanocomposites with promising solar-thermal conversion performance. ACS Appl Energy Mater 2023;6:2582-93.

24. Li X, Li X, Li H, et al. 2D Ferrous ion-crosslinked Ti3C2Tx MXene aerogel evaporators for efficient solar steam generation. Adv Sustain Syst 2021;5:2100263.

25. Yu F, Ming X, Xu Y, et al. Quasimetallic molybdenum carbide-based flexible polyvinyl alcohol hydrogels for enhancing solar water evaporation. Adv Mater Inter 2019;6:1901168.

26. Zhang Q, Yin X, Zhang C, et al. Self-assembled supercrystals enhance the photothermal conversion for solar evaporation and water purification. Small 2022;18:e2202867.

27. Ahangar AM, Hedayati MA, Maleki M, Ghanbari H, Valanezhad A, Watanabe I. A hydrophilic carbon foam/molybdenum disulfide composite as a self-floating solar evaporator. RSC Adv 2023;13:2181-9.

28. Allahbakhsh A, Jarrahi Z, Farzi G, Shavandi A. Solar-powered and antibacterial water purification via Cu-BTC-embedded reduced graphene oxide nanocomposite aerogels. Chem Eng J 2023;467:143472.

29. Lu Y, Fan D, Shen Z, Zhang H, Xu H, Yang X. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy 2022;95:107016.

30. Cheng P, Wang D, Schaaf P. A review on photothermal conversion of solar energy with nanomaterials and nanostructures: from fundamentals to applications. Adv Sustain Syst 2022;6:2200115.

31. Ying P, Ai B, Hu W, et al. A bio-inspired nanocomposite membrane with improved light-trapping and salt-rejecting performance for solar-driven interfacial evaporation applications. Nano Energy 2021;89:106443.

32. Ma X, Zhao J, Wang R, Li Y, Liu C, Liu Y. Multi-angle wide-spectrum light-trapping nanofiber membrane for highly efficient solar desalination. Appl Energy 2022;328:120203.

33. Wang T, Gao S, Wang G, et al. Three-dimensional hierarchical oxygen vacancy-rich WO3-decorated Ni foam evaporator for high-efficiency solar-driven interfacial steam generation. J Colloid Interface Sci 2021;602:767-77.

34. Ma X, Jia X, Gao H, Wen D. Polypyrrole-dopamine nanofiber light-trapping coating for efficient solar vapor generation. ACS Appl Mater Interfaces 2021;13:57153-62.

35. Zeng L, Deng D, Zhu L, Wang H, Zhang Z, Yao Y. Biomass photothermal structures with carbonized durian for efficient solar-driven water evaporation. Energy 2023;273:127170.

36. Cheng P, Wang H, Wang H, van Aken PA, Wang D, Schaaf P. High-efficiency photothermal water evaporation using broadband solar energy harvesting by ultrablack silicon structures. Adv Energy Sustain Res 2021;2:2000083.

37. Wang J, Wang W, Feng L, et al. A salt-free superhydrophilic metal-organic framework photothermal textile for portable and efficient solar evaporator. Solar Energy Mater Solar Cells 2021;231:111329.

38. Jiang J, Jiang H, Xu Y, Ai L. Hierarchically porous nickel foam supported Co-NCNT arrays for efficient solar water evaporation, wastewater purification and electricity generation. Desalination 2022;539:115977.

39. Ying L, Zhu H, Huang H, et al. Scalable NiCoxSy-PANI@GF membranes with broadband light absorption and high salt-resistance for efficient solar-driven interfacial evaporation. ACS Appl Energy Mater 2021;4:3563-72.

40. Liu Y, Guo J, Wang J, Han L, Zhu L, Chen S. Orderly-assembled photothermal photonic crystals with multiple structural colors for high-performance interfacial solar desalination. Chem Eng J 2023;467:143389.

41. Wen B, Zhang X, Yan Y, et al. Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation. Desalination 2021;516:115228.

42. Cheng P, Ziegler M, Ripka V, et al. Bio-inspired self-assembly of large area 3D Ag@SiO2 plasmonic nanostructures with tunable broadband light harvesting. Appl Mater Today 2021;25:101238.

43. Wang J, Wang W, Li J, et al. Universal strategy to prepare a flexible photothermal absorber based on hierarchical Fe-MOF-74 toward highly efficient solar interfacial seawater desalination. ACS Appl Mater Interfaces 2021;13:45944-56.

