REFERENCES

1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature 2012;488:294-303.

2. Meys R, Kätelhön A, Bachmann M, et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Science 2021;374:71-6.

3. Duan X, Xu J, Wei Z, et al. Metal-free carbon materials for CO2 electrochemical reduction. Adv Mater 2017;29:1701784.

4. Wang J, Dou S, Wang X. Structural tuning of heterogeneous molecular catalysts for electrochemical energy conversion. Sci Adv 2021;7:eabf3989.

5. Habtamu A, Ujihara M. The mechanism of water pollutant photodegradation by mixed and core-shell WO3/TiO2 nanocomposites. RSC Adv 2023;13:12926-40.

6. Motora KG, Wu C, Chala TF, Chou M, Kuo CJ, Koinkar P. Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions. Appl Surf Sci 2020;512:145618.

7. Motora KG, Wu C. Magnetically separable highly efficient full-spectrum light-driven WO2.72/Fe3O4 nanocomposites for photocatalytic reduction of carcinogenic chromium (VI) and organic dye degradation. J Taiwan Inst Chem Eng 2020;117:123-32.

8. Zhou Y, Sung J, Brutschea E, et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 2021;595:48-52.

9. Nguyen TV, Nguyen TP, Le QV, Dao DV, Ahn SH, Kim SY. Synthesis of very small molybdenum disulfide nanoflowers for hydrogen evolution reaction. Appl Surf Sci 2023;607:154979.

10. Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano 2021;15:3320-9.

11. Do HH, Tekalgne MA, Le QV, Cho JH, Ahn SH, Kim SY. Hollow Ni/NiO/C composite derived from metal-organic frameworks as a high-efficiency electrocatalyst for the hydrogen evolution reaction. Nano Converg 2023;10:6.

12. Lee MK, Shokouhimehr M, Kim SY, Jang HW. Two-dimensional metal-organic frameworks and covalent-organic frameworks for electrocatalysis: distinct merits by the reduced dimension. Adv Energy Mater 2022;12:2003990.

13. Xue Y, Zhang Q, Wang W, Cao H, Yang Q, Fu L. Opening two-dimensional materials for energy conversion and storage: a concept. Adv Energy Mate 2017;7:1602684.

14. Mu Q, Zhu W, Li X, et al. Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Appl Catal B 2020;262:118144.

15. Voiry D, Yang J, Chhowalla M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction. Adv Mater 2016;28:6197-206.

16. Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science 2005;310:1166-70.

17. Mohamed Samy M, Mekhemer IM, Mohamed MG, et al. Conjugated microporous polymers incorporating Thiazolo[5,4-d]thiazole moieties for sunlight-driven hydrogen production from water. Chem Eng J 2022;446:137158.

18. Dutta S, Bhaumik A, Wu KC. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications. Energy Environ Sci 2014;7:3574-92.

19. Chen J, Tao X, Li C, et al. Synthesis of bipyridine-based covalent organic frameworks for visible-light-driven photocatalytic water oxidation. Appl Catal B 2020;262:118271.

20. Contreras-pereda N, Pané S, Puigmartí-luis J, Ruiz-molina D. Conductive properties of triphenylene MOFs and COFs. Coord Chem Rev 2022;460:214459.

21. Bian G, Yin J, Zhu J. Recent Advances on conductive 2D covalent organic frameworks. Small 2021;17:e2006043.

22. Shen J, Zhang R, Su Y, et al. Polydopamine-modulated covalent organic framework membranes for molecular separation. J Mater Chem A 2019;7:18063-71.

23. Chen L, Wang W, Tian J, et al. Imparting multi-functionality to covalent organic framework nanoparticles by the dual-ligand assistant encapsulation strategy. Nat Commun 2021;12:4556.

24. Spitler EL, Koo BT, Novotney JL, et al. A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. J Am Chem Soc 2011;133:19416-21.