44. Wang K, Cheng Z, Li P, et al. Three-dimensional self-floating foam composite impregnated with porous carbon and polyaniline for solar steam generation. J Colloid Interface Sci 2021;581:504-13.

45. Li H, Yang M, Chu A, et al. Sustainable lignocellulose-based sponge coated with polypyrrole for efficient solar steam generation. ACS Appl Polym Mater 2022;4:6572-81.

46. Zhang W, Chang Q, Xue C, Yang J, Hu S. A gelation-stabilized strategy toward photothermal architecture design for highly efficient solar water evaporation. Solar RRL 2021;5:2100133.

47. Wang S, Niu Y, Yan L, et al. Polyimide-based superhydrophilic porous membrane with enhanced thermal insulation for efficient interfacial solar evaporation. Compos Sci Technol 2022;228:109683.

48. Li S, Qiu F, Xia Y, Chen D, Jiao X. Integrating a self-floating Janus TPC@CB sponge for efficient solar-driven interfacial water evaporation. ACS Appl Mater Interfaces 2022;14:19409-18.

49. Cai C, Wang Y, Wei Z, Fu Y. Biomimetic 3D membranes with MXene heterostructures for superior solar steam generation, water treatment, and electricity generation. Solar RRL 2021;5:2100593.

50. Li H, Li L, Xiong L, et al. SiO2/MXene/Poly(tetrafluoroethylene)-based Janus membranes as solar absorbers for solar steam generation. ACS Appl Nano Mater 2021;4:14274-84.

51. Ibrahim I, Seo DH, Park MJ, et al. Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment. Chemosphere 2022;299:134394.

52. Zhao L, Yang Q, Guo W, Liu H, Ma T, Qu F. Co2.67S4-based photothermal membrane with high mechanical properties for efficient solar water evaporation and photothermal antibacterial applications. ACS Appl Mater Interfaces 2019;11:20820-7.

53. Li Y, Shi Y, Wang H, et al. Recent advances in carbon-based materials for solar-driven interfacial photothermal conversion water evaporation: assemblies, structures, applications, and prospective. Carbon Energy 2023;5:e331.

54. Yu F, Chen Z, Guo Z, et al. Molybdenum carbide/carbon-based chitosan hydrogel as an effective solar water evaporation accelerator. ACS Sustain Chem Eng 2020;8:7139-49.

55. He W, Zhou L, Wang M, Cao Y, Chen X, Hou X. Structure development of carbon-based solar-driven water evaporation systems. Sci Bull 2021;66:1472-83.

56. Guan W, Guo Y, Yu G. Carbon materials for solar water evaporation and desalination. Small 2021;17:e2007176.

57. Yu B, Zhang Y, Wang Y, Zhang Z. Recent advances and challenges of metal-based materials for solar steam generation. Adv Funct Mater 2023;33:2307533.

58. Cui R, Wei J, Du C, et al. Engineering trace AuNPs on monodispersed carbonized organosilica microspheres drives highly efficient and low-cost solar water purification. J Mater Chem A 2020;8:13311-9.

59. Simayee M, Iraji Zad A, Esfandiar A. Green synthesize of copper nanoparticles on the cotton fabric as a self-regenerating and high-efficient plasmonic solar evaporator. Sci Rep 2023;13:12762.

60. Zhou L, Tan Y, Wang J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photon 2016;10:393-8.

61. Zhao Y, Dunn A, Lin J, Shi D. Chapter 13 - photothermal effect of nanomaterials for efficient energy applications. In: Novel nanomaterials for biomedical, environmental and energy applications. Amsterdam: Elsevier; 2019. pp. 415-34.

62. Xie H, Wang J, Ithisuphalap K, Wu G, Li Q. Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels. J Energy Chem 2017;26:1039-49.

63. Li Z, Wang C. Novel advances in metal-based solar absorber for photothermal vapor generation. Chin Chem Lett 2020;31:2159-66.

64. Zhu Q, Ye K, Zhu W, et al. A hydrogenated metal oxide with full solar spectrum absorption for highly efficient photothermal water evaporation. J Phys Chem Lett 2020;11:2502-9.

65. Wang ZY, Zhu YJ, Chen YQ, Yu HP, Xiong ZC. Bioinspired aerogel with vertically ordered channels and low water evaporation enthalpy for high-efficiency salt-rejecting solar seawater desalination and wastewater purification. Small 2023;19:e2206917.