25. Deng JH, Luo J, Mao YL, et al. π-π stacking interactions: non-negligible forces for stabilizing porous supramolecular frameworks. Sci Adv 2020;6:eaax9976.

26. Jati A, Dey K, Nurhuda M, Addicoat MA, Banerjee R, Maji B. Dual metalation in a two-dimensional covalent organic framework for photocatalytic C-N cross-coupling reactions. J Am Chem Soc 2022;144:7822-33.

27. Zhang M, Tong Y, Sun Z, et al. Two-dimensional covalent organic framework with synergistic active centers for efficient electrochemical sodium storage. Chem Mater 2023;35:4873-81.

28. Khalid NR, Ilyas S, Ali F, et al. Novel Sn-doped WO3 photocatalyst to degrade the organic pollutants prepared by green synthesis approach. Electron Mater Lett 2024;20:85-94.

29. Dalapati S, Addicoat M, Jin S, et al. Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies. Nat Commun 2015;6:7786.

30. Farha OK, Eryazici I, Jeong NC, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc 2012;134:15016-21.

31. Rodríguez-San-Miguel D, Montoro C, Zamora F. Covalent organic framework nanosheets: preparation, properties and applications. Chem Soc Rev 2020;49:2291-302.

32. Jin F, Wang T, Zheng H, et al. Bottom-up synthesis of covalent organic frameworks with quasi-three-dimensional integrated architecture via interlayer cross-linking. J Am Chem Soc 2023;145:6507-15.

33. Abuzeid HR, El-mahdy AF, Kuo S. Covalent organic frameworks: design principles, synthetic strategies, and diverse applications. Giant 2021;6:100054.

34. Cai Y, Wen X, Wang Y, et al. Preparation of hyper-crosslinked polymers with hierarchical porous structure from hyperbranched polymers for adsorption of naphthalene and 1-naphthylamine. Sep Purif Technol 2021;266:118542.

35. Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A. Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene. Chem Mater 2013;25:1542-8.

36. Tian Y, Zhu G. Porous aromatic frameworks (PAFs). Chem Rev 2020;120:8934-86.

37. Saber AF, Sharma SU, Lee J, El-mahdy AF, Kuo S. Carbazole-conjugated microporous polymers from Suzuki-Miyaura coupling for supercapacitors. Polymer 2022;254:125070.

38. Park CG, Yang JW, Hwang NM. TEM Observations of metastable nanocarbon allotropes in the initial stage of diamond growth at 300 °C during diamond hot filament CVD. Electron Mater Lett 2023;19:316-24.

39. Hao S, Zhang T, Fan S, Jia Z, Yang Y. Preparation of COF-TpPa1 membranes by chemical vapor deposition method for separation of dyes. Chem Eng J 2021;421:129750.

40. Zheng W, Tsang C, Lee LYS, Wong K. Two-dimensional metal-organic framework and covalent-organic framework: synthesis and their energy-related applications. Mater Today Chem 2019;12:34-60.

41. Liu M, Liu Y, Dong J, et al. Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion. Nat Commun 2022;13:1411.

42. Roy N, Kundu T. Photoresponse of CVD grown crystalline quantum dot-embedded covalent organic framework thin film. RSC Adv 2023;13:3669-76.

43. Li Y, Zhang M, Guo X, et al. Growth of high-quality covalent organic framework nanosheets at the interface of two miscible organic solvents. Nanoscale Horiz 2018;3:205-12.

44. Shao M, Zhang Q, Wei X, et al. Twisted node modulation of 2D-COFs for programmable long-afterglow luminescence. Cell Rep Phys Sci 2023;4:101273.

45. Sick T, Rotter JM, Reuter S, et al. Switching on and off interlayer correlations and porosity in 2D covalent organic frameworks. J Am Chem Soc 2019;141:12570-81.

46. Belov AS, Voloshin YZ, Pavlov AA, et al. Solvent-induced encapsulation of cobalt(II) ion by a boron-capped tris-pyrazoloximate. Inorg Chem 2020;59:5845-53.