66. Wu Y, Huang H, Zhou W, et al. High-porosity lamellar films prepared by a multistage assembly strategy for efficient photothermal water evaporation and power generation. ACS Appl Mater Interfaces 2022;14:29099-110.

67. Fan Z, Ren J, Bai H, et al. Shape-controlled fabrication of MnO/C hybrid nanoparticle from waste polyester for solar evaporation and thermoelectricity generation. Chem Eng J 2023;451:138534.

68. Ibrahim I, Seo DH, Mcdonagh AM, Shon HK, Tijing L. Semiconductor photothermal materials enabling efficient solar steam generation toward desalination and wastewater treatment. Desalination 2021;500:114853.

69. Terna AD, Elemike EE, Mbonu JI, Osafile OE, Ezeani RO. The future of semiconductors nanoparticles: synthesis, properties and applications. Mater Sci Eng B 2021;272:115363.

70. Park JH, Kim DY, Schubert EF, Cho J, Kim JK. Fundamental limitations of wide-bandgap semiconductors for light-emitting diodes. ACS Energy Lett 2018;3:655-62.

71. Walukiewicz W. Intrinsic limitations to the doping of wide-gap semiconductors. Physica B 2001;302-3:123-34.

72. Zhou X, Guo Y, Zhao F, Yu G. Hydrogels as an emerging material platform for solar water purification. ACC Chem Res 2019;52:3244-53.

73. Han X, Zang L, Zhang S, et al. Hydrophilic polymer-stabilized porous composite membrane for water evaporation and solar desalination. RSC Adv 2020;10:2507-12.

74. Sharshir SW, Algazzar AM, Elmaadawy K, et al. New hydrogel materials for improving solar water evaporation, desalination and wastewater treatment: a review. Desalination 2020;491:114564.

75. Samir A, Ashour FH, Hakim AAA, Bassyouni M. Recent advances in biodegradable polymers for sustainable applications. NPJ Mater Degrad 2022;6:68.

76. Tan LJ, Zhu W, Zhou K. Recent progress on polymer materials for additive manufacturing. Adv Funct Mater 2020;30:2003062.

77. He F, Wu X, Gao J, Wang Z. Solar-driven interfacial evaporation toward clean water production: burgeoning materials, concepts and technologies. J Mater Chem A 2021;9:27121-39.

78. Fan X, Yang Y, Shi X, et al. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv Funct Mater 2020;30:2007110.

79. Sun X, Jia X, Yang J, et al. MXenes - an emerging class of 2D materials for solar water desalination: feasibility and recent advances. Solar RRL 2022;6:2100888.

80. Ronchi RM, Arantes JT, Santos SF. Synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram Int 2019;45:18167-88.

81. Cui X, Ruan Q, Zhuo X, et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chem Rev 2023;123:6891-952.

82. Zhu X, Li M, Song L, Zhang X, Yao J. Metal organic framework enabled wood evaporator for solar-driven water purification. Sep Purif Technol 2022;281:119912.

83. Zhang X, Zhang S, Tang Y, Huang X, Pang H. Recent advances and challenges of metal-organic framework/graphene-based composites. Compos Part B Eng 2022;230:109532.

84. Gao M, Peh CK, Meng FL, Ho GW. Photothermal membrane distillation toward solar water production. Small Methods 2021;5:e2001200.

85. Setyawan H, Juliananda J, Widiyastuti W. Engineering materials to enhance light-to-heat conversion for efficient solar water purification. Ind Eng Chem Res 2022;61:17783-800.

86. Jonhson W, Xu X, Zhang D, et al. Fabrication of 3D-printed ceramic structures for portable solar desalination devices. ACS Appl Mater Interfaces 2021;13:23220-9.

87. Menon AK, Haechler I, Kaur S, Lubner S, Prasher RS. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nat Sustain 2020;3:144-51.

88. Yu Z, Gu R, Tian Y, Xie P, Jin B, Cheng S. Enhanced interfacial solar evaporation through formation of micro-meniscuses and microdroplets to reduce evaporation enthalpy. Adv Funct Mater 2022;32:2108586.

89. Chen J, Zhang D, He S, et al. Thermal insulation design for efficient and scalable solar water interfacial evaporation and purification. J Mater Sci Technol 2021;66:157-62.

90. Ma H, Zhang S, Guo X, et al. Cone/plate structured photothermal evaporator with obviously improved evaporation properties by suppressing thermal conduction-caused heat loss. Sep Purif Technol 2023;307:122754.

91. Lim HW, Park SH, Lee SJ. 3D thermoresponsive hydrogel with enhanced water uptake and active evaporation for effective interfacial solar steam generation. Desalination 2023;550:116368.

92. Jin Z, Zhang M, Mei H, et al. 3D-printed chiral torsion Janus evaporator with enhanced light utilization towards ultrafast and stable solar-water desalination. Carbon 2023;202:159-68.

93. Wang C, Xu K, Shi G, Wei D. Water skin effect and arched double-sided evaporation for boosting all-weather high salinity desalination. Adv Energy Mater 2023;13:2300134.

94. Feng Y, Yao G, Xu J, Wang L, Liu G. Effect of surface roughness on the solar evaporation of liquid marbles. J Colloid Interface Sci 2023;629:644-53.

95. Tong D, Song B. A high-efficient and ultra-strong interfacial solar evaporator based on carbon-fiber fabric for seawater and wastewater purification. Desalination 2022;527:115586.

96. Zhao J, Liu Z, Low SC, Xu Z, Tan SH. Electrospinning technique meets solar energy: electrospun nanofiber-based evaporation systems for solar steam generation. Adv Fiber Mater 2023;5:1318-48.

97. Liu Z, Qing RK, Xie AQ, Liu H, Zhu L, Chen S. Self-contained Janus aerogel with antifouling and salt-rejecting properties for stable solar evaporation. ACS Appl Mater Interfaces 2021;13:18829-37.

98. Zhang H, Shen X, Kim E, et al. Integrated water and thermal managements in bioinspired hierarchical MXene aerogels for highly efficient solar-powered water evaporation. Adv Funct Mater 2022;32:2111794.

99. Wang M, Xu G, An Z, et al. Hierarchically structured bilayer Aerogel-based salt-resistant solar interfacial evaporator for highly efficient seawater desalination. Sep Purif Technol 2022;287:120534.

100. Ho ZY, Bahar R, Koo CH. A comprehensive review on small-scale passive solar stills for desalination. Environ Technol Rev 2021;10:188-212.

101. Shoeibi S, Rahbar N, Abedini Esfahlani A, Kargarsharifabad H. A review of techniques for simultaneous enhancement of evaporation and condensation rates in solar stills. Solar Energy 2021;225:666-93.

102. Ejaz A, Babar H, Ali HM, et al. Concentrated photovoltaics as light harvesters: outlook, recent progress, and challenges. Sustain Energy Technol 2021;46:101199.

103. Dao V, Vu NH, Thi Dang H, Yun S. Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 2021;85:105979.

104. Ai Z, Zhao Y, Gao R, et al. Self-assembly hierarchical binary gel based on MXene and montmorillonite nanosheets for efficient and stable solar steam generation. J Clean Prod 2022;357:132000.

105. Zhang X, Xiang D, Deng K, Zhan Y, Liu X, Shang B. Sandwich-structured evaporator with multilayer confined heating interface for boosting solar vapor generation. Chem Eng J 2022;450:137988.

106. Liu Y, Liu H, Xiong J, et al. Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation. Chem Eng J 2022;427:131539.

107. Wu Z, Sun D, Shi C, et al. Moisture-thermal stable, superhydrophilic alumina-based ceramics fabricated by a selective laser sintering 3D printing strategy for solar steam generation. Adv Funct Mater 2023;33:2304897.

108. Sun Z, Han C, Gao S, et al. Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator. Nat Commun 2022;13:5077.

109. Song R, Zhang N, Wang P, Ding H, Wang J, Li S. A self-floating Janus PPy@Ni sponge salt-resisting solar evaporator for efficient interfacial evaporation. Appl Surf Sci 2023;616:156448.

110. Wang J, Wang R, Geng Y, et al. Activated pulverized coal membrane for effective solar-driven interfacial evaporation and desalination. Chem Eng Sci 2023;265:118248.

111. Xue N, Cui H, Dong W, et al. Multifunctional hydrophilic MXene/gelatin composite aerogel with vertically aligned channels for efficient sustainable solar water evaporation and oil/water separation. Chem Eng J 2023;455:140614.

112. Zheng X, Bao Y, Huang A, Qin G, He M. 3D printing double-layer hydrogel evaporator with surface structures for efficient solar steam generation. Sep Purif Technol 2023;306:122741.