47. Wei H, Chai S, Hu N, Yang Z, Wei L, Wang L. The microwave-assisted solvothermal synthesis of a crystalline two-dimensional covalent organic framework with high CO2 capacity. Chem Commun 2015;51:12178-81.

48. Zhu D, Zhu Y, Yan Q, et al. Pure crystalline covalent organic framework aerogels. Chem Mater 2021;33:4216-24.

49. Kang C, Zhang Z, Wee V, et al. Interlayer shifting in two-dimensional covalent organic frameworks. J Am Chem Soc 2020;142:12995-3002.

50. Huang W, Jiang Y, Li X, et al. Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures. ACS Appl Mater Interfaces 2013;5:8845-9.

51. Shevate R, Shaffer DL. Large-area 2D covalent organic framework membranes with tunable single-digit nanopores for predictable mass transport. ACS Nano 2022;16:2407-18.

52. Ji W, Hamachi LS, Natraj A, et al. Solvothermal depolymerization and recrystallization of imine-linked two-dimensional covalent organic frameworks. Chem Sci 2021;12:16014-22.

53. Xu L, Ding SY, Liu J, Sun J, Wang W, Zheng QY. Highly crystalline covalent organic frameworks from flexible building blocks. Chem Commun 2016;52:4706-9.

54. Evans AM, Strauss MJ, Corcos AR, et al. Two-dimensional polymers and polymerizations. Chem Rev 2022;122:442-564.

55. Peng L, Guo Q, Song C, et al. Ultra-fast single-crystal polymerization of large-sized covalent organic frameworks. Nat Commun 2021;12:5077.

56. Yang H, Xu J, Cao H, Wu J, Zhao D. Recovery of homogeneous photocatalysts by covalent organic framework membranes. Nat Commun 2023;14:2726.

57. Zhan G, Cai ZF, Strutyński K, et al. Observing polymerization in 2D dynamic covalent polymers. Nature 2022;603:835-40.

58. Khan NA, Zhang R, Wu H, et al. Solid-vapor interface engineered covalent organic framework membranes for molecular separation. J Am Chem Soc 2020;142:13450-8.

59. Tang J, Liang Z, Qin H, et al. Large-area free-standing metalloporphyrin-based covalent organic framework films by liquid-air interfacial polymerization for oxygen electrocatalysis. Angew Chem Int Ed 2023;62:e202214449.

60. Zhou D, Tan X, Wu H, Tian L, Li M. Synthesis of C-C bonded two-dimensional conjugated covalent organic framework films by suzuki polymerization on a liquid-liquid interface. Angew Chem Int Ed 2019;58:1376-81.

61. Evans AM, Parent LR, Flanders NC, et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 2018;361:52-7.

62. Jin E, Li J, Geng K, et al. Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks. Nat Commun 2018;9:4143.

63. Wang S, Wang Q, Shao P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J Am Chem Soc 2017;139:4258-61.

64. Liu J, Lyu P, Zhang Y, Nachtigall P, Xu Y. New layered triazine framework/exfoliated 2D polymer with superior sodium-storage properties. Adv Mater 2018:30.

65. Bunck DN, Dichtel WR. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J Am Chem Soc 2013;135:14952-5.

66. Zhang Z, Xiao A, Yin C, Wang X, Shi X, Wang Y. Heterostructured two-dimensional covalent organic framework membranes for enhanced ion separation. Chem Commun 2022;58:7136-9.

67. Feng X, Ding X, Chen L, et al. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity. Sci Rep 2016;6:32944.

68. Lukose B, Kuc A, Heine T. The structure of layered covalent-organic frameworks. Chemistry 2011;17:2388-92.

69. Yu F, Liu W, Ke SW, Kurmoo M, Zuo JL, Zhang Q. Electrochromic two-dimensional covalent organic framework with a reversible dark-to-transparent switch. Nat Commun 2020;11:5534.