113. Liang X, Pei X, Yang Y, et al. A robust PVA/C/sponge composite hydrogel with improved photothermal interfacial evaporation rate inspired by the chimney effect. Desalination 2022;531:115720.

114. Guo Y, de Vasconcelos LS, Manohar N, Geng J, Johnston KP, Yu G. Highly elastic interconnected porous hydrogels through self-assembled templating for solar water purification. Angew Chem Int Ed 2022;61:e202114074.

115. Tu W, Wang Z, Wu Q, et al. Tree-inspired ultra-rapid steam generation and simultaneous energy harvesting under weak illumination. J Mater Chem A 2020;8:10260-8.

116. Muthuraj R, Grohens Y, Seantier B. Mechanical and thermal insulation properties of elium acrylic resin/cellulose nanofiber based composite aerogels. Nano Struc Nano Obj 2017;12:68-76.

117. Kuang Y, Chen C, He S, et al. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv Mater 2019;31:e1900498.

118. Xie Z, Zhu J, Zhang L. Three-dimensionally structured polypyrrole-coated setaria viridis spike composites for efficient solar steam generation. ACS Appl Mater Interfaces 2021;13:9027-35.

119. Jiang Q, Tian L, Liu KK, et al. Bilayered biofoam for highly efficient solar steam generation. Adv Mater 2016;28:9400-7.

120. Xu C, Gao M, Yu X, Zhang J, Cheng Y, Zhu M. Fibrous aerogels with tunable superwettability for high-performance solar-driven interfacial evaporation. Nanomicro Lett 2023;15:64.

121. Li Z, Ma X, Chen D, et al. Polyaniline-coated MOFs nanorod arrays for efficient evaporation-driven electricity generation and solar steam desalination. Adv Sci 2021;8:2004552.

122. Peng Y, Wei X, Wang Y, Li W, Zhang S, Jin J. Metal-organic framework composite photothermal membrane for removal of high-concentration volatile organic compounds from water via molecular sieving. ACS Nano 2022;16:8329-37.

123. Cui W, Zhang C, Liang R, Qiu J. Covalent organic framework hydrogels for synergistic seawater desalination and uranium extraction. J Mater Chem A 2021;9:25611-20.

124. Cui WR, Zhang CR, Liang RP, Liu J, Qiu JD. Covalent organic framework sponges for efficient solar desalination and selective uranium recovery. ACS Appl Mater Interfaces 2021;13:31561-8.

125. Yan X, Lyu S, Xu XQ, et al. Superhydrophilic 2D covalent organic frameworks as broadband absorbers for efficient solar steam generation. Angew Chem Int Ed 2022;61:e202201900.

126. Li H, Li H, Zou L, et al. Vertically π-extended strong acceptor unit boosting near-infrared photothermal conversion of conjugated polymers toward highly efficient solar-driven water evaporation. J Mater Chem A 2023;11:2933-46.

127. Li H, Wen H, Li J, Huang J, Wang D, Tang BZ. Doping AIE photothermal molecule into all-fiber aerogel with self-pumping water function for efficiency solar steam generation. ACS Appl Mater Interfaces 2020;12:26033-40.

128. Huang J, Pereira V, Wang C, Li H, Lee HK, Han J. A dual-functional device based on CB/PVDF@ BFP for solar-driven water purification and water-induced electricity generation. J Mater Chem A 2023;11:8110-8.

129. Xu T, Wang Y, Chen X, et al. A three-dimensional arched solar evaporator based on hydrophilic photothermal fibers inspired by hair for eliminating salt accumulation with desalination application. J Mater Chem A 2022;10:21004-12.

130. Zhao F, Zhou X, Shi Y, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol 2018;13:489-95.

131. Wang L, Shang J, Yang G, et al. 2D higher-metal nitride nanosheets for solar steam generation. Small 2022;18:e2201770.

132. Yu H, Wang D, Jin H, et al. 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Adv Funct Mater 2023;33:2214828.

133. Li K, Gao M, Li Z, et al. Multi-interface engineering of solar evaporation devices via scalable, synchronous thermal shrinkage and foaming. Nano Energy 2020;74:104875.

134. Wu Y, Kong R, Ma C, et al. Simulation-guided design of bamboo leaf-derived carbon-based high-efficiency evaporator for solar-driven interface water evaporation. Energy Environ Mater 2022;5:1323-31.