70. Mahmood J, Ahmad I, Jung M, et al. Two-dimensional amine and hydroxy functionalized fused aromatic covalent organic framework. Commun Chem 2020;3:31.

71. Li RL, Yang A, Flanders NC, Yeung MT, Sheppard DT, Dichtel WR. Two-dimensional covalent organic framework solid solutions. J Am Chem Soc 2021;143:7081-7.

72. Cao L, Chen IC, Li Z, et al. Switchable Na+ and K+ selectivity in an amino acid functionalized 2D covalent organic framework membrane. Nat Commun 2022;13:7894.

73. Wu X, Han X, Liu Y, Liu Y, Cui Y. Control interlayer stacking and chemical stability of two-dimensional covalent organic frameworks via steric tuning. J Am Chem Soc 2018;140:16124-33.

74. Zhuang S, Lei L, Nunna B, Lee ES. New nitrogen-doped graphene/MOF-modified catalyst for fuel cell systems. ECS Trans 2016;72:149-54.

75. Duresa LW, Kuo D, Bekena FT, Kebede WL. Simple room temperature synthesis of oxygen vacancy-rich and In-doped BiOBr nanosheet and its highly enhanced photocatalytic activity under visible-light irradiation. J Phys Chem Solids 2021;156:110132.

76. Chen R, Wang Y, Ma Y, et al. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat Commun 2021;12:1354.

77. Evans AM, Bradshaw NP, Litchfield B, et al. High-sensitivity acoustic molecular sensors based on large-area, spray-coated 2D covalent organic frameworks. Adv Mater 2020;32:e2004205.

78. Yu H, Wang J, Xie F, et al. A stack-guiding unit constructed 2D COF with improved charge carrier transport and versatile photocatalytic functions. Chem Eng J 2022;445:136713.

79. Kim KH, Choi C, Choung S, et al. Continuous oxygen vacancy gradient in TiO2 photoelectrodes by a photoelectrochemical-driven “self-purification” process. Adv Energy Mater 2022;12:2103495.

80. Biswas S, Dey A, Rahimi FA, Barman S, Maji TK. Metal-free highly stable and crystalline covalent organic nanosheet for visible-light-driven selective solar fuel production in aqueous medium. ACS Catal 2023;13:5926-37.

81. Lee SA, Yang JW, Lee TH, et al. Multifunctional nano-heterogeneous Ni(OH)2/NiFe catalysts on silicon photoanode toward efficient water and urea oxidation. Appl Catal B 2022;317:121765.

82. Bae S, Lee S, Ryu H, Lee W. Improvement of photoelectrochemical properties of CuO photoelectrode by Li doping. Korean J Met Mater 2022;60:577-86.

83. Nguyen VH, Nguyen BS, Hu C, et al. Novel architecture titanium carbide (Ti3C2Tx) MXene cocatalysts toward photocatalytic hydrogen production: a mini-review. Nanomaterials 2020;10:602.

84. Do HH, Nguyen DLT, Nguyen XC, et al. Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: a review. Arab J Chem 2020;13:3653-71.

85. Nguyen V, Nguyen B, Jin Z, et al. Towards artificial photosynthesis: sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels. Chem Eng J 2020;402:126184.

86. Nguyen TP, Nguyen DLT, Nguyen VH, et al. Recent advances in TiO2-based photocatalysts for reduction of CO2 to fuels. Nanomaterials 2020;10:337.

87. Cho JH, Ma J, Kim SY. Toward high-efficiency photovoltaics-assisted electrochemical and photoelectrochemical CO2 reduction: strategy and challenge. Exploration 2023;3:20230001.

88. Yang Y, Shen Y, Wang L, Song Y, Wang L. Three-dimensional porous carbon/covalent-organic framework films integrated electrode for electrochemical sensors. J Electroanal Chem 2019;855:113590.

89. Zhu Y, Shao P, Hu L, et al. Construction of interlayer conjugated links in 2D covalent organic frameworks via topological polymerization. J Am Chem Soc 2021;143:7897-902.

90. Zhao X, Pachfule P, Thomas A. Covalent organic frameworks (COFs) for electrochemical applications. Chem Soc Rev 2021;50:6871-913.

91. Yang C, Mao C, Deng Q, Yang Y, Zhou Y, Zhang Y. One-Pot synthesis of flavones catalyzed by an Au-mediated covalent organic framework. J Colloid Interface Sci 2023;642:283-91.

92. Li C, Yu G. Controllable synthesis and performance modulation of 2D covalent-organic frameworks. Small 2021;17:e2100918.

93. Tang J, Su C, Shao Z. Covalent organic framework (COF)-based hybrids for electrocatalysis: recent advances and perspectives. Small Methods 2021;5:e2100945.

94. Sun K, Xiao F, Yu B, He W. Photo-/electrocatalytic functionalization of quinoxalin-2(1H)-ones. Chinese J Catal 2021;42:1921-43.

95. Liu C, Li H, Liu F, et al. Intrinsic activity of metal centers in metal-nitrogen-carbon single-atom catalysts for hydrogen peroxide synthesis. J Am Chem Soc 2020;142:21861-71.

96. Liu Q, Li J, Wang J. Research of covalent organic frame materials based on porphyrin units. J Incl Phenom Macrocycl Chem 2019;95:1-15.

97. Haase F, Lotsch BV. Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. Chem Soc Rev 2020;49:8469-500.

98. An S, Li X, Shang S, et al. One-dimensional covalent organic frameworks for the 2e- oxygen reduction reaction. Angew Chem Int Ed 2023;62:e202218742.

99. Gao Z, Yu Z, Huang Y, et al. Flexible and robust bimetallic covalent organic frameworks for the reversible switching of electrocatalytic oxygen evolution activity. J Mater Chem A 2020;8:5907-12.

100. Chang C, Wei Y, Kuo W. Free-standing CuS-ZnS decorated carbon nanotube films as immobilized photocatalysts for hydrogen production. Int J Hydrog Energy 2019;44:30553-62.

101. Wang X, Sun L, Zhou W, Wu H, Deng W. Iron single-atom catalysts confined in covalent organic frameworks for efficient oxygen evolution reaction. Cell Rep Phys Sci 2022;3:100804.

102. Qiu XF, Huang JR, Yu C, et al. A Stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. Angew Chem Int Ed 2022;61:e202206470.

103. Yusran Y, Fang Q, Qiu S. Postsynthetic covalent modification in covalent organic frameworks. Israel J Chem 2018;58:971-84.

104. Jin B, Cho Y, Park C, et al. A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting. Energy Environ Sci 2022;15:672-9.

105. Lee MG, Yang JW, Park H, et al. Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nanomicro Lett 2022;14:48.

106. Tian C, Liu R, Zhang Y, Yang W, Wang B. Ru-doped functional porous materials for electrocatalytic water splitting. Nano Res 2023.

107. Bhunia S, Das SK, Jana R, et al. Electrochemical stimuli-driven facile metal-free hydrogen evolution from pyrene-porphyrin-based crystalline covalent organic framework. ACS Appl Mater Interfaces 2017;9:23843-51.

108. Zhao Y, Li T, Gu J, et al. Covalent triazine frameworks based on different stacking model as electrocatalyst for hydrogen evolution. Appl Surface Sci 2023;618:156697.

109. Ruidas S, Mohanty B, Bhanja P, et al. Metal-free triazine-based 2D covalent organic framework for efficient H2 evolution by electrochemical water splitting. ChemSusChem 2021;14:5057-64.

110. Halder S, Pradhan AK, Khan S, Chakraborty C. Generation of covalent organic framework-derived porous N-doped carbon nanosheets for highly efficient electrocatalytic hydrogen evolution. Energy Adv 2023;2:1713-23.