135. Zhao Y, You D, Yang W, Yu H, Pan Q, Song S. Cobalt nanoparticle-carbon nanoplate as the solar absorber of a wood aerogel evaporator for continuously efficient desalination. Environ Sci Wat Res Technol 2022;8:151-61.

136. Geng L, Li L, Zhang H, Zhong M, Mu P, Li J. Interfacial solar evaporator synergistic phase change energy storage for all-day steam generation. J Mater Chem A 2022;10:15485-96.

137. Zhao G, Wang Z, Chen Y, et al. Leveraging hydrophilic hierarchical channels to regulate excessive water for high-efficiency solar steam yield. ACS Appl Mater Interfaces 2022;14:12927-35.

138. Wang Y, Tang B, Han P, et al. Adjustable photothermal device induced by magnetic field for efficient solar-driven desalination. EcoMat 2021;3:e12139.

139. Yang K, Pan T, Dang S, Gan Q, Han Y. Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency. Nat Commun 2022;13:6653.

140. Hu Y, Ma H, Wu M, et al. A reconfigurable and magnetically responsive assembly for dynamic solar steam generation. Nat Commun 2022;13:4335.

141. Wang Y, Qi Q, Fan J, Wang W, Yu D. Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep Purif Technol 2021;254:117615.

142. Zhang X, Yan Y, Li N, et al. A robust and 3D-printed solar evaporator based on naturally occurring molecules. Sci Bull 2023;68:203-13.

143. Zhao S, Jiang C, Fan J, et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat Mater 2021;20:1551-8.

144. Qin DD, Zhu YJ, Yang RL, Xiong ZC. A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination. Nanoscale 2020;12:6717-28.

145. Shi Y, Ilic O, Atwater HA, Greer JR. All-day fresh water harvesting by microstructured hydrogel membranes. Nat Commun 2021;12:2797.

146. Xie M, Zhang P, Cao Y, Yan Y, Wang Z, Jin C. A three-dimensional antifungal wooden cone evaporator for highly efficient solar steam generation. NPJ Clean Water 2023;6:12.

147. Cheng S, Yu Z, Lin Z, Li L, Li Y, Mao Z. A lotus leaf like vertical hierarchical solar vapor generator for stable and efficient evaporation of high-salinity brine. Chem Eng J 2020;401:126108.

148. Dang C, Zhang X, Huang L, et al. Design of solar evaporator with well-aligned and multi-scale fluid channels based on convection tuning for stable and efficient brine desalination. Desalination 2023;550:116408.

149. Tyagi K, Gahtori B, Kumar S, Dhakate S. Advances in solar thermoelectric and photovoltaic-thermoelectric hybrid systems for power generation. Solar Energy 2023;254:195-212.

150. Liu J, Gui J, Zhou W, et al. Self-regulating and asymmetric evaporator for efficient solar water-electricity generation. Nano Energy 2021;86:106112.

151. Chen L, Ren J, Gong J, Qu J, Niu R. Cost-effective, scalable fabrication of self-floating xerogel foam for simultaneous photothermal water evaporation and thermoelectric power generation. Chem Eng J 2023;454:140383.

152. Ren J, Ding Y, Gong J, Qu J, Niu R. Simultaneous solar-driven steam and electricity generation by cost-effective, easy scale-up MnO2 -based flexible membranes. Energy Environ Mater 2023;6:e12376.

153. Duan Y, Weng M, Zhang W, Qian Y, Luo Z, Chen L. Multi-functional carbon nanotube paper for solar water evaporation combined with electricity generation and storage. Energy Convers Manage 2021;241:114306.

154. Zhou Y, Ding T, Gao M, et al. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. Nano Energy 2020;77:105102.

155. Dao V, Vu NH, Choi H. All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. J Power Sources 2020;448:227388.

156. Dao VD. An experimental exploration of generating electricity from nature-inspired hierarchical evaporator: the role of electrode materials. Sci Total Environ 2021;759:143490.

157. Wu P, Wu X, Yu H, et al. An interfacial solar evaporation enabled autonomous double-layered vertical floating solar sea farm. Chem Eng J 2023;473:145452.

158. Guo S, Zhang Y, Qu H, et al. Repurposing face mask waste to construct floating photothermal evaporator for autonomous solar ocean farming. EcoMat 2022;4:e12179.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/