111. Zhao Q, Chen S, Ren H, Chen C, Yang W. Ruthenium nanoparticles confined in covalent organic framework/reduced graphene oxide as electrocatalyst toward hydrogen evolution reaction in alkaline media. Ind Eng Chem Res 2021;60:11070-8.

112. Maiti S, Chowdhury AR, Das AK. Electrochemically facile hydrogen evolution using ruthenium encapsulated two dimensional covalent organic framework (2D COF). ChemNanoMat 2020;6:99-106.

113. Pan R, Wu J, Wang W, Cheng C, Liu X. Robust crystalline aromatic imide-linked two-dimensional covalent organic frameworks confining ruthenium nanoparticles as efficient hydrogen evolution electrocatalyst. Colloids Surf A Physicochem Eng Asp 2021;621:126511.

114. Wang W, Zhang L, Gao C, et al. Covalent organic framework derived Mo2C-MoNi4 chainmail catalysts for hydrogen evolution. Appl Surf Sci 2023;627:157322.

115. Xu Q, Tang Y, Zhang X, Oshima Y, Chen Q, Jiang D. Template conversion of covalent organic frameworks into 2D conducting nanocarbons for catalyzing oxygen reduction reaction. Adv Mater 2018;30:e1706330.

116. Das SK, Kumar G, Das M, Dey RS. A 2D covalent organic framework as a metal-free electrode towards electrochemical oxygen reduction reaction. Mater Today Proc 2022;57:228-33.

117. Zhang J, Zhao Z, Xia Z, Dai L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 2015;10:444-52.

118. Ji J, Zhang C, Qin S, Jin P. First-principles investigation of two-dimensional covalent-organic framework electrocatalysts for oxygen evolution/reduction and hydrogen evolution reactions. Sustain Energy Fuels 2021;5:5615-26.

119. Tavakoli E, Kakekhani A, Kaviani S, et al. In situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J Am Chem Soc 2019;141:19560-4.

120. Li S, Gao Y, Li N, Ge L, Bu X, Feng P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ Sci 2021;14:1897-927.

121. Cai M, Ding S, Gibbons B, Yang X, Kessinger MC, Morris AJ. Nickel(II)-modified covalent-organic framework film for electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF). Chem Commun 2020;56:14361-4.

122. Lee SJ, Park YS. Effect of synthesis temperature on oxygen evolution reaction of cobalt-iron layered double hydroxide. Korean J Met Mater 2022;46:326-9.

123. Xu J, Tang W, Yang C, et al. A highly conductive COF@CNT electrocatalyst boosting polysulfide conversion for Li-S chemistry. ACS Energy Lett 2021;6:3053-62.

124. Zhang Z, Wang W, Wang X, Zhang L, Cheng C, Liu X. Ladder-type π-conjugated metallophthalocyanine covalent organic frameworks with boosted oxygen reduction reaction activity and durability for zinc-air batteries. Chem Eng J 2022;435:133872.

125. Hao Q, Zhao C, Sun B, et al. Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J Am Chem Soc 2018;140:12152-8.

126. Yan Y, Qin H, Ding D, et al. Ultrathin cage-based covalent organic framework nanosheets as precursor for pyrolysis-free oxygen evolution reaction electrocatalyst. ChemNanoMat 2022;8:e202200305.

127. Yang C, Yang Z, Dong H, et al. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett 2019;4:2251-8.

128. Cui J, Liu J, Wang C, et al. Efficient electrocatalytic water oxidation by using the hierarchical 1D/2D structural nanohybrid of CoCu-based zeolitic imidazolate framework nanosheets and graphdiyne nanowires. Electrochimica Acta 2020;334:135577.

129. Zhang R, Liu W, Zhang F, Yang Z, Zhang G, Zeng XC. COF-C4N nanosheets with uniformly anchored single metal sites for electrocatalytic OER: from theoretical screening to target synthesis. Appl Catal B 2023;325:122366.

130. Martínez-Fernández M, Martínez-periñán E, Martínez JI, et al. Evaluation of the oxygen reduction reaction electrocatalytic activity of postsynthetically modified covalent organic frameworks. ACS Sustain Chem Eng 2023;11:1763-73.

131. Chang J, Li C, Wang X, et al. Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nanomicro Lett 2023;15:159.

132. García-Arroyo P, Martínez-periñán E, Cabrera-trujillo JJ, et al. Pyrenetetraone-based covalent organic framework as an effective electrocatalyst for oxygen reduction reaction. Nano Res 2022;15:3907-12.

133. Kumar A, Ubaidullah M, Pandit B, Yasin G, Gupta RK, Zhang G. Fe-phthalocyanine derived highly conjugated 2D covalent organic framework as superior electrocatalyst for oxygen reduction reaction. Discov Nano 2023;18:109.

134. Chi S, Chen Q, Zhao S, et al. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide. J Mater Chem A 2022;10:4653-9.

135. Lei K, Yu Xia B. Electrocatalytic CO2 reduction: from discrete molecular catalysts to their integrated catalytic materials. Chemistry 2022;28:e202200141.

136. Nie W, Tarnopol DE, Mccrory CC. The effect of extended conjugation on electrocatalytic CO2 reduction by molecular catalysts and macromolecular structures. Curr Opin Electrochem 2021;28:100716.

137. Zhang M, Lu M, Yang M, et al. Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of CO2 to CH4 by synergistic strategy. eScience 2023;3:100116.

138. Xu K, Dai Y, Ye B, Wang H. Two dimensional covalent organic framework materials for chemical fixation of carbon dioxide: excellent repeatability and high selectivity. Dalton Trans 2017;46:10780-5.

139. Yang YL, Wang YR, Dong LZ, et al. A honeycomb-like porous crystalline hetero-electrocatalyst for efficient electrocatalytic CO2 reduction. Adv Mater 2022;34:e2206706.

140. Zhao Q, Wang Y, Li M, et al. Organic frameworks confined Cu single atoms and nanoclusters for tandem electrocatalytic CO2 reduction to methane. SmartMat 2022;3:183-93.

141. Cho JH, Lee C, Hong SH, et al. Transition metal ion doping on ZIF-8 enhances the electrochemical CO2 reduction reaction. Adv Mater 2023;35:e2208224.

142. Kim S, Kim KH, Oh C, Zhang K, Park JH. Artificial photosynthesis for high-value-added chemicals: old material, new opportunity. Carbon Energy 2022;4:21-44.

143. Wu Q, Mao MJ, Wu QJ, Liang J, Huang YB, Cao R. Construction of donor-acceptor heterojunctions in covalent organic framework for enhanced CO2 electroreduction. Small 2021;17:e2004933.

144. Zhu HJ, Lu M, Wang YR, et al. Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction. Nat Commun 2020;11:497.

145. Lu Y, Zhang J, Wei W, Ma DD, Wu XT, Zhu QL. Efficient carbon dioxide electroreduction over ultrathin covalent organic framework nanolayers with isolated cobalt porphyrin units. ACS Appl Mater Interfaces 2020;12:37986-92.

146. Zhang MD, Si DH, Yi JD, Zhao SS, Huang YB, Cao R. Conductive phthalocyanine-based covalent organic framework for highly efficient electroreduction of carbon dioxide. Small 2020;16:2005254.

147. Miao Q, Lu C, Xu Q, et al. CoN2O2 sites in carbon nanosheets by template-pyrolysis of COFs for CO2RR. Chem Eng J 2022;450:138427.

148. Liu G, Li X, Liu M, et al. Dimensional engineering of covalent organic frameworks derived carbons for electrocatalytic carbon dioxide reduction. SusMat 2023;3:834-42.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/